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Alzheimer’s dementia commonly impacts the health of older adults and lacks any

preventative therapy. While Alzheimer’s dementia risk has a substantial genetic

component, the specific molecular mechanisms and neuropathologies triggered by

most of the known genetic variants are unclear. Resultantly, they have shown limited

influence on drug development portfolios to date. To facilitate our understanding of

the consequences of Alzheimer’s dementia susceptibility variants, we examined their

relationship to a wide range of clinical, molecular and neuropathological features.

Because the effect size of individual variants is typically small, we utilized a polygenic

(overall) risk approach to identify the global impact of Alzheimer’s dementia susceptibility

variants. Under this approach, each individual has a polygenic risk score (PRS) that

we related to clinical, molecular and neuropathological phenotypes. Applying this

approach to 1,272 individuals who came to autopsy from one of two longitudinal aging

cohorts, we observed that an individual’s PRS was associated with cognitive decline

and brain pathologies including beta-amyloid, tau-tangles, hippocampal sclerosis,

and TDP-43, MIR132, four proteins including VGF, IGFBP5, and STX1A, and many

chromosomal regions decorated with acetylation on histone H3 lysine 9 (H3K9Ac). While

excluding the APOE/TOMM40 region (containing the single largest genetic risk factor

for late-onset Alzheimer’s dementia) in the calculation of the PRS resulted in a slightly

weaker association with the molecular signatures, results remained significant. These

PRS-associated brain pathologies and molecular signatures appear to mediate genetic

risk, as they attenuated the association of the PRS with cognitive decline. Notably, the

PRS induced changes in H3K9Ac throughout the genome, implicating it in large-scale

chromatin changes. Thus, the PRS for Alzheimer’s dementia (AD-PRS) showed effects

on diverse clinical, molecular, and pathological systems, ranging from the epigenome

to specific proteins. These convergent targets of a large number of genetic risk factors

for Alzheimer’s dementia will help define the experimental systems and models needed

to test therapeutic targets, which are expected to be broadly effective in the aging

population that carries diverse genetic risks for Alzheimer’s dementia.
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INTRODUCTION

The ultimate goal behind large-scale sequencing studies in
Alzheimer’s dementia is to promote novel drug discovery efforts
by identifying the origin of pathogenic mechanisms. However,
despite gene discoveries from ever-larger sequencing studies,
most clinical trials (Cummings et al., 2017) remain focused on the
beta-amyloid pathway identified in familial Alzheimer’s disease
(AD) in the early 1990’s (Goate et al., 1991; Strittmatter et al.,
1993; Levy-Lahad et al., 1995; Sherrington et al., 1995). Several
factors may be responsible for the limited translation of genetic
findings to novel disease mechanisms. These include weak effects
of most variants (Lambert et al., 2013), rare variants that
have escaped detection (Sims et al., 2017), epigenomic changes
associated with AD pathologies (De Jager et al., 2014), complexity
of molecular systems supporting cognition (Gaiteri et al., 2016;
Mostafavi et al., 2018), complexity of the AD phenotype (Farfel
et al., 2016; Bennett, 2017), inadequacy of animal models based
on these variants (Sabbagh et al., 2013; Burns et al., 2015; Foley
et al., 2015), or external factors, such as economics of trial failures
in Alzheimer’s dementia (Doody et al., 2013, 2014; Cummings
et al., 2014; Salloway et al., 2014).

Attempts to extract actionable molecular mechanisms from
Alzheimer’s dementia susceptibility variants have sought to unify
genetic findings into coherent biological processes. Some variants
appear to segregate into cell-specific functions (Raj et al., 2014),
enriched in canonical (Karch and Goate, 2015) or data-driven
pathway (Miller et al., 2013; Zhang et al., 2013). Other selected
Alzheimer’s dementia susceptibility variants show effects on
brain structure (Sabuncu et al., 2012; Chauhan et al., 2015; Foley
et al., 2017) or brain networks (Reiman et al., 2005; Filippini
et al., 2009; Chhatwal et al., 2013; Zhang et al., 2015). At the
same time, the biological significance of a portion of identified
variants is unclear. This may be due to lack of associations
with endophenotypes, which are specific cellular or molecular
components of the disease that are more actionable targets for the
activity triggered by variants. One direct way to connect variants
to endophenotypes is to employ them as outcomes for a genome-
wide association study (GWAS) (Flint et al., 2014). In practice,
this approach is challenging as such phenotypes are generally
not available for large cohorts. However, in a few reported cases,
this approach led to the identification of several loci associated
with endophenotypes. (Ramanan et al., 2015; Deming et al., 2017;
Chibnik et al., 2018; Chung et al., 2018). These results generally
provide additional candidate loci but do not clarify the effects of
the GWAS hits for Alzheimer’s dementia.

In this study, we attempted to discover actionable
relationships between Alzheimer’s dementia susceptibility
variants and disease mechanisms by identifying the polygenic
effects of genetic variants on clinical, molecular and
neuropathological phenotypes. These endophenotypes are
useful in defining convergent experimentally actionable targets
for Alzheimer’s dementia to aid the translation of current and
future genetic findings into disease mechanisms that can be
addressed therapeutically. We addressed the small effect sizes of
recent genetic studies of Alzheimer’s dementia by aggregating
genetic variants into a total risk score calculated for each

individual (polygenic risk score-PRS), and then searched for
endophenotypes affected by this polygenic risk. Specifically,
we compared predicted polygenic risk to a wide range of
psychological, cognitive, behavioral, neuropathological, and
molecular phenotypes that cover several aspects of cellular
regulation, all measured in hundreds to more than a thousand
individuals. PRS associations were found with epigenomes,
a microRNA (miRNA), and proteins, all measured in the
dorsolateral prefrontal cortex, as well as other neurodegenerative
disease pathologies. These factors associated with polygenic risk
showed differential genetic architecture to key components of
Alzheimer’s dementia such as tau-tangles, and together they may
carry the genetic risk for Alzheimer’s dementia to lead cognitive
decline. Thus, we identified the molecular and pathological
features which can provide novel targets for interventions or
biomarkers backed with genetic evidence.

METHODS

Cohort Summaries for the Religious
Orders Study (ROS) and Rush Memory and
Aging Project (MAP)
The ROS and MAP studies, based out of the Rush Alzheimer’s
Disease Center (RADC) in Chicago are two longitudinal,
community-based aging studies collectively referred to as
ROSMAP (Bennett et al., 2018), with many harmonized data
measures. Together, these ongoing studies have enrolled >3,500
older persons without dementia, all of whom have agreed to
brain donation and annual detailed clinical evaluation, cognitive
testing and blood donation. As of March 2018, a total of 2,093
individuals were genotyped. We used data from 1272 deceased
individuals with genotype measurement in this study. The brain
autopsies were approved by a board-certified neuropathologist.
Of these,1,260 are non-Latino White, 11 are Latino, and 1 is
African American. Of these, 847 individuals were female and
425 were male (Supplementary Table 1). All omics analyses
were performed on the dorsolateral prefrontal cortex (DLPFC).
Cognitive decline and pathological indices utilized in comparison
to polygenic risk come directly from measurements provided by
this cohort. All phenotypes and omics data are shared widely with
a data use agreement through the RADC Resource Sharing Hub
(www.radc.rush.edu).

Standard Protocol Approvals,
Registrations, and Patient Consents
The parent cohort studies and sub-studies were approved
by Rush University Medical Center Institutional Review
Boards. Participants provided written informed consent and all
participants signed an Anatomic Gift Act for brain donation.

Clinical Evaluation
For each participant, a comprehensive clinical evaluation was
administered at baseline and during each annual follow-up visit.
Details of the evaluations were described previously (Wilson
et al., 2002, 2015b; Bennett et al., 2006). Briefly, the cognitive
battery contains a total of 21 cognitive performance tests, of
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which 19 are in common between ROS and MAP. Of these 17
are used to construct a global composite measure of cognitive
function (Wilson et al., 2015a) and assess 5 dissociable cognitive
domains including, episodic memory (7 measures), semantic
memory (3measures), workingmemory (3measures), perceptual
speed (2 measures), and visuospatial ability (2 measures) (Wilson
et al., 2015b). Tominimize the floor and ceiling effects, composite
measures were used to examine the longitudinal cognitive
decline. The longitudinal rate of decline was computed for each
participant using linear mixed models with adjustment for the
effects of age, sex, and education, which estimate person-specific
residual slopes (Wilson et al., 2007).

The evaluation also provides clinical diagnoses of Alzheimer’s
dementia, and other causes of dementia, major depression,
and stroke, as well as extensive characterization of lifestyle,
personality, and other medical conditions, as described (Bennett
et al., 2012a,b). The complete list of clinical variables is in
Supplementary Table 2.

TAU and Beta-Amyloid Measurement
Tissue was dissected from 8 brain regions to quantify the
load of parenchymal deposition of beta-amyloid by image
analysis and the density of abnormally phosphorylated paired
helical filament tau (PHFtau)-positive neurofibrillary tangles by
stereology. Tissue sections (20µm) were stained with antibodies
against beta-amyloid protein and PHFtau protein, and quantified
using image analysis and stereology, as previously described
(Bennett et al., 2006, 2012c; Schneider et al., 2012; Boyle et al.,
2013). Pathologic AD was generated from five regions which
were stained with modified Bielschowski. Other pathologic
diagnoses were made as described (Boyle et al., 2018). The
complete list of brain pathologies assessed in this study is in
Supplementary Table 2.

Genotype Processing in ROS and MAP
Genotyping of the ROS and MAP subjects was performed on the
Affymetrix Genome-Wide HumanSNP Array6.0 (n = 1709) or
the Illumina OmniQuad Express platform (n = 384). Genotypes
were measured using DNA extracted from peripheral blood
mononuclear cells or frozen brain tissue, and quality control
steps were performed as described previously (Shulman et al.,
2013). Dosages for all single nucleotide polymorphisms (SNPs)
on the 1000 Genomes reference were imputed using BEAGLE
(Browning and Browning, 2009) (version 3.3.2; 1000 Genomes
Project Consortium interim phase I haplotypes, 2011 Phase 1b
data freeze). The coordinates of SNPs were updated with dbSNP
Build 150. SNPs with minor allele frequency >0.05 and info
score >0.3 were used for the subsequent analyses, resulting in
7,159,943 SNPs.

Methylation Processing
Details on DNA methylation data were published previously
(De Jager et al., 2014). Briefly, DNA from 740 individuals
was extracted from DLPFC using the Qiagen QIAamp DNA
mini protocol. DNA methylation data were generated using
Illumina Infinium HumanMethylation450 BeadChip. The beta
methylation values were adjusted using linear regression with the

following variables: sex, age at death, cell epigenotype specific
indexes, the first three genotyping principal components, post-
mortem interval (PMI), array positions, study index and batch.
After normalization, we performed an initial data reduction using
the minfi Bioconductor package (Aryee et al., 2014) to collapse
adjacent probes with similar methylation levels into single units
as described previously (Gaiteri et al., 2018). This resulted in
∼130,000 methylation loci.

Histone Acetylation Processing
Details on histone acetylation data were previously published
(Klein et al., 2018; Tasaki et al., 2018). Briefly, Chromatin
Immunoprecipitation (ChIP) assay using anti-H3K9Ac mAb
coupled with sequencing was performed in gray matter from
669 biopsies of DLPFC. The resulting datasets included 26,384
peaks. Read counts from 641 individuals which had genotype
data were transformed by adding a constant (0.5) and then
log2 transformed with adjustment of the effective library sizes
[as estimated by trimmed mean of M-values (TMM) scale-
normalization using edgeR software; Robinson et al., 2010]. The
read counts were then quantile normalized. To remove outlier
samples, we followed the procedure used by the Genotype-Tissue
Expression project (GTEx Consortium et al., 2017). Specifically,
the statistic di was calculated as the correlation between each
sample and the median of all samples. We excluded samples with
a di value outside of 1.5x of the lower interquartile range. Nine
samples were removed. We adjusted the data for the following
variables using linear regression: sex, age at death, the first three
genotyping principal components (PCs), PMI, study index (ROS
or MAP) and the data quality metrics which we found to be
strongly correlated with the first PC (mean fold enrichment, total
number of reads, 50% quantile of the mapping quality of all
uniquely mapped reads, non-redundant fraction and PCR batch).

RNAseq Processing
Details on RNAseq data were previously published (Ng et al.,
2017; Mostafavi et al., 2018). Briefly, RNA was extracted from
DLPFC region of 540 individuals. The reads were aligned to
the reference genome using Bowtie (Langmead et al., 2009)
and the expression FPKM (fragment per kilobase of million)
values were estimated using RSEM (Li et al., 2011). Samples
from 494 individuals which had genotype data and passed the
expression outlier test were further normalized. We kept only
highly expressed genes (mean expression >2 FPKM), which
resulted in 13,484 genes. The FPKM values were log transformed
and the data were adjusted using linear regression for the
following variables: sex, age at death, first three genotyping PCs,
PMI, RIN (RNA integrity number), study index (ROS or MAP)
and batch.

Identifying Molecular Systems
Comparisons between every DNAmethylation locus (∼130,000),
histone acetylation peak (∼26,000), and expressed genes
(∼13,000) with the polygenic risk score for Alzheimer’s
dementia (AD-PRS) presents a large multiple testing burden.
Therefore, we followed the standard practice of reducing
DNA methylation, histone acetylation, and gene expression
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to comethylated, coacetylated, or coexpressed systems, each
of which was composed of variables with similar patterns
of methylation, acetylation, or expression, measured across
all individuals. These systems are sometimes referred to as
modules (Zhang and Horvath, 2005). In order to statistically
identify groups of comethylated, coacetylated, or coexpressed
genes we use the consensus clustering approach SpeakEasy
(Gaiteri et al., 2015). This method was used because: (1) unlike
hierarchical clustering approaches, SpeakEasy does not require
any manual parameter tuning or threshold selection; (2) it has
demonstrated the highest recorded performance on synthetic
clustering benchmarks; (3) it provides accurate recovery of
biological gold standards; and (4) it identifies clusters which are
less likely to be influenced by statistical or data artifacts due to its
stochastic nature and consensus clustering. This method operates
on the DNA methylation locus-DNA methylation locus, histone
acetylation peak-histone acetylation peak, or gene expression-
gene expression Pearson correlation matrix to identify clusters
or modules of coacetylated/comethylated/coexpressed variables.
Using SpeakEasy we identified 58 DNA comethylation modules,
80 histone coacetylation modules, and 49 coexpression modules
(Supplementary Table 3). The modules encompass a wide range
of functional cellular systems, which in many cases correspond to
canonical pathways, but also provide measures of robust cellular
systems that are less well annotated (Gaiteri et al., 2014). We
computed the normalized acetylation/methylation/expression
level by subtracting the mean level for that variable across all
individuals and dividing it by the standard deviation. Then,
we summarized the composite metric of each module in each
individual by computing themean of the normalized levels across
all variables in that module.

miRNA-Array
The miRNA expression profiles were collected for about 700
miRNAs from 734 frozen post-mortem DLPFC samples using
the NanoString nCounter miRNA expression assay (Patrick et al.,
2017). We pre-processed the dataset to retain all miRNAs that
had a call rate of 95% and an absolute value above 15 in at
least 50% of the samples. The batch effects (cartridges) were
corrected using Combat (Johnson et al., 2007). The data were
adjusted for the following variables: sex, age at death, PMI, RIN,
years of education and the first three genotyping PCs. The pre-
processing resulted in 292 miRNAs encoded in human genome
in 655 subjects.

Targeted Liquid Chromatography (LC)
Selected Reaction Monitoring (SRM)
Proteomics
SRM proteomics was performed using frozen DLPFC tissue
for 67 proteins selected by the consortium members of
Accelerating Medicines Partnership for Alzheimer’s Disease
(AMP-AD; https://www.synapse.org/#!Synapse:syn2580853) (Yu
et al., 2018). The samples were prepared for LC-SRM analysis
using the standard protocol described previously (Petyuk et al.,
2010; Andreev et al., 2012). Briefly, the abundance of endogenous
peptides was quantified as a ratio to spiked-in synthetic peptides

containing stable heavy isotopes. The “light/heavy” ratios were
log2 transformed and shifted such that median log2-ratio was
zero. Data were adjusted for the following variables: sex, age at
death, PMI, experimental batch, years of education and the first
three genotyping PCs. The pre-processing resulted in 67 proteins
in 765 subjects.

Polygenic Risk Score Generation
The genetic variants comprising our AD-PRS were identified
based on GWAS data from the International Genomics of
Alzheimer’s Project (IGAP) (Lambert et al., 2013). IGAP is the
largest aggregation collection of genomic data for Alzheimer’s
dementia. The IGAP study conducted the two-stage meta-
analysis with a total of 25,580 Alzheimer’s dementia cases and
48,466 controls. The summary statistics from the entire cohort
are available for 11,632 SNPs that indicate p < 0.001 in the
first stage of the IGAP study. To select SNPs for AD-PRS, we
used the entire cohort summary statistics of 6,411 SNPs that
showed p < 0.001 in the entire cohort. Since SNPs located in the
Apolipoprotein E (ApoE) or translocase of outer mitochondrial
membrane 40 (TOMM40) were only measured in the first stage
(Lambert et al., 2013), the first stage summary statistics of three
SNPs (rs769449, rs769450, and rs429358) in the region were also
added to the initial set of SNPs. SNPs in linkage disequilibrium
(LD) were pruned with the threshold of R2 > 0.1 and the window
of 2,000 kb using LD estimates based on all 2,093 genotyped
ROSMAP participants. This resulted in 457 independent SNPs
which included rs769449 and rs769450 for ApoE/TOMM40
region (Supplementary Table 4). We calculated AD-PRS for
1,272 deceased individuals as an average of the number of risk-
increasing allele weighted by the summary statistic using PRSice-
2 software (Euesden et al., 2015). An AD-PRS without two SNPs
located in ApoE/TOMM40 region and an AD-PRS consisting
of two ApoE/TOMM40 SNPs were also generated in the same
procedure as above. We then scaled AD-PRSs by subtracting
the mean AD-PRSs across all individuals and dividing by the
standard deviation.

Statistical Analysis
Linear or logistic regression models were used for testing
associations between AD-PRS and continuous or categorical
traits, respectively. The following variables were removed from
the continuous traits using linear regression leaving the residuals
for use in the association test with AD-PRS: age at measurement,
sex, years of education and the first three genotyping PCs. For
categorical traits, these covariates were included in the logistic
regression model.

Estimation of AD-PRS Effect Explained by
Endophenotypes
To evaluate the proportion of AD-PRS effect on global cognitive
decline explained by endophenotypes, we compared the variance
of global cognitive decline explained by AD-PRS and that given
each molecular phenotype as follows:

First, the total variance of global cognitive decline was
computed as the total sum of squares (SS),
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SStotal =
∑

i

(

yi − y
)2

where yi is global cognitive decline for i individual, and y is an
average of global cognitive decline. Then global cognitive decline
was regressed with AD-PRS alone,

f 1 (ADPRS) = a1 + b1∗ADPRS+ ε1

where a1 is an intercept, b1 is a coefficient for AD-PRS, and ε1
is an error term. The SS for the residual of the first model was
computed as

SS1residual =
∑

i

(yi − f 1i )
2

and then the proportion of variance explained by AD-PRS was
calculated as

PVE1 = 1−
SS1

residual

SStotal
.

Next, global cognitive decline was regressed with AD-PRS and a
mediator (M),

f 2 (ADPRS,M) = a1 + b2∗ADPRS+ c2∗M + ε2

where a2 is an intercept, b2 is a coefficient for AD-PRS, c2 is a
coefficient for a mediator, and ε2 is an error term. The SS for the
residual of the second model was computed as

SS2residual =
∑

i

(yi − f 2i )
2

and then the proportion of variance explained by AD-PRS was
calculated as

PVE2ADPRS =

(

1−
SS2

residual

SStotal

)

∗RIADPRS

The component RIADPRS is the relative contribution of AD-PRS
to the variance explained by the secondmodel and was calculated
using the variance decomposition method proposed by Chevan
and Sutherland (1991). The method is implemented in relaimpo
R package (Grömping, 2006). Lastly, the percent of AD-PRS
effect explained by a mediator (PAEM) was computed as

PAEM =
PVE1 − PVE2ADPRS

PVE1
∗100.

To assess whether PAEM is greater than random, the above
procedure was performed with permutated mediator values
10,000 times in order to estimate a null distribution.

Conditional Independence Testing
A conditional independence test was carried out to examine the
null hypothesis stated as: “global cognitive decline is independent
of AD-PRS given a conditioning set of endophenotypes.”
The p-value was calculated using an F-test by comparing
a linear regression model based on the conditioning set of
endophenotypes against a model where the regressors are both
AD-PRS and the conditioning set. The RMXM package was used
for this analysis (Lagani et al., 2017).

Building a Trait MAP Using T-Distributed
Stochastic Neighbor Embedding (t-SNE)
We generated a trait map by calculating the distance between
traits in their associations with SNPs in the AD-PRS to
understand which set of traits is associated with the same set of
SNPs in the AD-PRS. To calculate the location of each trait in
genotype space, we first determined their associations with SNPs
in the AD-PRS. We calculated pairwise correlation of each SNP
and each of the traits associated with AD-PRS (without including
the SNPs of interest in the AD-PRS). If the AD-PRS-associated
trait was negatively correlated with AD diagnosis, the sign of
association statistics was reversed to align SNP effect across traits.
After binarizing the association statistic of each SNP according to
its direction of effect, the distance between traits was calculated
using the Jaccard index. To project the distance between traits on
to two-dimensional, t-SNE (van der Maaten and Hinton, 2008)
was performed with perplexity of 5 and 10,000 iterations.

Identification of SNP Groups
To investigate subgroups of SNPs in the AD-PRS that showed
distinct association patterns with traits, we clustered SNPs used
in the AD-PRS based on the associations to traits. Using the
same approach as for building the trait map above, we calculated
the distance between SNPs using Jaccard index given binarized
association statistics. Based on the distance matrix, four SNP
clusters were identified using the SpeakEasy consensus clustering
method (Gaiteri et al., 2015).

Gene Ontology (GO) Enrichment Analysis
for SNP Groups
To examine whether SNP groups were involved in particular
biological processes, we performed SNP-based GO enrichment
analysis. GO gene sets were downloaded from MSigDB
v6.1 (Subramanian et al., 2005; Liberzon et al., 2015).
The GREAT algorithm (McLean et al., 2010) was used
for the enrichment analysis of cis regions of SNP groups
with gene sets. The BSgenome.Hsapiens.UCSC.hg19 and
TxDb.Hsapiens.UCSC.hg19.knownGene R packages were
used for background information. The genomic region for
each GO was defined as follows. The genomic region from
1,000 kb upstream of transcriptional start site (TSS) to 1,000 kb
downstream of transcriptional end site (TES) was assigned for
each gene in GO. If other genes were present within 1,000 kb
upstream of TSS or 1,000 kb downstream of TES of the gene of
interest, the genomic region assigned for the gene was truncated
at the point where the coding regions of other genes start. The
genomic regions for all genes in each GO were then merged.
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Finally, the enrichment of SNPs in the genomic region assigned
to each GO was evaluated by a binomial test. The Enrichment
Map was utilized for visualization of the results (Merico et al.,
2010).

Partitioning Heritability Analysis
We conducted partitioning heritability analysis via the LD
score regression (Finucane et al., 2015) to examine whether
genetic risk variants for Alzheimer’s dementia are enriched in
the cis-regions of histone coacetylation modules. We tested
for: (1) enrichment of Alzheimer’s dementia heritability in the
genomic regions with AD-PRS-associated histone coacetylation
modules; (2) enrichment of Alzheimer’s dementia heritability
in the cis-histone acetylation quantitative trait loci (hQTL)
for the histone acetylation peaks belonging to the AD-PRS-
associated histone coacetylation modules. The list of hQTLs
was obtained from the Brain xQTL Serve (Ng et al., 2017)
and hQTLs exceeding Bonferroni-corrected threshold were used.
LDSC v1.0.0 was downloaded from https://github.com/bulik/ldsc
and the partitioning heritability analysis was carried out with its
default parameter setting.

Genomic Annotation Enrichment
Next, we tested whether histone coacetylated modules associated
with the AD-PRS were localized to specific genomic regions. We
conducted the enrichment analysis of histone coacetylated peaks
with 15 chromatin states or seven histone marks from the mid-
frontal gyrus (Roadmap Epigenomics Consortium et al., 2015).
We employed Fisher’s exact test as implemented by R LOLA
package (Sheffield and Bock, 2016). The genomic regions of all
26,384 H3K9Ac peaks detected in ROSMAP data were used as a
background region set.

Identification of Histone Peaks Associated
With Gene Expression
We calculated Pearson’s correlation between gene expression
levels and histone acetylation peaks using the MatrixEQTL
software (Shabalin, 2012) to identify functional histone peaks
as described previously (Tasaki et al., 2018). We focused on
histone acetylation peaks which were located within 1 Mbp
upstream or downstream regions of the TSSs. This correlation
analysis resulted in 479,003 tests in total. To handle outliers
conservatively, mRNA levels and quantities of epigenomic peaks
were quantile-normalized before the cross-omics mapping. We
set significance criteria at p < 1.0 × 10−7 based on Bonferroni
correction, which resulted in 1,893 peaks associated with gene
expression levels (eQTH). The enrichment of eQTHs in each
module was evaluated using the hypergeometric test.

Gene Ontology Analysis for the Genes
Associated With eQTHs
We performed GO enrichment analysis of the genes associated
with eQTHs in the AD-PRS-associated histone modules to
understand the biological processes possibly regulated by the
modules. GO gene sets were downloaded from MSigDB v6.1
(Subramanian et al., 2005; Liberzon et al., 2015). The enrichment
of GO terms was evaluated using the hypergeometric test with

12,609 unique Entrez genes detected in the RNAseq data as a
background.

RESULTS

Molecular and Neuropathologic
Phenotypes Associated With a Polygenic
Risk Score
We identified endophenotypes associated with the AD-PRS to aid
in understanding the biological processes affected by genetic risk
for Alzheimer’s dementia. We examined a wide range of possible
effects in several categories of endophenotypes, which included 3
clinical diagnoses, 6 cognitive decline measures, 8 lifestyle and
personality traits, 14 medical conditions, 13 brain pathologies,
and 5 types of omics measurements from the DLPFC. Details
of these endophenotypes, such as their sub-components and
methods of acquisition are described in the Methods section
and in the Supplementary Table 2. In total, with pathological,
cognitive and behavioral factors, 590 variables were tested for
the association with the AD-PRS. In our tests, we accounted
for sex, age, education, and the first three principal components
of genotype. We adopted p-value of 0.05/590 as a Bonferroni-
corrected significance threshold (p < 8.5× 10−5).

From this comparison to genetic risk, we identified 1
clinical diagnosis, 6 cognitive decline measures, 8 brain
pathologies, 4 proteins, 1 miRNA (MIR132), and 8 histone
coacetylation modules (p < 8.5 × 10−5) (Figure 1, left lane
and Supplementary Table 5). Interestingly, no variables from
lifestyle, personality, medical condition, DNA comethylation
modules, and mRNA coexpression modules exceeded the
significance criteria despite the fact that we have previously
reported associations of lifestyle and personality factors with
Alzheimer’s dementia, and methylation and mRNA coexpression
modules association with cognitive decline and AD pathology.
Since the APOE/TOMM40 region contains the strongest genetic
risk factor for Alzheimer’s dementia, we examined the effect of
APOE/TOMM40 for these associations by generating an AD-
PRS without APOE/TOMM40 SNPs and as well as examining the
independent contribution of APOE/TOMM40 SNPs. The AD-
PRS without APOE/TOMM40 SNPs was still associated with AD
diagnosis, cognitive decline, proteins and histone coacetylation
modules, and brain pathologies - except for cerebral amyloid
angiopathy (Figure 1, middle lane). Interestingly, hippocampal
sclerosis, VGF (non-acronymic, also called “VGF nerve growth
factor inducible protein”), and histone coacetylation modules
were only associated with the AD-PRS without APOE/TOMM40
SNPs. Conversely, cerebral amyloid angiopathy and insulin
like growth factor binding protein 5 (IGFBP5) were only
associated with APOE/TOMM40 SNPs (Figure 1, right lane),
suggesting that the genetic effects of 457 SNPs on these
variables are contingent on APOE/TOMM40. To investigate
this possibility and further increase the robustness of our
results, the polygenic nature of these associations was examined
by varying p-value threshold for SNP inclusion in the AD-
PRS, which altered the number of SNPs included in the
model. The association with cerebral amyloid angiopathy was
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FIGURE 1 | Association between AD-PRS and clinical phenotypes, neuropathologies, and molecular signatures. A dash line represents Bonferroni-corrected p-value

at 0.05.

attenuated by increasing the number of SNPs in the AD-PRS
(Supplementary Figure 1), indicating that it is subjected to
monogenic influence from APOE/TOMM40 SNPs. The other
associations became stronger as the number of SNPs included

in the AD-PRS increased (Supplementary Figure 1), which
indicated polygenic influences from Alzheimer’s dementia-
associated SNPs as suggested previously (Mormino et al., 2016;
Desikan et al., 2017).
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Identification of the Endophenotypes That
Convey Polygenic Risk for Cognitive
Decline
The strongest AD-PRS effect among the clinical phenotypes
we tested in Figure 1 was on cognitive scores. Specifically,
the individuals with a high AD-PRS showed a rapid decline
in global cognitive scores, explaining 9.5% of variance after
first accounting for sex, age, education, and the first three
genotyping PCs (Supplementary Figure 2A). Interestingly, the
association of AD-PRS with global cognitive decline remained
significant after accounting for the clinical diagnosis of AD
(Supplementary Figure 2B), which is the primary phenotype
used in the IGAP study. This suggested that the AD-PRS captures

a genetic architecture that has an effect not only on clinical AD
but also other processes that contribute to cognitive decline.

Cognitive decline is the major source of disability in

Alzheimer’s dementia, yet its molecular origin is largely

unknown (Boyle et al., 2013). Therefore, we examined

which endophenotypes in ROSMAP may account for

the relationship between the AD-PRS and cognitive

decline. First, we performed a correlation analysis between

AD-PRS-associated endophenotypes and cognitive decline to

identify endophenotypes which might be potentially responsible

for the relationship of AD-PRS to cognitive decline. All tested

endophenotypes were associated with at least one cognitive

decline measure (Figure 2A), which suggested that the effect

FIGURE 2 | Neuropathological and molecular traits mediating AD-PRS (A). Correlation between cognitive decline and AD-PRS-associated neuropathologies and

molecular signatures. An asterisk indicates Bonferroni-corrected p < 0.05 (B). The effect of AD-PRS on global cognitive decline explained by an endophenotype (C).

The sets of endophenotypes explain the effect of AD-PRS on global cognitive decline. The endophenotypes connected with a vertical line indicates the set of variables

that made relationship between AD-PRS and global cognitive decline independent (p > 0.05) (D). Traits map based on genetic associations. The trait map is

generated by calculating the distance between traits in terms of genetic associations. The distance between traits was calculated using the Jaccard index and

projected on to two-dimensional by t-SNE (E). Heatmap of trait-SNP associations. The SNPs in the AD-PRS were clustered using the SpeakEasy consensus

clustering method (F). GO enrichment map for SNP clusters. GO enrichment for SNP clusters were conducted using the GREAT algorithm and the significant

associations (FDR < 0.05) were visualized by EnrichmentMap.
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of AD-PRS on cognitive decline could be explained by these

endophenotypes. To gauge the magnitude of this effect, we

contrasted the variance of global cognitive decline explained by

the AD-PRS before and after controlling for each endophenotype.

AD-PRS-associated brain pathologies and molecular hallmarks

significantly attenuated the effects of AD-PRS on global cognitive

decline (permutation p-value after Bonferroni correction <0.05;

nominal p < 0.0024; Figure 2B), which indicated that the

endophenotypes could be involved in the translation of genetic

risk to cognitive decline. We observed stronger effects in beta-

amyloid, tau-tangles and VGF, which explained approximately

30% of AD-PRS effect on global cognitive decline (Figure 2B).
Although the effects of attenuation were greater than

expected at random, no endophenotype could completely
diminish the associations between AD-PRS and cognitive
decline (Supplementary Figure 3). This suggests that AD-PRS
could be mediated by multiple molecular pathways. Therefore,
we hypothesized that a combination of endophenotypes
could explain the association between AD-PRS and global
cognitive decline. We tested this hypothesis using a
conditional independence test based on 404 samples where
all endophenotypes were available. We found that at least four
variables were necessary to make the relationship between
AD-PRS and global cognitive decline no longer significant (p >

0.05; Figure 2C). In total, 30 sets of variables were identified, of
which 25 sets contained VGF, hippocampal sclerosis, and tangle
measures (Figure 2C). Together with this core variable set, either
MIR132, beta-amyloid, TAR DNA binding protein 43 (TDP-43),
IGFBP5, or histone coacetylation modules could explain the
mediation of AD-PRS to cognitive decline (Figure 2C). This
implied that these variables were driven by different components
of genetic risk factors for Alzheimer’s dementia despite being
associated with both AD-PRS and cognitive declines. To
visualize how genetics aligned with certain traits, we projected
their relationships onto 2-dimensional space using t-distributed
stochastic neighbor embedding (t-SNE) (van der Maaten and
Hinton, 2008), using their associations with the 457 SNPs in
AD-PRS as a measure of distance. There were five major sets of
traits, each of which were densely clustered together (Figure 2D).
The trait group one (t1) was comprised of cognitive decline
measures and clinical diagnosis of AD in both ROSMAP and
IGAP, suggesting that these clinical signs of Alzheimer’s dementia
were affected similarly by 457 SNPs. Histone acetylation modules
(t2), brain pathologies such as tangles and beta-amyloid (t3),
VGF, syntaxin 1A (STX1A), and MIR132 (t4), and TDP-43 and
hippocampal sclerosis (t5) formed distinct clusters, respectively
(Figure 2D), implying a differential influence of genetic risk
factors on endophenotypes. This suggests that AD-PRS affects
multiple molecular pathways that together lead to cognitive
decline.

Clustering Risk Variants Finds Underlying
Genetic Architecture of Alzheimer’s
Dementia Phenotypes
The PRS concept treats genetic risks as a monolithic aggregate.
While this perspective was sufficient to unite many weak variants

and point at the molecular and neuropathologic features outlined
above, there may be subgroups of genetic factors under the
PRS aggregate. To investigate this possibility, we identified
four SNP groups (Figure 2E and Supplementary Table 4)
among the 457 SNPs in the AD-PRS by using SpeakEasy
consensus clustering method. Each of these groups of SNPs
exhibited a particular pattern of relationship to traits. The
first group (s1) showed consistent effects across all traits.
The second group (s2) did not demonstrate any associations
with histone coacetylation. Conversely, the fourth group
(s4) exhibited a specific effect on histone coacetylation. The
SNPs in the third group (s3) had weak effects on all
traits. These groups were independent of the significance
levels of SNPs in IGAP study (Kruskal-Wallis test; p =

0.21). To investigate the distinctions among the molecular
systems targeted by these four SNP groups, we conducted
gene ontology (GO) enrichment analysis for genes located
in cis-regions of the SNP groups using the binomial test
(McLean et al., 2010). We identified 31 GO terms associated
with one of the SNP groups (FDR < 0.05; Figure 2F and
Supplementary Table 6). The GO terms related to immunity
were enriched in s1, s2, and s3; ones associated with reactive
oxygen species and lipid complex were enriched in s3; s4 was
involved in phosphatidylinositol biosynthetic process. These
biological processes could explain the distinct patterns of
associations between the SNP groups and traits. Next, we
examined whether incorporating the SNP groups into the
PRS analysis could potentially improve the association of AD-
PRS with mRNA modules and DNA methylation modules as
previously shown in Figure 1. The AD-PRS was recalculated
using the contents of each SNP group and jointly included
in the regression model for all modules. Interestingly, the
AD-PRS based on group s1 showed significant associations
with modules -1 DNA methylation module and 5 mRNA
modules using the significance threshold as shown in Figure 1

(Supplementary Figure 4). No relationships were found for
other SNP groups. This further suggested that the SNPs in
the s1 group have convergent effects on clinical phenotypes,
neuropathologies, and multi-omic signatures in the ROSMAP
cohorts.

Polygenic Risk Increased Histone
Acetylation in Actively Transcribed Regions
More than gene expression or DNA methylation, we found that
histone acetylation was associated with the AD-PRS (Figure 1).
To examine whether genetic risk variants for Alzheimer’s
dementia were enriched in coacetylated histone peaks, we
conducted the LD score regression (Finucane et al., 2015) using
the SNPs co-localized with the histone coacetylated modules
or the cis- histone acetylation quantitative trait locus for the
peaks in each module. No enrichment of Alzheimer’s dementia
heritability was observed in the PRS-associated modules
(Supplementary Table 7) in both conditions, suggesting that the
association with the AD-PRS occurs due to trans- rather than
cis-regulatory mechanisms. To understand the genomic features
involved in this regulation, we investigated the relationship
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between chromatin states and histone coacetylation modules.
This revealed that the peaks of one set of modules - m3,
m121, m113, and m117 - were significantly associated with
quiescent (typically non-marked) chromatin and active TSSs,
while the peaks of another set of modules - m215, m234, and
m116 - were associated with strong transcription, enhancer,
and Polycomb-repressed chromatin, respectively (Figure 3A).
M437 was not significantly associated with any chromatin states,
but its enrichment pattern was similar to m215. Based on this
observation, we hypothesized that chromatin state could define
the direction of the AD-PRS effect on acetylation. Indeed, the
AD-PRS reduced the levels of acetylation in the modules located
in quiescent chromatin regions and increased acetylation in the
strongly transcribed and genic enhancer regions (Figure 3B).
The chromatin states of strongly transcribed and genic enhancer
regions are characterized by trimethylated histone H3 at lysine
36 (H3K36me3) (Bannister et al., 2005; Roadmap Epigenomics
Consortium et al., 2015). As expected, the magnitude of
colocalization of histone coacetylation modules with H3K36me
determined the susceptibility to AD-PRS influence (Figure 3C).
Despite coherent features of chromatin affected by the AD-
PRS all pointing toward an effect on gene expression, we
must in fact determine if AD-PRS-associated histone acetylation

peaks actually drive gene expression in the brain. Therefore,
we conducted a genome-wide correlation analysis between
gene expression and histone acetylation (eQTH) within 1
Mbp of the TSS of those genes. We then evaluated the
enrichment eQTHs in coacetylation modules. This revealed
that histone coacetylation modules in active chromatin regions
covaried significantly with the expression levels of nearby genes.
Specifically we observed enrichment of eQTHs in modules
m215 and m234 (Figure 3D); conversely, eQTHs tended to
be depleted in modules located in quiescent regions such
as m3, m113, and m117. Moreover, the genes that covaried
with eQTHs in histone coacetylation modules that were up-
regulated by the AD-PRS tended to show stronger associations
with the AD-PRS than the genes correlated with eQTHs in
modules down-regulated by AD-PRS (Wilcoxon test; p = 5.4e-
07) or modules without associations with the AD-PRS (p =

3.0e-08) (Supplementary Figure 5). No significant GO terms
were identified using genes associated with m215, m234, or
m437, suggesting these modules do not carry out specific
known biological functions. Overall, the AD-PRS elevated
histone acetylation levels in the genome regions with high
transcriptional activity, which might carry the AD-PRS effect to
the transcriptome in aging brains.

FIGURE 3 | Characterization of histone coacetylation modules associated with AD-PRS (A). Chromatin state enrichment of histone coacetylation modules. Overlap

between histone coacetylation modules and 15 chromatin states from the mid-frontal gyrus was assessed using the Fisher’s exact test via the LOLA method. An

asterisk indicates Bonferroni-corrected p < 0.05 (B). Correlation between chromatin state enrichment of coacetylation modules and their associations with AD-PRS

(C). Correlation between histone mark enrichment of coacetylation modules and their associations with AD-PRS. Overlap between histone coacetylation modules and

seven histone marks from the mid-frontal gyrus was assessed via the LOLA method. The enrichment stats (log2 of odds ratio) were compared with association stats

with AD-PRS (D). Enrichment of eQTHs in modules. The enrichment was tested using the Fisher’s exact test.
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DISCUSSION

Both early-onset and late-onset Alzheimer’s dementia have a
strong genetic basis (Gatz et al., 1997). While the genetic origin
of early-onset Alzheimer’s dementia is generally found in a small
number of genes related to beta-amyloid protein processing; all
of which are autosomal dominant at this time (Campion et al.,
1995; Janssen et al., 2003), the genetic basis of the more common
late-onset (sporadic) Alzheimer’s dementia includes nearly 30
genes identified by GWAS and exome sequencing studies with
genome-wide significance (Naj et al., 2011; Lambert et al., 2013;
Cruchaga et al., 2014; Escott-Price et al., 2014; Jin et al., 2014;
Vardarajan et al., 2015). Heritability for late-onset (sporadic)
Alzheimer’s dementia explained by genome-wide significant loci
is limited (Ridge et al., 2013), and most of the genetic heritability
for Alzheimer’s dementia originates from multiple loci below the
genome-wide significance threshold (Escott-Price et al., 2017).
Given this genetic heterogeneity and the fact that few variants
have a strong effect on risk, it may be challenging to obtain
therapeutic effects in the broad population by targeting a single
gene selected from susceptibility loci because of the collective
weak contributions frommultiple genes which cause Alzheimer’s
dementia. Therefore, the convergent effects from hundreds of
independent risk variants identified in this study may be useful
in identifying actionable disease mechanisms to target in drug
treatments.

Our study identified a number of clinical, neuropathological
and molecular features associated with the AD-PRS, some of
which confirmed previous findings. Specifically, it was reported

that the genetic risk for Alzheimer’s dementia is correlated with
the presence of neurofibrillary tangles and neuritic plaques in

National Institute of Aging Alzheimer’s disease centers (NIA
ADC) study that includes our participants (Desikan et al., 2017).
In addition, genetic risk was correlated with cognitive decline as
reported in a study restricted to our participants (Felsky et al.,
2018) and in the Alzheimer’s disease neuroimaging initiative
(ADNI) study (Mormino et al., 2016). Besides these replicated
findings, we found novel associations with hippocampal sclerosis,
TDP-43 pathology and expression levels of MIR132, protein
abundance of VGF, STX1A, and IGFBP5, and histone acetylation
in DLPFC. This extended our recent targeted analysis for APOE
ε4 that showed the significant associations of APOE ε4 with
hippocampal sclerosis and TDP-43 pathology (Yang et al., 2018)
and revealed that non-APOE risk variants also contributed to
the development of these pathologies. Furthermore, we explored
potential molecular and neuropathologic factors mediating the
relationship of the genetic risk for Alzheimer’s dementia to
cognitive decline. At least four factors, mainly hippocampal
sclerosis, VGF, and tau-tangles, were necessary to fully explain
the genetic effect on cognitive decline, suggesting AD-PRS has
pleiotropic effects on multiple molecular pathways. Indeed,
hippocampal sclerosis, VGF, and tau-tangles showed distinct
patterns of SNP associations within the AD-PRS.

The AD-PRS-associated molecules play important roles in
nervous systems, especially in the hippocampus. For example,
MIR132 reduces the brain expression level of a pathway
involved in protein acetylation (Patrick et al., 2017), including

histones, which may contribute to the effect of the PRS
on the AD-associated histone acetylation patterns and the
extensive chromatin remodeling that we have observed in
Alzheimer’s dementia (Klein et al., 2018). Further, the knockout
of MIR132 in mice impairs learning and memory (Hansen
et al., 2016), and induces morphological changes in hippocampal
neurons (Magill et al., 2010). VGF is a secreted neuropeptide
that enhances memory formation and neurogenesis through
potentiating brain-derived neurotrophic factor (BDNF) signaling
in hippocampus (Thakker-Varia et al., 2014; Lin et al., 2015).
The protein levels of VGF in cerebrospinal fluid are decreased
in patients with AD compared to individuals with mild or no
cognitive impairment (Duits et al., 2018). STX1A is a component
of the presynaptic SNARE complex and located in the genome
region that is responsible for Williams Syndrome characterized
by intellectual or learning disability. The expression levels of
STX1A in patient-derived lymphoblastoid cell lines explain
15.6% cognitive variation in patients with Williams Syndrome
(Gao et al., 2010). In addition, the knockout mice of STX1A
shows impairment of long-term potentiation in hippocampus
(Mishima et al., 2012). IGFBP5 is an inhibitory binding protein
for insulin-like growth factor 1 (IGF1) (Kalus et al., 1998). While
the functions of IGFBP5 in cognitive phenotypes are not known,
its target, IGF1, promotes hippocampal neurogenesis (Llorens-
Martín et al., 2009). Thus, IGFBP5 itself also has a potential to
regulate cognitive performance in vivo.

The AD-PRS increased the histone acetylation in the region
where H3K36me3modification is often observed in the reference
epigenome panel (Roadmap Epigenomics Consortium et al.,
2015). Histone modification of H3K36me3 ensures transcription
of accurate forms of mRNAs by suppressing cryptic transcription
through the reduction of histone acetylation (Strahl et al., 2002;
Sen et al., 2015). Conversely, histone acetylation induces genome-
wide cryptic transcription, which is epigenetically silenced in the
normal state (Brocks et al., 2017). Thus, the gene expression
correlated with histone acetylationmight be the result of aberrant
induction of cryptic transcription. Interestingly, the increase in
cryptic transcription is associated with aging and short lifespan
(Pu et al., 2015; Sen et al., 2015), and we have recently shown that
splicing patterns are altered in reproducible ways in Alzheimer’s
dementia (Raj et al., 2017). Taken together, the increase in histone
acetylation observed in the individuals with higher genetic risk
for Alzheimer’s dementia might impair transcriptional fidelity
and advance the molecular age of brain.

Considering these complex relationships between Alzheimer’s
dementia genetics and endophenotypes, it is important to
prioritize them from therapeutic perspective and understand the
next steps. First, as there are multiple factors mediating AD-
PRS effects on cognition, it may be necessary to develop multiple
therapeutic agents to support healthy cognition. This points to
the need to develop specific biomarkers, as brains of older adults
have a tremendous range of neuropathologies with effects that
vary greatly depending on coexisting pathologies (Boyle et al.,
2018). However, placing older adults on multiple medications for
the prevention of cognitive decline is not necessarily advisable
without high probability of significant benefit that offsets risks
and the cost of the medication. A PRS itself may be one
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component of future biomarkers, in conjunction with other
types of data from non-invasive measurement technologies,
which can be used to implement precision medicine solutions
for individuals with Alzheimer’s dementia (Hampel et al.,
2017). Second, we need to elucidate the molecular and cellular
mechanisms of how SNPs collectively affect endophenotypes.
Specifically, although the subgroups of 457 risk SNPs for
Alzheimer’s dementia that had convergent effects on pathologies,
protein, and histone modules were enriched with immune-
related functions, the pathologies and molecular signatures
themselves did not show the direct involvement of immune
system. This suggests that there might be other proximal
molecular or pathological consequences of the genetic risk for
Alzheimer’s dementia. Therefore, future experiments should be
designed to fill this gap. We propose -omics profiling with finer
spatial resolution, single-cell transcriptomics, and in vitro cell
models assessing cellular phenotypes associated with the AD-
PRS. The network models explaining the mediation of the AD-
PRS will allow us to select the best targets for drug development.

The study has several limitations. First, as the sample size
is not the same for all the data types, the strengths of the
results are not directly comparable across all the variables.
Related to this, we expect that increasing the sample size for
-omics data would provide us with more power to detect
molecules associated with the AD-PRS. This will be alleviated
in the future as new -omics data are being generated from
other participants. Second, in this study we focused on the
DLPFC region. As molecules affected by the AD-PRS may differ
across brain regions, examination of other brain regions may
help to identify additional molecular signatures and molecular
networks that are involved in the mediation of the AD-PRS.
Such multi-region omics profiling is in process. Finally, ROS
and MAP are volunteer cohorts with participants of mainly
European descent and who are highly educated. Another study
with a different ancestry composition and education levels
would be beneficial to test the generalizability of these findings.
Despite these shortcomings, availability of the multi-level data
from a large number of individuals with multi-year cognitive

evaluations allowed us to identify multiple factors that mediate
the relationship between the AD-PRS to cognitive decline.
Selected molecular and pathological features that we identified
might be prime targets for interventions or biomarkers as they
are common endpoints of the functionally diverse genetic loci
associated with Alzheimer’s dementia.
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