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RNA sequencing (RNA-seq) has become a widely used technology for analyzing

global gene-expression changes during certain biological processes. It is generally

acknowledged that RNA-seq data displays equidispersion and overdispersion

characteristics; therefore, most RNA-seq analysis methods were developed based on

a negative binomial model capable of capturing both equidispersed and overdispersed

data. In this study, we reported that in addition to equidispersion and overdispersion,

RNA-seq data also displays underdispersion characteristics that cannot be adequately

captured by general RNA-seq analysis methods. Based on a double Poisson model

capable of capturing all data characteristics, we developed a new RNA-seq analysis

method (DREAMSeq). Comparison of DREAMSeq with five other frequently used

RNA-seq analysis methods using simulated datasets showed that its performance was

comparable to or exceeded that of other methods in terms of type I error rate, statistical

power, receiver operating characteristics (ROC) curve, area under the ROC curve,

precision-recall curve, and the ability to detect the number of differentially expressed

genes, especially in situations involving underdispersion. These results were validated

by quantitative real-time polymerase chain reaction using a real Foxtail dataset. Our

findings demonstrated DREAMSeq as a reliable, robust, and powerful new method for

RNA-seq data mining. The DREAMSeq R package is available at http://tanglab.hebtu.

edu.cn/tanglab/Home/DREAMSeq.

Keywords: RNA-seq, DREAMSeq, equidispersion, overdispersion, underdispersion, double Poisson model,

negative binomial model

INTRODUCTION

With the development of next-generation sequencing technology, RNA sequencing (RNA-seq)
has become a routine and powerful method for evaluating global dynamic changes in gene
expression during certain biological processes. Compared with microarray technologies, RNA-seq
technologies have several advantages, including a wider measurable range of expression levels,
higher throughput, less noise, more information for detecting allele-specific expression, and a
higher capability to detect novel promoters and alternative gene-splicing isoforms (Marioni et al.,
2008; Mortazavi et al., 2008; Sultan et al., 2008; Wang et al., 2009, 2010b; Oshlack et al., 2010).
Therefore, developing powerful, reliable, and unbiased RNA-seq data-mining methods would
facilitate the use of RNA-seq to explore basic biological questions in this era of big data.
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Typically, RNA-seq experimental procedures can be divided
into six steps: (1) sequencing the RNA samples to obtain raw
reads, (2) filtering out low-quality reads, (3) mapping the
high-quality reads to a reference genome or transcriptome,
(4) summarizing the read counts for each gene, (5) detecting
differentially expressed genes (DEGs), and (6) performing
systems biology analysis [e.g., cluster analysis, principal
components analysis (PCA), gene ontology (GO) analysis,
and pathway enrichment analysis] (Oshlack et al., 2010). Of
these steps, identifying DEGs across treatments/conditions
is the key task and often the primary goal of RNA-seq data
analysis. There are numerous statistical methods focusing
directly on read-count data for DEG identification, with these
classified into two categories: (1) parametric methods that
rely on assumptions about discrete probability models and
include methods based on a Poisson model, such as DEGseq
(Wang et al., 2010a) and TSPM (Auer and Doerge, 2011),
methods based on a negative binomial (NB) model, such as
edgeR (Robinson et al., 2010), DESeq (Anders and Huber,
2010), baySeq (Hardcastle and Kelly, 2010), NBPSeq (Di et al.,
2011), EBSeq (Leng et al., 2013), ShrinkSeq (Van De Wiel et al.,
2013), and DESeq2 (Love et al., 2014), methods based on a
beta-binomial model, such as BBSeq (Zhou et al., 2011), methods
based on a multivariate Poisson log-normal (LN) model, such as
PLNseq (Zhang et al., 2015), and methods based on a generalized
Poisson (GP) model, such as GPseq (Srivastava and Chen,
2010) and deGPS (Chu et al., 2015); and (2) non-parametric
methods, such as NOISeq (Tarazona et al., 2011) and SAMseq
(Li and Tibshirani, 2013), that do not assume any particular
model.

Among count-based RNA-seq data-analysis methods, non-
parametric methods were developed based on large-sample
asymptotic theory and exhibit statistical power sufficient to
detect DEGs only when the number of replicates per treatment
condition is ≥5 (Tarazona et al., 2011; Seyednasrollah et al.,
2013; Soneson and Delorenzi, 2013). However, due to the high
cost of RNA-seq, the general sample size in a typical RNA-
seq experiment is <5 replicates, which limits the application of
non-parametric methods in RNA-seq data mining. Therefore,
the most popular RNA-seq data-analysis methods are parametric
methods based on Poisson and NB models. In early RNA-
seq studies where only technical replicates were used, the
traditional Poisson model was highly capable of fitting read-
count data characterized by equidispersion (i.e., the variance
is equal to the mean) (Marioni et al., 2008; Bullard et al.,
2010). However, when biological replicates are available, read-
count data often exhibits more variability than the Poisson
model expects, which limits the use of a Poisson model for
analyzing RNA-seq data (Anders and Huber, 2010). Fortunately,
the NB model, as a Gamma-Poisson mixture, can address the
overdispersion issue (i.e., when the variance is larger than the
mean), as well as capture equidispersion (Anders and Huber,
2010). Additionally, recent studies reported that some RNA-
seq data demonstrates characteristics of underdispersion (i.e.,
the variance is smaller than the mean), which might be caused
by RNA-seq coverage, as well as zero-inflation, cluster, or
low expression level of the count data, and could lead to

underestimation of DEGs (Famoye, 1993; Srivastava and Chen,
2010; Rau et al., 2011; Mi et al., 2015; Choo-Wosoba et al.,
2016; Low et al., 2017). However, neither a traditional Poisson
model nor the NB model works well at mining underdispersed
data.

The GP model is a generalization of the Poisson model
with an additional parameter. This method can process data
characterized by underdispersion and non-underdispersion
(equidispersion and overdispersion) (LuValle, 1990), but can
only capture certain levels of dispersion, because the model
is truncated under certain conditions regarding its bounded
dispersion parameter (Famoye, 1993). For example, the program
deGPS employs the GPmodel to fit read-count data characterized
by non-underdispersion (Chu et al., 2015), whereas GPseq
uses this model to consider potential positional bias during
DEG analysis and handle position-level counts instead of gene-
level counts, which is different from other methods (Srivastava
and Chen, 2010). Therefore, these methods derived from
different discrete models can potentially perform poorly at fitting
underdispersed count data due to the restrictions associated with
the inherent properties in the models.

In this study, we described a mixed Poisson model called
double Poisson (DP), which offers the advantage of flexibility
in fitting a wide range of data exhibiting underdispersion
and non-underdispersion using only two parameters (Efron,
1986). Based on this model, we developed a novel differential
relative expression-analysis method for RNA-seq data mining
(DREAMSeq). Because the results of differential gene-expression
analysis are dependent upon the discrete model used to fit the
RNA-seq data (Consortium, 2010), we also added NB-model
functionality to the DREAMSeq pipeline in order to optimize
the performance of our method. Therefore, depending on the
model used in the pipeline, our method can be divided into
three approaches: DREAMSeq.DP (based on the DP model),
DREAMSeq.NB (based on the NB model), and DREAMSeq.Mix
(based on the mixture of the DP and NB models, with the
lower p-value between two p-values generated based on the DP
and NB models chosen as the final p-value) in order to fit
variable RNA-seq data. In order to evaluate the performance
of DREAMSeq, we generated three simulated datasets using
three real RNA-seq datasets. Because the DEGs can only be
effectively identified when the sample size is ≥3 (Conesa et al.,
2016; Lin et al., 2016), to assess DREAMSeq using the most
common RNA-seq scenario, we focused on detecting DEGs
under small sample sizes (three replicates per condition) and
between two groups. Our results indicated that the performance
of DREAMSeq at effectively detecting DEGs was comparable to
other popular RNA-seq data-analysis methods, including edgeR,
DESeq, DESeq2, NBPSeq, and TSPM, in non-underdispersion
situations, but outperformed most of the other methods in
underdispersion situations. This conclusion was validated by
quantitative real-time polymerase chain reaction (qRT-PCR)
using a real Foxtail dataset generated in our laboratory. Our
findings demonstrated DREAMSeq as a reliable and robust DEG-
detection method that provides an additional option in the RNA-
seq data-analysis toolbox, especially for underdispersed-data
mining.
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MATERIALS AND METHODS

Models and Normalization
In this study, let Y represent the observed count and X the
corresponding underlying gene expression (unknown) in an
RNA-seq experiment. Let Yijk and Xijk denote the read count and
the true gene expression of gene i from sample j in treatment
group k, where i= 1, . . . , I (the number of genes), j= 1, . . . , J (the
number of replicates; here, J = 3), and k = 1, . . . , K (the number
of groups; here, K= 2), respectively.

NB Model
We assume that Y follows an NB model with two parameters: the
mean, µ, and the dispersion, φ. The probability mass function
(PMF) of the NB model is given as:

P
(

Y = y|µ,φ
)

=
Ŵ

(

y+ φ−1
)

y!Ŵ
(

φ−1
)

(

1

1+ µφ

)φ−1

(
µφ

1+ µφ
)
y

. (1)

The expected value is estimated as:

E (Y) = µ. (2)

We parameterize the variance of the NB model according to a
previous study (Robinson and Smyth, 2007):

Var (Y) = σ 2 = µ + µ2φ, (3)

where φ ≥ 0 and determines the extra variability as compared
with the Poisson model. When φ > 0, σ 2 > µ; and when
φ = 0, σ 2 = µ; the NB model collapses to the Poisson model,
which can be viewed as a special NB model with zero dispersion
(Robinson and Smyth, 2007). Therefore, the NBmodel allows for
both overdispersion and equidispersion.

DP Model
We assume that Y follows a DP model with two parameters: the
mean, µ, and the dispersion, θ. The approximate PMF of the DP
model is given as:

P
(

Y = y
∣

∣µ, θ
)

= fµ,θ
(

y
)

= (θ
1
2 e−θµ)(

e−yyy

y!
)(
eµ

y
)
θy
. (4)

The exact DP density is:

P
(

Y = y
∣

∣µ, θ
)

= f̃µ,θ (y) = c(µ, θ)fµ,θ
(

y
)

, (5)

where the factor c(µ,θ) can be calculated as:

1

c(µ, θ)
=

∑∞

y=0
fµ,θ

(

y
)

≈ 1+
1− θ

12µθ
(1+

1

µθ
) (6)

with c(µ, θ) being the normalizing constant nearly equal to 1. The
constant c(µ, θ) ensures that the density integrates to unity. The
expected value and the variance of the DP model in reference to
the exact density f̃µ,θ (y) are estimated as follows:

E(Y) ≈ µ (7)

and

Var (Y) = σ 2 =
µ

θ
, (8)

respectively, where θ > 0 under RNA-seq data circumstances. The
Poissonmodel is nested in the DPmodel for θ= 1, indicating that
the DP model can fit equidispersed read-count data when θ = 1.
Additionally, the DP model allows for both overdispersion (0 <

θ < 1) and underdispersion (θ > 1) (Efron, 1986).

Normalization
Here, we assume that the expectation of Yijk, µijk, is the product
of Xijk and sjk:

µijk = Xijksjk, (9)

where sjk is the size factor corresponding to sample j in
treatment group k, which can be estimated using various
existing normalization methods, such as total counts, upper
quartile (Bullard et al., 2010), median (Dillies et al., 2012),
quantile (Bolstad et al., 2003; Irizarry et al., 2003), trimmed
mean of M-values (TMM) (Robinson and Oshlack, 2010),
DESeq normalization (DESeq) (Anders and Huber, 2010),
reads per kilobase per million (RPKM) (Mortazavi et al.,
2008), to remove unwanted variation (Risso et al., 2014).
Normalization is a process that makes unit-less data comparable
among measurements by adjusting for sequencing depth and
potentially other technical effects of different samples. Dillies
et al. (2012) and Lin et al. (2016) found that TMM and DESeq
normalization methods performed much better than the other
methods described here. Therefore, the most widely used TMM
method was chosen as the default data-normalization method
in DREAMSeq and similar to previous studies (Robinson et al.,
2010; Kadota et al., 2012; Soneson and Delorenzi, 2013; Sun et al.,
2013).

Dispersion Estimations
Estimating the dispersion parameter is a crucial step in
DEG detection. Various dispersion-parameter estimation
methods, including pseudo-likelihood (Smyth, 2003), quasi-
likelihood (Nelder, 2000; Lund et al., 2012), conditional
maximum likelihood (CML) (Smyth and Verbyla, 1996),
quantile-adjusted CML (Robinson and Smyth, 2008), and
shrinkage-estimation methods (Anders and Huber, 2010;
Robinson et al., 2010), have been discussed previously. In
particular, many Bayesian-based shrinkage-estimation methods,
including baySeq, ShrinkSeq, DSS (Wu et al., 2013), and
DESeq2, have been developed and are capable of obtaining
accurate and robust estimates by sharing information across
all genes when the sample size is small (Ji and Liu, 2010).
Therefore, we also utilized an empirical Bayesian framework to
shrink the dispersion parameter. Our strategy to estimate the
dispersion parameter was divided into five steps described as
follows.

Initial Dispersion Estimators
We first applied the method-of-moments (MoMs) described by
Love et al. (2014) to estimate the initial value of dispersion for
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each gene. According to previous studies (Anders and Huber,
2010; Robinson et al., 2010), we first use the normalized sample
mean, Xik, to estimate the expectation for the ith gene in group k:

µik =
1

J
Xik

∑

j
sjk. (10)

We assume that the dispersions between two groups are the
same under small sample sizes. Therefore, we denote n= KJ and
substitute equation (10) with the following equation:

µi =
1

n
Xi

∑

n
sjk, (11)

where µi and Xi are the expectation and sample mean,
respectively, of the ith gene. We then estimate the variance of the
ith gene, σ 2

i , by pooling count data from different groups using
approaches previously described by Anders and Huber (2010)
and Wu et al. (2013). For the NB model, the initial dispersion
for the ith gene can be estimated by:

φinit
i =

σ 2
i − µi

µ2
i

. (12)

Note that φinit
i is often artificially assigned with an extremely

low positive value (e.g., 1 × 10−8 in DESeq) when σ 2
i <

µi, because the NB model cannot fit underdispersed read-
count data. A similar conservative strategy was also utilized
for underdispersion in a previous study (Schissler et al., 2015).
Under this scenario, the initial dispersion can be overestimated,
which results in a conservative DEG test (Robinson and
Smyth, 2008). By contrast, instead of the NB model, the DP
model is capable of handling this kind of data. For the DP
model, the initial dispersion for the ith gene can be estimated
by:

θ initi =
µi

σ 2
i

. (13)

Gene-Wise Dispersion Estimators
In RNA-seq experiments, there are typically tens of thousands
of genes, but only a few replicates per treatment group,
which describes the “large p and small n” phenomenon. It
is quite difficult to estimate a reliable gene-specific dispersion
with the MoMs described in such a scenario. To address
this problem, we used maximum likelihood estimate (MLE)
methods based on the initial dispersion estimator, φinit

i (or

θ initi ), to estimate a gene-wise dispersion, φ
genewise
i (or θ

genewise
i ),

for gene, i. The MLE of the dispersion parameters in the
NB and DP models can be obtained by maximizing the log-
likelihood summed over all reads between conditions for the ith

gene:

φ
genewise
i = argmaxφ

(

∑

n
log

(

fNB(Yijk,µik,φ)
)

)

(14)

and

θ
genewise
i = argmaxθ

(

∑

n
log

(

fDP(Yijk,µik, θ)
)

)

, (15)

respectively, where φ = φinit
i , θ = θ initi , and fNB(·) and fDP(·) are

the PMF of the NB and DP models, respectively.

Common Dispersion Estimators
It is essential for reliable dispersion estimation that information is
shared between genes, especially when few replicates are available
(Robinson and Smyth, 2008). The simplest method of sharing
information is to assume that the dispersion parameters are
common for all genes and then to use the entire dataset to directly
calculate a precise common dispersion. However, it is generally
not true that each gene has the same dispersion in practice
(Robinson and Smyth, 2007). Consequently, we should seek
a more general common dispersion-estimation approach that
compromises between entirely individual gene-wise dispersions
and an entirely shared common dispersion. Here, we assumed
that the dispersions are common across all genes having similar
expression strengths, suggesting that if the means for some genes
are similar, the dispersions (or variances) for these genes are
also similar. We adopted a similar locally weighted regression as
that for voom (Law et al., 2014) in order to obtain the common
dispersion estimators (φcommon

i for the NB model or θ common
i

for the DP model) for the ith gene by regressing the gene-wise

dispersion estimators, φ
genewise
i (or θ

genewise
i ), onto the means,

µi, of the normalized read counts. This is similar to the data-
driven parameter estimation used by DESeq through the smooth
function by modeling the observed mean-variance (or mean-
dispersion) relationship for the genes in the read-count data
(Anders and Huber, 2010).

Shrinkage-Dispersion Estimators
Shrinkage estimation can effectively improve statistical tests for
differential gene expression in the case of a small number of
samples (Cui et al., 2005). As mentioned previously, in order to
obtain a more accurate and robust estimate, an empirical Bayes
(EB) approach has been used to shrink gene-wise dispersions
toward common dispersions, which could effectively allow the
borrowing of information between genes (Robinson and Smyth,
2007; Robinson et al., 2010). The DSS and DESeq2 methods use
an EB approach incorporating shrinkage with an NB model to
squeeze the gene-wise dispersion estimates toward an LN prior,
where the strength of shrinkage is dependent upon how reliably
the individual gene-wise dispersions can be estimated (Wu et al.,
2013; Love et al., 2014). Here, we assumed that the gene-wise
dispersions, α, followed an LN prior with two parameters: the
mean, m0, and the standard deviation (SD), τ . The PMF of the
LN model is given as:

P (α|m0, τ) =
1

α
√
2πτ 2

e
− (log(α)−m0)

2

2τ2 , (16)

where α represents φ
genewise
i and θ

genewise
i for the NB and DP

models, respectively. The two parameters of the LN model are
estimated as follows:

m0 = median(log(β)) (17)
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and

τ = mad(log (α) − log(β)), (18)

respectively, where mad represents the median absolute
deviation, and β represents φcommon

i and θ common
i for the NB and

DP models, respectively.
We adopted the same strategy as the DSS and DESeq2

methods to estimate the shrinkage dispersions for the ith gene in
the NB and DP models:

φ
shrinkage
i = argmaxφ

(

∑

n
log

(

fNB(Yijk,µik,φ)
)

+ fLN(φ,m0, τ )
)

(19)
and

θ
shrinkage
i = argmaxθ

(

∑

n
log

(

fDP(Yijk,µik, θ)
)

+ fLN(θ ,m0, τ )
)

(20)
respectively, where φ = φ

genewise
i , θ = θ

genewise
i , and fNB(·),

fDP(·), and fLN(·) are the PMF of the NB, DP, and LN models,
respectively.

Final Dispersion Estimators
Bias in dispersion estimation has serious effects on the expected
false-positive rates (FPRs) in small-sample situations (Robinson
and Smyth, 2008). To avoid bias, DESeq by default chooses
the maximum value from the two dispersion estimators: the
individual dispersion and the fitted dispersion as a final
dispersion for the gene (Anders and Huber, 2010). However,
DESeq is often overly conservative due to overestimation of
the dispersion and results in conservation tests (Robinson and
Smyth, 2008; Soneson and Delorenzi, 2013). For this reason,
we proposed a compromise approach called “window scan” to
obtain the final dispersion estimators in five steps: (1) rank the
genes from smallest to largest according to the means of samples
across all conditions; (2) open a default 1-count window, where
the mean is smallest; (3) based on the relationship between
the shrinkage-dispersion estimator and the common-dispersion
estimator, all genes in this window are divided into I-type genes
(its shrinkage-dispersion estimator ≥ its common dispersion
estimator) and II-type gene (its shrinkage dispersion estimator
< its common dispersion estimator); (4) estimate the final
dispersion of each I-type gene (or II-type gene) by choosing the
larger value between its shrinkage-dispersion estimator and the
median of the shrinkage-dispersion estimators of all I-type genes
(or II-type genes) for theNBmodel (or choosing the smaller value
for the DP model); and (5) shift the window to the larger mean
and repeat steps (3,4) until all of the genes are scanned.

Test Statistic and Method Evaluation
Test Statistic
For DEGs detected between two treatment groups, we tested the
hypotheses of the form H0: µi,1 = µi,2 for the gene i, where µi,1

and µi,2 are the expectations for the ith gene in groups 1 and
2, respectively. The Wald test has been widely applied in many
previous studies because of its simplicity and flexibility (Ng and

Tang, 2005; Chen et al., 2011; Yu et al., 2017). Similar to DSS and
DESeq2, we constructed the Wald test statistic as:

W =
∣

∣µi,1 − µi,2
∣

∣

√

σ 2
i,1 + σ 2

i,2

, (21)

where σ 2
i,1 and σ 2

i,2 are the variances for the ith gene in groups
1 and 2, respectively, and can be estimated using the final
dispersion according to equation (3) in the NB model and
equation (8) in the DP model.

Method Evaluation
All methods analyzed will return nominal p-values. In order to
obtain a more reliable list of DEGs, the p-values were adjusted
by the Benjamini-Hochberg (BH) procedure (Benjamini and
Hochberg, 1995). We evaluated the type I error rates (i.e., FPRs)
and statistical powers (i.e., true-positive rates; TPRs) of different
methods with a significance level of 0.05. Additionally, we used
a receiver operating characteristic (ROC) curve, the area under
the ROC curve (AUC), and a precision-recall curve (PRC) to
compare the performances of eight methods in the simulated
datasets. It is common for biologists to be interested in detecting
genes with fold changes (FCs) estimated according to the ratios
of the mean normalized counts between two treatment groups.
Therefore, some methods use FC as an indicator of DE, such as
DEGseq and AMAP.Seq (Si and Liu, 2013). Here, we defined the
genes satisfying either FC < 0.67 or FC > 1.5, and an adjusted
p < 0.05 as DEGs according to previous studies (Peart et al.,
2005; Si and Liu, 2013). This quantitative filter combines the
significance level with the FC threshold and might be considered
more practical by biologists. Therefore, we also identified DEGs
using this filter.

The performances of different methods were further validated
by qRT-PCR analysis.

Datasets
Real Datasets
We chose three real datasets to represent different characteristics
of RNA-seq data. The Pickrell dataset and the Hammer
dataset were downloaded from the ReCount database (http://
bowtie-bio.sourceforge.net/recount) (Frazee et al., 2011). The
Pickrell dataset was obtained from lymphoblastoid cell lines
derived from 69 unrelated Nigerian individuals as part of the
International HapMap project (Pickrell et al., 2010) and contains
69 biological replicates. The Hammer dataset contains four
biological replicates in each of two treatment groups: rat L4
dorsal-root-ganglion-treated groups in the presence or absence
of induced chronic neuropathic pain (Hammer et al., 2010). The
third real dataset was the Arab dataset provided as “arab” in the
NBPSeq R package and that includes three biological replicates,
where Arabidopsis leaves were inoculated with either a defense-
eliciting 1hrcC mutant of Pseudomonas syringae pv. tomato
DC3000 or 10mMMgCl2 as a mock-treatment control (Di et al.,
2011).
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Simulated Datasets
Simulation studies represent necessary processes for investigating
the properties associated with certain statistical methods, given
that the “true” DEGs are known in simulated data. An ideal
simulation would generate data with similar characteristics to
those produced in real RNA-seq experiments. Therefore, similar
to Landau and Liu (2013), we generated three independent
simulated datasets using a DPmodel based on three real datasets,
respectively. The simulation processes were repeated 30 times
to ensure reasonable precision in parameter estimation. Each
simulated dataset contains 10,000 genes, including 2,000 DEGs
and 8,000 non-DEGs, two treatment groups, and three replicates
for each treatment group.

Foxtail Dataset
Foxtail millet (Setaria italica) is an important cereal crop in
northern China, and the whole-genome sequence of Foxtail
millet (Yugu-1 cultivar) was published in 2012 (Bennetzen et al.,
2012; Zhang et al., 2012). In this study, we used a Foxtail RNA-
seq dataset obtained by our own laboratory to compare the
performance of DREAMSeq with other methods. This Foxtail
dataset includes three biological replicates, in which roots from 1-
week-old Foxtail millet seedlings (Yugu-1 cultivar) were treated
with or without 1µM epi-Brassinolide (eBL) for 2 h, followed by
total RNA extraction using Trizol reagent (Invitrogen, Carlsbad,
CA, Unites States). Extracted total RNA (2 µg per sample)
was sequenced on an Illumina HiSeq X-ten platform, and the
remaining RNA was used for qRT-PCR validation. The paired-
end reads were aligned to the Foxtail millet reference genome
(JGIv2.0.34) (Bennetzen et al., 2012; Goodstein et al., 2012) using
TopHat (version 2.0.12) (Trapnell et al., 2009; Kim et al., 2013),
and gene read counts were obtained using the program htseq-
count from the python package HTSeq (version 0.61) (Anders
et al., 2015).

qRT-PCR
First-strand cDNA was synthesized from 1 µg total RNA
using Reverse Transcriptase M-MLV (Takara Bio, Otsu,
Japan) according to manufacturer instructions. qRT-PCR was
performed according to the standard protocol using a Bio-Rad
CFX Connect real-time PCR system (Bio-Rad Laboratories,
Hercules, CA, Untied States). Primers used are listed in Table S1.
The expression of target genes was normalized to Foxtail Actin,
and the relative expression between treatment and control
groups was averaged from three independent experiments, with
the p-value calculated using a one-sample t-test. We defined
genes satisfying relative expression >1.5 or <0.67 and p < 0.05
as “true” DEGs.

RESULTS

The Mean–Variance Relationship in Real
Datasets
When analyzing the Hammer, Arab, and Foxtail datasets,
we found strong relationships between the variances and the
means on the log-log scale for the read counts from different
real datasets (Figure S1). For convenience of notation and

calculation, we used the unit line to represent a Poisson
assumption-exhibited equidispersion. The data points on and
above that line exhibit non-underdispersion, whereas the data
points below that line exhibit underdispersion. Figure S1

shows that 2,606 of 18,635 genes (14.0%) in the Hammer
dataset, 2,015 of 26,222 genes (7.7%) in the Arab dataset,
and 4,412 of 35,158 genes (12.5%) in the Foxtail dataset
were estimated as underdispersed genes. Therefore, there are
a considerable proportion of underdispersed genes in the
RNA-seq data. Furthermore, we noted that the underdispersed
data points mostly distributed at low read-count regions
(Figure S1). These results suggested that in addition to non-
underdispersion, underdispersion also exists in RNA-seq data
and should be properly handled during the RNA-seq data-mining
process.

Most RNA-seq analysis methods were developed based on
an NB model, which is able to capture both equidispersed and
overdispersed data but not underdispersed data. In comparison, a
DP model can capture all RNA-seq data (Efron, 1986). Using real
Hammer, Arab, and Foxtail datasets, we found that both DP and
NB models were able to fit read-count data very well (Figure S2).
This suggested that the DP model can be used to mine RNA-seq
data.

Generation of Simulated Datasets
Wu et al. (2013) reported that using real data-driven simulations
provided a better estimate for gene-wise dispersions and
improved DEG detection, because the true DE status of
each gene is known by controlling the settings (Wu et al.,
2013). Therefore, we generated three simulated datasets with
mean and dispersion parameters estimated from three real
datasets based on a commonly used DP model and denoted
these as simPickrell, simHammer, and simArab, respectively.
The average number of underdispersed genes in simPickrell,
simHammer, and simArab was 1299 (13%), 1935 (19%),
and 1432 (14%), respectively. As shown in Figure S3, all
simulated datasets were very similar to the corresponding
real datasets in terms of distributions of the means and
dispersions and relationships between means and dispersions.
This indicated that our simulated data closely mimicked the real
data.

Type I Error Rate
Using the three simulated datasets, we first evaluated the type
I error rates (i.e., FPRs) of the three DREAMSeq methods
(DREAMSeq.DP, DREAMSeq.NB, and DREAMSeq.Mix) and
five other widely used RNA-seq data-analysis methods (edgeR,
DESeq, DESeq2, NBPSeq, and TSPM) under the null hypothesis.
We found that except for TSPM, all other methods were able to
control type I error rates well in both non-underdispersion and
underdispersion situations (Figure 1). In comparison, DESeq
was very conservative in term of type I error rate, whereas the
abilities of FPR control by both DREAMSeq.NB and NBPSeq
clearly varied between non-underdispersion and underdispersion
situations. In contrast, the median FPRs of DREAMSeq.DP,
DREAMSeq.Mix, edgeR, and DESeq2 were relatively stable and
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FIGURE 1 | Comparison of type I error rates between different methods. Boxplots show the type I error rates (i.e., FPRs) of different methods, which were calculated

over 30 simulations for the simPickrell, simHammer, and simArab datasets under the null hypothesis. The horizontal dotted lines indicate the nominal type I error rate

of 0.05 in non-underdispersion and underdispersion scenarios. nud, non-underdispersion; ud, underdispersion.

consistently lower than or very close to the nominal type I error
rate of 0.05 under all situations.

Statistical Power, ROC, AUC, PRC, and
Number of DEGs
We then evaluated the statistical powers (i.e., TPRs) of
different methods using the simulated datasets under the
alternative hypothesis (Figure 2). The results showed that in
underdispersion situations, the TPR of DREAMSeq.Mix was
slightly higher than that of DREAMSeq.DP, although that
of both methods was higher than those of DREAMSeq.NB,
edgeR, DESeq, DESeq2, and NBPSeq (Figure 2). In non-
underdispersion situations, the TPRs of DREAMSeq.Mix and
DREAMSeq.DP were comparable with the other methods.
Interestingly, TSPM consistently showed higher TPRs. Given that
TSPM also showed higher FPRs in similar situations, it is likely
that the TSPM method increased statistical power at the cost of
poor FPR control.

The ROC curve was constructed using the TPR to FPR
ratio for each method used for DE analysis. Theoretically, the
method with the stronger statistical power at identifying DEGs
should exhibit a ROC curve with a higher TPR relative to
other methods at the same FPR level. Figure S4 shows that
NBPSeq and TSPM had lower TPRs when the FPR threshold
was ∼0.05 in each scenario, whereas the ROC curves of the
other methods were very similar. Additionally, we found that

ROC curves associated with the simHammer dataset were steeper
than those for the simPickrell and simArab datasets, suggesting
that the performance of DEG identification by different methods
was strongly dependent upon innate data characteristics, such as
heterogeneity.

AUC is a relative measure of the quality of a DEG test, where a
higher AUC indicates relatively better performance. To quantify
the performances of different methods in detecting DEGs, AUCs
of different methods were calculated. The result showed that the
AUCs of DREAMSeq.DP and DREAMSeq.Mix were higher than
those of DREAMSeq.NB, edgeR, DESeq, DESeq2, and NBPSeq
in most of the situations, except slightly lower than DESeq2
when analyzing simHammer and simArab underdispersed data
(Figure 3). Together with the above FPR, TPR, and ROC results,
these findings clearly demonstrated that both DREAMSeq.DP
and DREAMSeq.Mix were able to control type I error rates
well while maintaining a relatively higher statistical power in
detecting DEGs.

PRC curve shows the precision for corresponding recall
(TPR). Similar to the ROC curve, the PRC curve is also an
important performance indicator used to evaluate different
methods at identifying DEGs. Figure S5 shows that all methods,
except TSPM, had higher precision over the entire range of recall
rates, regardless of dataset or dispersion. Additionally, we found
that all methods exhibited their best predictive performance
using the simHammer dataset, but did not predict very accurately
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FIGURE 2 | Statistical power comparison between different methods. Boxplots show the statistical powers (i.e., TPRs) of different methods and calculated over 30

simulations for the simPickrell, simHammer, and simArab datasets under the alternative hypothesis in non-underdispersion and underdispersion scenarios. nud,

non-underdispersion; ud, underdispersion.

using the simPickrell dataset in an underdispersion situation,
which might also be related to the dataset itself.

We also compared the identified DEG numbers of different
methods, with the results showing that both DREAMSeq.DP and
DREAMSeq.Mix generally detected a larger number of DEGs
(except in the case of simHammer non-underdispersed data)
than the other methods (except for TSPM, which displayed
poor FDR control) when analyzing non-underdispersed or
underdispersed data from three simulated datasets, respectively,
(Figure 4).

Analysis of the Foxtail Dataset
Our comprehensive evaluations showed that edgeR, DESeq,
DESeq2, and DREAMSeq.Mix generally performed better as
analyzing different simulated RNA-seq datasets; therefore, these
methods were chosen to test their abilities to detect DEGs,
especially underdispersed DEGs, using a real Foxtail dataset. A
total of 128 non-underdispersed and 17 underdispersed DEGs
were identified by at least one of the four methods (Figure 5
and Tables S2–S5). Overall, the number of DEGs identified
by DREAMSeq.Mix was much higher than that by DESeq but
lower than that by edgeR and DESeq2 (Figure 5A). However,
DREAMSeq.Mix identified 15 underdispersed DEGs, whereas
edgeR identified 12, and DESeq2 identified 9 underdispersed
DEGs. We defined DEGs detected only by one method as unique
DEGs. Notably, DREAMSeq.Mix detected the highest number

of unique DEGs in underdispersion scenarios, whereas DESeq
did not identify any unique DEGs in either non-underdispersion
or underdispersion scenarios (Figures 5B,C). Consistent with
previous reports (Seyednasrollah et al., 2013; Tang et al., 2015),
all of the DEGs found by DESeq were also found by edgeR
(Figures 5B,C), possibly because these twomethods use the same
statistical model (i.e., the NB model) and hypothesis testing
procedure (i.e., the Robinson and Smyth exact test) (Robinson
and Smyth, 2008; Anders and Huber, 2010; Robinson et al.,
2010). The presence of various unique DEGs also suggested the
advantage of using more than one method to analyze the same
RNA-seq data in order to allow maximum discovery of DEGs.

We then used qRT-PCR to validate whether the DEGs
identified from the Foxtail dataset were “true” DEGs. Because
DEGs identified by DESeq were also identified by edgeR,
the unique DEGs identified by either edgeR, DESeq2,
or DREAMSeq.Mix and the common DEGs identified
simultaneously by any two methods were chosen for qRT-
PCR analysis (Figure 6). The results showed that most of the
DEGs chosen for validation exhibited similar upregulation
or downregulation patterns as those shown from RNA-seq
data analysis. For non-underdispersed DEGs, qRT-PCR results
verified that 9 of 19 DEGs (47.4%) identified by DREAMSeq.Mix,
19 of 42 DEGs (45.2%) identified by edgeR, and 23 of 51 DEGs
(45.1%) identified by DESeq2 were significantly upregulated or
downregulated by eBL treatment by at least 1.5-fold. Notably,
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FIGURE 3 | Comparison of AUCs between different methods. Boxplots show the AUCs of different methods and calculated over 30 simulations for the simPickrell,

simHammer, and simArab datasets in non-underdispersion and underdispersion scenarios. nud, non-underdispersion; ud, underdispersion.

for underdispersed DEGs, 5 of 8 (62.5%) DEGs identified by
DREAMSeq.Mix were validated as “true” DEGs. By contrast,
only 2 of 5 (40.0%) DEGs identified by edgeR and no DEGs
identified by DESeq2 were validated as “true” DEGs. These qRT-
PCR results demonstrated that for non-underdispersed data, the
number of DEGs identified by DREAMSeq.Mix was lower than
those by edgeR and DESeq2, but the accuracy was slightly higher;
however, for underdispersed data, DREAMSeq.Mix exhibited
both a higher number of identified DEGs and better accuracy
than the other two methods, demonstrating DREAMSeq.Mix
as a powerful RNA-seq data-analysis method, especially for
situations involving underdispersed data.

DISCUSSION

RNA-seq is an increasingly popular method used to analyze
global changes in gene expression during certain biological
processes. Identifying DEGs is a key step in mining RNA-seq
data and important for downstream biological analyses, such
as cluster analysis, PCA analysis, GO analysis, and Kyoto
Encyclopedia of Genes and Genomes enrichment analysis.
When analyzing RNdA-seq data, most current methods focus
on non-underdispersed data, with less attention given to
underdispersed data. In this study, we observed that RNA-seq
data also includes underdispersion characteristics. Additionally,
Low et al. (2017) found that as the RNA-seq coverage increases,
underdispersion becomes increasingly obvious. With the

development of sequencing technology, the read length and
RNA-seq coverage have increased significantly. Therefore,
to take full advantage of RNA-seq data, it is important to
explore both non-underdispersed and underdispersed data.
However, most widely used DE-analysis methods, such
as DESeq and edgeR, are based on the NB model. Due
to the limitations of this model, underdispersed data are
often overestimated, leading to conservative results in the
determination of DEGs. In comparison, the DP model is
capable of capturing not only non-underdispersion but also
underdispersion. Considering the potential advantages of
these two models, we developed a novel RNA-seq data-mining
method (DREAMSeq.Mix) that combines the DP and NB
models.

Using simulated datasets generated from three real RNA-seq
experiments, we compared the performance of DREAMSeq.Mix
at detecting DEGs with five other commonly used RNA-seq data-
analysis methods. To provide a more comprehensive conclusion,
we also added DREAMSeq.DP and DREAMSeq.NB methods,
which were developed using only a DP model or an NB
model, respectively, into the comparison. We found that DESeq,
NBPSeq, and DREAMSeq.NB were often conservative, whereas
TSPM, edgeR, and DESeq2 were more liberal in detecting DEGs.
The poor performance of TSPM in our study might be due to the
limited number of replicates in the RNA-seq datasets used (Auer
and Doerge, 2011; Kvam et al., 2012; Soneson and Delorenzi,
2013). In comparison, DREAMSeq.DP and DREAMSeq.Mix

Frontiers in Genetics | www.frontiersin.org 9 November 2018 | Volume 9 | Article 588

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Gao et al. DREAMSeq Improves RNA-seq Data Analysis

FIGURE 4 | Comparison of the number of DEGs identified by different methods. Boxplots show the number of DEGs identified by different methods and calculated

over 30 simulations for the simPickrell, simHammer, and simArab datasets in non-underdispersion and underdispersion scenarios. nud, non-underdispersion; ud,

underdispersion.

FIGURE 5 | eBL-regulated Foxtail millet-root DEGs identified by different methods. (A) Bar plot showing the number of eBL-regulated DEGs identified by

DREAMSeq.Mix, edgeR, DESeq, and DESeq2. (B,C) Venn diagrams showing the overlap among the collections of eBL-regulated DEGs identified by DREAMSeq.Mix,

edgeR, DESeq, and DESeq2 in non-underdispersion (B) and underdispersion (C) scenarios. nud, non-underdispersion; ud, underdispersion.

often outperformed the other methods in terms of TPR, AUC,
and the number of DEGs detected (Figures 2–4). The following
reasons suggest that DREAMSeq.Mix provided unique and
important outcomes more advantageous than current RNA-seq
data-mining methods.

First, DREAMSeq incorporates a more flexible DP model to
fit highly complex and variable RNA-seq data. The dispersion
parameter of the DP model is not subject to the same restrictions
as the NB model when it is estimated in underdispersion
situations. As a result, logarithmic dispersion estimated using
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FIGURE 6 | qRT-PCR validation of the expression of eBL-regulated Foxtail DEGs detected by different methods. Bar plots show the relative expression of DEGs

detected only by DREAMSeq.Mix (A), edgeR (B), and DESeq2 (C) or identified by DREAMSeq.Mix and edgeR (D), DREAMSeq.Mix and DESeq2 (E), or edgeR and

DESeq2 (F), respectively, in eBL-treated Foxtail millet roots. The relative expression levels were normalized to the Foxtail millet Actin gene. Data represent the mean ±
SE of three independent experiments. P-values were calculated using a one-sample t-test. *P < 0.05; **P < 0.01. The horizontal dotted lines indicate relative

expression of 1.5 or 0.67. nud, non-underdispersion; ud, underdispersion.

the DP model (Figure S3) showed a better normality than
that acquired using the NB model (Figure 1 in Landau and
Liu, 2013). This demonstrated that the DP model was able
to accurately fit a widely range of read-count data without
artificial intervention in RNA-seq data analysis. Therefore,

DREAMSeq.DP and DREAMSeq.Mix often outperformed the
other methods, especially in underdispersion situations, in
simulation studies. Moreover, in terms of identifying the “true”
underdispersed DEGs, DREAMSeq.Mix outperformed edgeR,
DESeq, and DESeq2 according to qRT-PCR validation.
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Second, DREAMSeq incorporates strategies, such as MoMs,
MLE, and EB, which are used in the edgeR, DESeq, DSS,
and DESeq2 methods, to obtain reliable dispersion estimation.
Importantly, to avoid bias, DREAMSeq used a “window scan”
approach to estimate dispersion and enhance DREAMSeq’s
robustness in analyzing a wider range of RNA-seq data. This
enabled all DREAMSeq approaches maintain a higher AUC
across different simulated datasets in either non-underdispersion
or underdispersion scenarios.

Third, in multiple scenarios, DREAMSeq.Mix performed
slightly better than DREAMSeq.DP, although the difference
was small. This indicated that the efficiency and robustness of
DREAMSeq.Mix was improved by taking full potential of the
advantages of the DP and NB models to fit RNA-seq data.

Recently, single-cell RNA-seq (scRNA-seq) has rapidly
become a powerful tool for analyzing gene-expression
heterogeneity at the individual cell level and been widely
applied to diverse fields of biological research, including stem cell
differentiation, embryogenesis, and whole-tissue analysis (Saliba
et al., 2014). However, scRNA-seq data displays typical features
of bimodality (the NB model cannot capture bimodality) (Vu
et al., 2016), making such data less efficient for mining using
common RNA-seq data-analysis methods. Additionally, Choo-
Wosoba et al. (2016) reported that genomic next-generation
sequencing data also involves underdispersion. The increased
accuracy and robustness displayed in finding “true” DEGs
with higher confidence and its better performance at exploring
underdispersed data make DREAMSeq a potentially valuable
tool for mining sequencing data generated from many other
high-throughput platforms, such as scRNA-seq and genomic
sequencing.

During our analysis, we found that none of the eight tested
methods consistently outperformed other methods under all
situations, because different methods are capable of identifying
specific groups of DEGs. Although some DEGs can be identified
by all methods, the existence of unique DEGs suggested
that different methods exhibited specific preferences during
DEG detection. Additionally, our study showed that the same
method sometimes displayed a wide range of performance
variability when analyzing different datasets. It is likely that
the intrinsic characteristics of the RNA-seq data determine the
appropriateness of one method for data analysis over others.
Therefore, to ensure maximum coverage of DEG identification,
it is advantageous to use more than one method to analyze
the same RNA-seq data. Based on our comparison studies,
we recommend that using a combination of edgeR, DESeq2,
and DREAMSeq.Mix for RNA-seq data analysis to potentially
ensure the maximum retrieval of true DEGs in both non-
underdispersion and underdispersion situations.

CONCLUSIONS

Previous studies reported both equidispersion and
overdispersion as important characteristics of RNA-seq

data. In this study, we showed that underdispersion also exists
in RNA-seq data. The NB model widely used in RNA-seq
data-mining methods can only capture non-underdispersion
but not underdispersion. Here, we presented a DP model
capable of capturing not only non-underdispersion but also
underdispersion. Given the potential advantages of the two
models, we developed a novel RNA-seq data-mining method
(DREAMSeq) that combines both the DP and NB models to
ensure its flexibility and robustness for RNA-seq data mining.
Additionally, we used a “window scan” approach to estimate
dispersion and enhance the reliability of DREAMSeq across
a wider range of RNA-seq data. Using simulated datasets
generated from three real RNA-seq datasets and an in-house-
generated Foxtail dataset, we demonstrated the ability of
DREAMSeq to reach a better balance between conservative
and liberal tests as compared with other methods. Our findings
demonstrated DREAMSeq as a reliable and robust RNA-seq
data-analysis method that provides important improvements in
the DE analysis of RNA-seq data, especially in underdispersion
situations.
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