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To achieve risk-based engineered structural designs that provide safety for life and

property from tornadoes, sufficient knowledge of tornado wind speeds and wind

flow characteristics is needed. Currently, sufficient understanding of the magnitude,

frequency, and velocity structure of tornado winds remain elusive. Direct measurements

of tornado winds are rare and nearly impossible to acquire, and the pursuit of in situ wind

measurements can be precarious, dangerous, and even necessitating the development

of safer and more reliable means to understand tornado actions. Remote-sensing

technologies including satellite, aerial, lidar, and photogrammetric platforms, have

demonstrated an ever-increasing efficiency for collecting, storing, organizing, and

communicating tornado hazards information at a multitude of geospatial scales. Current

remote-sensing technologies enable wind-engineering researchers to examine tornado

effects on the built environment at various spatial scales ranging from the overall path

to the neighborhood, building, and ultimately member and/or connection level. Each

spatial resolution contains a unique set of challenges for efficiency, ease, and cost of

data acquisition and dissemination, as well as contributions to the body of knowledge

that help engineers and atmospheric scientists better understand tornado wind speeds.

This paper examines the use of remote sensing technologies at four scales in recent

tornado investigations, demonstrating the challenges of data collection and processing

at each level as well as the utility of the information gleaned from each level in advancing

the understanding of tornado effects.

Keywords: tornado damage, damage assessment, imagery, lidar, UAS, SAR, photogrammetry

INTRODUCTION

Tornadoes are the most violent of all atmospheric storms and rank among the most destructive and
feared of natural hazards. Although they are known to produce some of the strongest winds on
earth, a sufficient understanding of the magnitude, frequency, and velocity structure of tornado
winds continues to elude researchers (Edwards et al., 2013). Direct measurements of tornado
winds are extremely rare, difficult, and dangerous to obtain, largely due to the damaging and
unpredictable nature of tornadoes and limitations on predicting tornado occurrences and paths
(Fleming et al., 2013; Karstens et al., 2013; Kosiba andWurman, 2013). Tragically, this has resulted
in several injuries and deaths of experienced storm chasers in the pursuit of direct observations
and measurements of tornadoes (Wurman et al., 2014). Direct measurement of tornado winds are
further complicated by the inability of radar systems (including mobile systems) to measure the
tornado winds near the ground surface, the location that most often impacts the built environment
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(Wurman et al., 2013; Lombardo et al., 2015a; LaDue et al.,
2017). As a result, in the absence of direct wind speed
measurements, the detailed study of tornado effects on the
natural and built environments has necessarily become essential
for gaining critical insight into estimated tornado wind speeds,
occurrence and geographical distribution, and tornado-structure
interactions.

Improved understanding of tornado wind speeds and
tornado-induced loads on structures is primarily reliant on the
study of actual tornado damage (Kikitsu and Sarkar, 2015; Huang
et al., 2016). A heightened understanding of tornado frequency
and intensity is also necessary to establish climatologies to
create risk-based engineering design philosophies and insurance
underwriting. In this approach, the detection of tornado tracks in
sparsely populated areas (i.e., based on damage signatures rather
than direct observation by tornado spotters) is critical to the
establishment of accurate tornado climatologies and occurrence
intervals. However, damage investigations in rural areas (where
structures are infrequent) are challenging due to the lack of
damage indicators. Studies of treefall patterns and vegetation
scour have helped to improve estimates tornado intensity and
near-ground wind (Fujita, 1989; Bech et al., 2009; Beck and
Dotzek, 2010; Karstens et al., 2013; Wakimoto et al., 2016).

The Enhanced Fujita (EF) Scale of tornado intensity aims
to correlate observed levels of damage with wind speed ranges
(TTU, 2006). Currently, these wind speeds are based on estimates
derived from an expert-elicitation process (McDonald et al.,
2009). Although the EF Scale serves as the official metric of
tornado intensity for the U.S. and Canada, the wind speeds
currently employed in the scale have not been verified, and their
accuracy has been often debated. This is due to the estimation
of tornado intensity as based on observed damage requires some
knowledge of structural responses under wind loads (Doswell
et al., 2009; Prevatt et al., 2012b; Edwards et al., 2013; Fratinardo
and Schroeder, 2013). Data validation and corrections of EF Scale
wind speeds are crucial for accurately predicting wind speeds
necessary to achieve safe and economical structural designs
as well as equitable insurance loss models. Such modifications
depend on the forensic analysis of buildings, trees, and other
damage indicators.

Emerging remote-sensing technologies, including satellite,
and aerial imaging, and lidar, have demonstrated a constantly
increasing efficiency for collecting, archiving, organizing, and
communicating hazards information at numerous geospatial
scales (Eguchi et al., 2008; Pittore et al., 2016). The capture
of three-dimensional (3D) condition data, accomplished as
quickly as possible after a tornado touchdown, can provide
crucial and perishable evidence for detailed forensic damage
assessments (e.g., Prevatt et al., 2011, 2012a,b, 2013; Smith
et al., 2012; van Derostyne et al., 2012; Walsh and Tezak, 2012;
Roueche and Prevatt, 2013; van de Lindt et al., 2013; Standohar-
Alfano and van de Lindt, 2016). Detailed forensic studies of
tornado damage assists researchers in understanding tornado-
structure interaction; however, such studies require accurate
measurements of member sizes and deformations, which can
difficult to obtain in the field due to limited site access,
safety, available field time, and the perishable nature of critical

damage evidence (e.g., clean-up, post-storm water damage).
Remote sensing imaging technologies have also proven effective
for detecting and delineating tornado tracks in remote areas,
particularly forested areas that may otherwise go undetected due
to a lack of population and trained spotters (e.g., Skow and
Cogil, 2017). Recent analysis techniques have also shown promise
for estimating the intensity of tornadoes in forested areas (e.g.,
Jedlovec et al., 2006; Molthan et al., 2011, 2014; Karstens et al.,
2013; Godfrey and Peterson, 2017).

BRIEF HISTORY OF REMOTE SENSING OF
WIND DAMAGE AT MULTIPLE SPATIAL
SCALES

The remote sensing analysis of wind effects on the built
environment has advanced through the study of tornado damage
and other windstorms, including thunderstorms, downbursts,
and hurricanes. Although precise wind load mechanisms causing
damage to individual structures can vary significantly between
tornadoes and other windstorms, the techniques, which includes
remote-sensing technologies, for the study of damage are quite
similar for multiple types of windstorms; thus, the study of
damage from hurricanes and other types of wind storms is
also beneficial to the advancement of remote-sensing analysis of
tornado damage.

Remote sensing for observation of tornado effects can be
traced to the middle of the twentieth century (Skow and
Cogil, 2017). The U.S. National Weather service has employed
aerial observations and aerial photography in the surveying
of tornado tracks and tornado damage from the 1950s to
the present (van Tassel, 1955; Wakimoto et al., 2016). Aerial
imaging and observations played a particularly significant
role in the seminal tornado research of Dr. Theodore Fujita
starting in the mid-1960s (McDonald, 2001; Yuan et al.,
2002). Such aerial surveys, however, required knowledge of
tornado occurrence and location to schedule or charter aerial
flights.

As technology advanced, detection and study of tornado
tracks with earth-observing satellite (EOS) data became possible
with the launch of the Landsat-series satellites starting in the early
1970s. Early images from the 1970s captured still-visible tracks
of multiple tornadoes that had occurred earlier (most likely in
1965) in forested areas of South America (Dyer, 1988; Jedlovec
et al., 2006). Since the 1990s, the use of high-resolution multi-
spectral satellite imagery has significantly enhanced the ability
to detect tornado tracks (Jedlovec et al., 2006). One notable
example is the analysis of the 1999 Oklahoma City Tornado
Outbreak and its various tracks using digital remote-sensing
analysis techniques including principal component analysis
(PCA) and normalized difference vegetation index (NDVI)
(Yuan et al., 2002).

The modern era of remote sensing for the assessment of wind
damage to individual structures can be traced to the launch of
the first high-resolution (sub-meter) commercial satellite in 1999,
following deregulation of the industry by the U.S. government.
Womble et al. (2007a) conducted a seminal study using 60-cm
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commercial satellite and 35-cm NOAA aerial images to wind
damage assessment following Hurricanes Charley and Ivan in
2004. Womble et al. (2006) also explored the utility of 21 satellite
and aerial remote-sensing platforms (spatial resolutions ranging
from 30 cm to 5 km) for gauging the impact of hurricane damage
at numerous geospatial levels, resulting in a tiered Remote-
Sensing Reconnaissance System (Figure 1) for assessment of wind
damage in Hurricane Katrina (2005) at levels ranging from
regional (Tier 1), to neighborhood (Tier 2), and per-building (Tier
3). From 1999 to 2016, the finest-possible spatial resolution of
commercial satellite imagery has improved by more than three-
fold, from 100 cm (IKONOS) to 31 cm (WorldView 4).

Aerial Imaging Platforms
Aerial imaging platforms have the potential of providing data
more quickly than earth-orbiting satellite platforms, as these
platforms are not subject to the limitations of imaging time
windows and revisit times, which may coincide with cloud
cover. Aerial platforms also can acquire multiple view angles
of the same areas. Hurricane Katrina (2005) saw the advent of
widespread acquisitions of pre- and post-storm aerial imagery
using the Pictometry fleet of more than 70 light aircraft to
provide five view angles (vertical/nadir and 4 oblique/off-nadir
angles) with 15-cm spatial resolutions at three spectral bands
in the visible range (red, green, and blue). For the next decade,
per-building (Tier 3) analyses facilitated highly-detailed remote
sensing assessments for hurricane and tornado damage via
satellite and aerial imagery (e.g., Womble et al., 2010, 2016;
ImageCat/New Light Technologies, 2011; Brown et al., 2012;
Atkins et al., 2014; Gong and Maher, 2014; Luo et al., 2014a;
Ortega et al., 2014).

The U.S. mainland experienced nearly a decade-long respite
from major hurricane landfalls between Hurricane Ike (2008)
and Hurricane Harvey (2017). However, during this time, the
U.S. experienced several severe tornado outbreaks, including
Super Tuesday (2009), Birmingham-Tuscaloosa, AL (2011),
Joplin, MO (2011), Moore, OK (2013), Pilger, NE (2014), and
Pampa, TX (2017). Major advances in the remote sensing of
wind effects thus progressed primarily through the study of
tornado damage during this period, particularly through the
advent of accessible 3D lidar (light detection and ranging or
laser) scanning, photogrammetry, and unmanned aerial systems
(UAS) for detailed preservation of damage conditions at the sub-
centimeter level (Prevatt et al., 2011, 2013; Graettinger et al.,
2012, 2014; Kashani and Graettinger, 2015; Kashani et al., 2015,
2016; Wood and Mohammadi, 2015; Womble et al., 2016).
These most recent developments have significantly demonstrated
enhanced remote-sensing capacities by adding an additional tier,
Tier 4 (Figure 1), which includes a resolution that facilitates
analysis at the member–connection level enabling highly detailed
forensic investigations of wind-induced structural failures. These
data sets can be retained after the evidence is removed by repair
or demolition efforts. The 2017 hurricane season brought major
hurricanes Harvey, Irma, and Maria to North America, all of
which are destined to bring further advances in the remote-
sensing analysis of wind-damaged structures, which can, in turn,
advance the analysis of tornado damage.

TORNADO PATH LEVEL (TIER 1)

Need for Improved Tornado Climatology
Information in Sparsely Populated Areas
An accurate understanding of tornado risks for a region (based
on historical records of tornado occurrences, intensity, and path
extents) is essential to achieve safe and economical engineering
designs and more equitable insurance underwriting. Historic
records of tornado occurrences, path extents, and intensities
have historically been limited to real-time observations of the
tornadoes themselves and/or investigation of damage to damage
indicators (such as structures or trees). Specific to tornado
occurrences in sparsely populated areas, such occurrences are
likely to go unobserved due to lack of damage indicators,
leading to inaccurate tornado climatologies based on incomplete
historical data. Consequently, to more accurately define the
tornado climatology, there is a need for detection and estimation
of tornado intensity in sparely populated areas where tornado
occurrences may otherwise go undetected. Tornadoes occurring
in open prairie or plains areas may or may not leave noticeable
traces, depending largely on types of ground cover, species of
agricultural crops, and crop maturity stage within the season
(Skow and Cogil, 2017). Tornadoes occurring in forested areas,
however, typically leave distinguishable evidence in the form of
widespread tree damage.

Establishing Improved Tornado
Climatologies
Establishing improved tornado climatologies requires both (1)
detection and (2) determination of the intensity of tornadoes.
In the absence of both direct wind speed measurements and
observable damage, the gauging of tornado intensities based on
effects on natural forested environments has received notable
attention (Peterson, 2003, 2007; Frelich and Ostuno, 2012;
Karstens et al., 2013; Lombardo et al., 2015b; Cannon et al.,
2016; Godfrey and Peterson, 2017). Remote-sensing imagery,
including satellite and/ or aerial imaging and lidar capabilities
(Darnell, 2012) provides an effective basis for the confirmation of
tornadoes in forested and low-population areas where tornadoes
may otherwise go undetected. Broad-scale geospatial data, as
from earth-observing satellites (EOS), can verify the occurrence
(tracks) of suspected tornadoes and can provide pertinent
information about path locations, lengths, and widths (Bentley
et al., 2002; Yuan et al., 2002; Myint et al., 2008; Molthan
et al., 2011, 2014), thereby providing a basis for more accurately
developing the tornado climatology of a region.

“Missing” Tornadoes in Remote Forested
Areas
Comprehensive records of tornado occurrences have been
maintained in the U.S. since the 1950s and in Canada since
the 1980s (Etkin et al., 2001). These records are based on
observations of tornadoes or damage paths and often are not
acquired at all in sparsely populated areas. Undercounting of
tornadoes significantly affects the accuracy of regional tornado
climatologies (Doswell and Burgess, 1988) and leads to erroneous
assessment of risks to life and property (Brooks, 2013; Lloyd’s of
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FIGURE 1 | Four distinct tiers for remote sensing of tornado effects at different spatial levels. Image credit: Google, NOAA (public domain), and authors.

London, 2013). Low population density has long been credited as
a primary factor in the failure to observe tornadoes (Snider, 1977;
Schaefer and Galway, 1982; Anderson et al., 2007; Cheng et al.,
2013, 2015). Studies of tornado climates of sparsely populated
areas of Ontario (Sills, 2012; Sills et al., 2012; Cheng et al., 2013),
using integrated lightning flash density and population density
data, suggest that at least 50% of tornadoes in Canada’s sparsely
populated areas may go undetected; in particular, they expose a
suspected population bias resulting in “missing” tornadoes for an
extensive region of southwest Ontario due to its rural landscape.

Tornado Path Analysis With
Earth-Observing Satellite Data
Earth-observing satellite (EOS) imagery plays a significant role in
the detection and geolocation of overall tornado occurrences and
paths. Collected data have several different geospatial resolutions
and revisit times (imaging frequencies), including NASA’s
MODIS sensors (250m resolution; daily revisit), ASTER sensor
(15m; daily-on demand), and Landsat Enhanced Thematic
Mapper (ETM) sensors (30m; 16-day revisit). For example,
Figure 2 shows the track of the June 1, 2011, EF3 tornado that
struck Sturbridge, MA in 30-m natural-color imagery acquired
by the Landsat 5 Thematic Mapper sensor on June 5, 2011.

With larger spatial resolutions corresponding to the coarser
EOS imagery (30–250m), visual inspection alone is often not
sufficient for the detection of tornado tracks. Enhancements to
EOS visual imagery are helpful for the detection of tornado tracks
(i.e., disturbed vegetation in forested areas). Example methods
include PCA using proper orthogonal decomposition of digital
images, and NDVI) analysis accomplished by mathematically
combining red-visible and near-infrared wavelength reflectance
values, which correspond to vegetation health within each pixel
(Figure 3). Early investigations with EOS imagery addressed the
detection of tornado paths (Jedlovec et al., 2006). The 1999
Oklahoma City, OK, tornado outbreak provided an opportunity

for several significant studies of tornado path detection using
EOS data. Magsig et al. (2000) and Yuan et al. (2002) applied PCA
techniques and NDVI imagery derived from the Indian Remote
Sensing satellite to detect tornado tracks (Figure 4). Myint et al.
(2008) employed Landsat-TM imagery from the same tornado
outbreak in a comparison of image processing techniques
(including PCA and object- detection-based approaches) for the
detection of tornado tracks.

More recently, researchers applied PCA and NDVI
methodologies in preliminary studies to help determine
tornado intensity in forested areas of Alabama using NASA EOS
imagery following the April 2011 tornado outbreak, with specific
emphasis to provide immediate guidance for ground surveys
(Molthan et al., 2011, 2014). NDVI enhancements using post-
tornado images alone were helpful for semi-automated detection
of paths for strong tornadoes; however, before-and-after images
were necessary to identify paths of weaker tornadoes (Molthan
et al., 2014). For 30-m Landsat imagery of the 2011 tornado
outbreak in forested areas of Alabama, Kingfield and deBeurs
(2014) observed that a Disturbance Index derived from 6 Landsat
spectral bands more consistently identified severe tornado paths
than did an NDVI analysis derived from 2 spectral bands.
Analysis parameters needed for producing beneficial results
(helpful for the identification of tornado tracks) were found to be
highly dependent on the specific vegetation of a region, strongly
indicating that additional explorations are necessary to yield
beneficial results for tornadoes in other geographic and climatic
areas.

Tornado Path Analysis With Synthetic
Aperture Radar (SAR) Data
Active remote sensing systems, such as synthetic aperture radar
(SAR) systems, transmit a signal and measure a return (e.g.,
backscatter from the surface), unlike passive optical sensors
which measure reflectance and temperature. Such active remote
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FIGURE 2 | Natural color image (30m) from Landsat 5 Thematic Mapper showing tornado track from June 1, 2011. The town of Sturbridge, MA, was struck by this

EF3 tornado. Image acquired on June 5, 2011. Image credit: NASA (public domain).

FIGURE 3 | Track of the EF-5 tornado that struck Moore, OK, on May 20, 2013 is visible in the false-color image composed of infrared, red, and green bands

acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on board NASA’s Terra satellite on June 2, 2013. In this false-color

image, vegetation appears as red, and the tornado track (absence of vegetation) is clearly evident. Spatial resolution 15m. Image credit: NASA (public domain).
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FIGURE 4 | Tornado track of April 27, 2011 near Phil Campbell, AL, is visible in NDVI imagery from Terra MODIS (250m, May 4, 2011) and Terra ASTER (15m, May

20, 2011). Image Credit: Andrew Molthan, NASA SPoRT (public domain).

sensing systems can be used in any light condition (day or
night) and with any sky conditions (cloud cover), giving them
greater versatility for imaging by not being hindered by daylight
or cloud-free conditions. Schultz (2016, 2017) describes NASA
SPoRT’s use of SAR tornado imagery in the U.S. National
Weather Service’s Damage Assessment Toolkit (DAT) to facilitate
the identification of damage tracks in areas where damage
surveys are especially challenging, such as densely forested
areas and areas with limited road access. Figure 5 shows
a SAR change-detection (multitemporal) image obtained by
subtracting SAR return values from before-and-after images of
a 2017 tornado in a heavily forested area near Clear Lake,
WI.

Tornado Path Analysis With
High-Resolution Aerial Data
The relatively coarse resolution of EOS data does not enable
the viewing of individual structures or trees; however, aerial
platforms offer much higher spatial resolutions for imagery
but require specific tasking for data acquisition and thus some
prior knowledge of the existence and (approximate) location of
tornado tracks.

Vertical aerial imagery collected by NOAA (25 cm) provided
the basis for several different studies of tornado effects in
the severe 2011 Joplin, MO, and Tuscaloosa-Birmingham,
AL, tornadoes (Figure 6). For example, Karstens et al. (2013)
employed the NOAA 25-cm aerial imagery to analyze treefall
patterns in a study of the near-ground wind fields for the 2011
Joplin, MO tornado. Cannon et al. (2016) and Godfrey and
Peterson (2017) also used high-resolution (20-cm) aerial imagery
for estimation of tornado intensity and mapping of local tornado
wind fields based on visually identified treefall patterns in remote
or inaccessible forest areas in the southeastern U.S.

Oblique aerial imagery (often obtained by hand-held camera
systems in light aircraft) is also effective in showing overall

tornado paths. For instance, the path of the 2013 EF5 tornado at
Moore, OK, is readily evident in the oblique imagery of Figure 7.

Automated Urban Tornado Path Detection
Significant advancements in automated tornado path detection
in urban areas based on monotemporal (post-event only) aerial
and satellite images of various spatial resolutions are reported by
Radhika et al. (2012). The automated path detection is based on a
texture-wavelet analysis of deposition patterns of tornado debris,
which is most commonly encountered in urban settings. These
investigations utilized high-resolution (0.1m) aerial imagery for
the 2006 Saroma (Japan) tornado, moderate (1-m) resolution
commercial satellite imagery for the 2003 Moore, OK, tornado,
and coarse (30-m) satellite imagery for the Tuscaloosa, AL
tornado of 2011. These investigations highlight the importance of
improved spatial resolutions for more accurately estimating the
tornado path width.

NEIGHBORHOOD LEVEL (TIER 2)

Use of Neighborhood Data (Wind Feld
Analysis)
Detailed analysis of damage patterns throughout a neighborhood
region can enhance the understanding of tornado wind fields,
including both the intensity and low-level structures of tornado
circulations (Fujita, 1981; Luo et al., 2014b; Wakimoto et al.,
2016). Highly detailed neighborhood-level data is useful for
fragility analysis of residential structures (Roueche and Prevatt,
2013; Roueche et al., 2015; Kopp et al., 2017). High-resolution
(sub-meter) satellite imagery and aerial imagery are commonly
used for such analyses. Regional damage assessments can be
accomplished either at the regional level (typically for automated
assessments) or as an amalgamation of per-building (Tier
3) damage data with the use of either semi-automated or
visual assessments. Figure 8 shows an example of the 25-cm
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FIGURE 5 | Synthetic Aperture Radar (SAR) temporal difference image (before-and-after) of the tornado track from May 16, 2017 near Clear Lake, WI. Imagery

acquired by Sentinel-1(A/B), a European Space Agency (ESA) satellite with a SAR instrument on board. The above image is the result of differencing images from May

10 and May 22, 2017. Image credit: Lori Schultz, NASA SPoRT (public domain).

FIGURE 6 | Photomosaic image (created from multiple NOAA 25-cm aerial images) showing path of 2011 Joplin, MO tornado. Image Credit: NOAA (public domain).

neighborhood-level aerial imagery acquired by NOAA alongside
pre-event imagery for a neighborhood affected by the 2011
Tuscaloosa, AL, tornado.

Need for Visual Damage Assessment
Despite the now-widespread availability of satellite and aerial
imagery following major disasters, damage assessment using
remote-sensing imagery is still heavily reliant on visual
assessment (Ghosh et al., 2011). This is due to the slow progress
in robust and automated damage assessment algorithms. Until
algorithms for automated damage assessments have reached a
mature level, practical applications for rapid damage assessments
across large areas necessarily employ visual screening based on

remote-sensing imagery (Womble et al., 2010; Atkins et al.,
2014). Because of the current necessity of using rapid visual
assessment of first-available data, recent research has targeted
the accuracy of visual assessments made with imagery of various
spatial resolutions (Brown et al., 2012; Luo et al., 2014a,b).

Case Study—Tuscaloosa and Joplin
Tornadoes (2011) (Amalgamation of
Per-Building Data)
ImageCat, Inc. and New Light Technologies completed a rapid
building damage assessment after the extremely destructive
tornado outbreaks in Tuscaloosa, AL, and Joplin, MO, using
the 25-cm NOAA aerial imagery sets described above in an
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FIGURE 7 | Oblique photo from hand-held camera system in light aircraft clearly show the path of the 2013 EF5 tornado at Moore, OK. After: Dr. Nolan Atkins,

Lyndon State University, NSF RAPID Response Grant AGS-1343963 (public domain: http://meteorology.lyndonstate.edu/vortex2/Moore2013/).

evaluation of the efficacy of remote-sensing technologies for
rapid post-disaster damage assessment (Womble et al., 2016).
This study focused on levels of damage that are discernible from
remotely-sensed imagery and the speed at which these results
could be delivered to personnel in the field. In the development of
this description, FEMA’s 4-point Tornado Damage scale was used
along with the Enhanced Fujita (EF) Scale and a remote-sensing-
based damage scale (Womble, 2005; Womble et al., 2007b). This
work was transformative in that observable information from
aerial surveys was merged with expert engineering knowledge
regarding the behavior of buildings subjected to extreme winds
to arrive at an integrated, remote-sensing-based damage scale.
This investigation demonstrated the importance of pre-event
imagery in assessing post-event damage levels, as it was essential
to understand the pre-event geometry of each structure to
assign a final damage level. Assessment of damage levels was

difficult when very high-resolution aerial imagery (pre-event)
was unavailable. Another key result of the damage analysis was
the identification of damaged buildings by occupancy (residential
or commercial). This information was important in supporting
the housing assistance program and in identifying the owners of
damaged buildings, accomplished by linking tax assessor’s parcel
information to the locations of damaged buildings. Damage
to some building surfaces (walls, windows, and doors) could
not be directly observed from vertical remote-sensing imagery,
the methodology was shown to provide nearly 100% accuracy
for detection catastrophic damage (structures were completely
destroyed) given that very high-resolution pre-event imagery (of
∼25 cm or finer) is available for baseline comparison.

Figure 9 shows the distribution of damaged buildings in the
2011 Joplin, MO, tornado obtained as an amalgamation of per-
building damage assessments. More than 8,000 buildings were
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FIGURE 8 | Before-and-after imagery of neighborhood in Tuscaloosa, AL,

struck by tornado on April 27, 2011. Left image credit: Google Earth. Right

image: 25-cm aerial imagery. Image credit: NOAA (public domain).

identified as having some level of damage. Finally, to improve
the overall damage assessment operations using remotely-sensed
data, a set of recommendations for response to future events
was identified, including availability of high-resolution vertical
and oblique aerial data before and after any event, creation
of pre-event planning databases (such as parcel boundaries
with occupancy, structural type, etc. information), establishing
methods to quantify accuracy and confidence levels of the
damage assessment, and expanding the knowledge of damage
assessment for tornadoes to other hazards.

Unmanned Aircraft Systems
Satellite and aerial imagery can cover large areas; however,
such data may not be available, economical, or practical for
relatively small or isolated tornado or other windstorm events.
Much earth-observing satellite data can also be too coarse to
assist with detailed damage assessments at the neighborhood-
or per-building level (Tiers 2 and 3, respectively). In such
instances, ground-based data acquisition techniques have often
been employed. For instance, vehicle-mounted cameras have
also been used to rapidly acquire data throughout affected
areas (Womble et al., 2006; Luo et al., 2014a,b); however, these
systems can be severely limited in their ability to view all
external surfaces of affected buildings, as side views can be
obscured by nearby structures, and rear viewsmay be inaccessible
altogether. Obstacles such as trees, fences, and other vehicles
can also occlude direct views of building surfaces. Access to
affected neighborhoods may also be restricted or prohibited
by law-enforcement operations, natural roadblocks (e.g., fallen
trees or flooded roadways), private-property concerns, or other
dangerous conditions (e.g., structures in danger of imminent
collapse). In such cases, observation from above the roof height
is often beneficial.

Notable recent advancements in unmanned aircraft systems
(UAS) have made the use of such systems quite viable for the
collection of highly-detailed damage information from above
roof levels at the neighborhood- and per-building scales. UAS
platforms also offer the ability to remotely view and capture
damage conditions in real-time.Miller (2017) describes the utility
of UAS technology for emergency response for the May 2017
EF-2 tornado that struck Elk City, OK (Miller, 2017). With
knowledge of likelihood of tornadoes in the nearby area, a team
was positioned just miles away when the tornado struck. Within
20min of the tornado’s strike, the team deployed a quadcopter

which streamed live video to the state Emergency Operations
Center in Oklahoma City (120 miles away) as well as the National
Weather Service office in Norman, OK. Officials from these
organizations were able to direct the data acquisition in real-time
by requesting flights over certain areas and identify locations for
detailed views of specific structures.

Mobile Lidar
One of the newer and most efficient ways to rapidly deploy a
lidar platform is through mobile lidar systems (MLS). Although
MLS requires sizeable capital investment, it can collect data from
large areas rapidly. MLS platforms consist of one or multiple
lidar scanners and a series of cameras to collect color information
as well as an inertial measurement unit (IMU) and a GPS
sensor. The ground sampling distance (GSD) within MLS data
is dependent on the specific equipment and on the travel speed
during the data collection. The GSD of the collected data can
vary between 30 to 3 cm for a travel speed of 16 to 80 kph using
mapping-grade and surveying grade MLS platforms, respectively
(Gong, 2014). As a result, MLS platforms can scan large areas in
short timeframes and create a detailed and accurate point clouds
along with corresponding color information, intensity return
values, and accurate locations. However, the survey process can
be limited by multiple factors including loss of GPS signal (due
to urban canyons), occlusion (due to vegetation, automobiles
and debris), prohibited access to damaged areas (due to road
closures), access to limited surfaces (only capturing the roadway
sides of a structure), and lighting conditions (affecting the
RGB color information). Recently, Gong (2014) investigated the
application of the MLS-derived point clouds for post disaster
geospatial data collection within New York and New Jersey
following Hurricane Sandy. To assess the damage sustained by
structures after the event, Gong (2014) used scan data collected
pre- and post-hurricane to perform a change detection analysis
to identify damaged areas, partially collapsed buildings, and
structural displacement/movement.

BUILDING LEVEL (TIER 3)

Overview
A relatively large amount of research and development
concerning tornado effects on the built environment has focused
on the per-building level, including single-family residences and
commercial/ industrial buildings. This is defined herein as Tier 3,
where the individual building level is a logical level for assessment
for several practical reasons, including insurance underwriting
and adjustment and detailed forensic studies. It is consistent
with the rating of tornado intensity by the Enhanced Fujita
scale (TTU, 2006) as a Damage Indicator (such as Single-Family
residences FR12), and this forms a natural level of detail for visual
assessments. The per-building level also forms a logical basis for
automated assessments via computer algorithms as groups of
contiguous pixels (representing individual structures) serve as
the basis for numerous automated damage studies (e.g., Thomas
et al., 2012, 2014; Kashani and Graettinger, 2015; Kashani et al.,
2015). For purposes of insurance risk and resiliency, damage
functions (fragility curves) are also commonly constructed at the
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FIGURE 9 | Per-building analysis of damaged buildings in Joplin, MO (2011). Image Credit: ImageCat (used with permission).

per-building level (Roueche and Prevatt, 2013; van de Lindt et al.,
2013; Roueche et al., 2015; Kashani et al., 2016; Masoomi and van
de Lindt, 2016; Kopp et al., 2017).

Building Types
Attention has primarily focused on large, simple-form industrial
buildings (especially in the development of semi-automated
damage detection algorithms, e.g., Thomas et al., 2012, 2014) and
on single-family residences. Single-family residences constitute
the most populous category of buildings sustaining damage
in major windstorms. For instance, a comprehensive city-
wide investigation of damage incurred by the 2011 Joplin,
MO, tornado showed that residential structures comprised
∼94% of the nearly 8000 damaged structures (NIST, 2014b).
Womble (2005) and Womble et al. (2007a) demonstrated that
single-family residences present significantly more complicated
geometric forms than other types of buildings, and that finer
spatial resolutions are required to accurately determine the
damage levels for such complex building forms than for simple
building forms (e.g., larger rectangular warehouse buildings).

Use of Building-Level Data for
Understanding Tornado Effects
Early estimates of tornado loads on buildings were based
on horizontal, straight-line boundary layer winds; however,
atmospheric measurements (e.g., Lee and Wurman, 2005;
Karstens et al., 2010; Kosiba and Wurman, 2010) and physical
models (e.g., Mishra et al., 2008; Sengupta et al., 2008; Hu
et al., 2011; Yang et al., 2011; Prevatt et al., 2013) confirm
that the vertical velocity components are significantly larger
in tornadoes. Physical modeling efforts further suggest that
tornado-induced building pressures can be several times greater
than non-tornado wind pressures specified by current load
standards (e.g., Mishra et al., 2008; Haan et al., 2010). Haan
et al. (2014) emphasize the need for field investigations and
preservation of data sets to provide validation and calibration for

physical simulations of tornadoes. Comprehensive and accessible
damage data are likewise beneficial for the validation of tornado
risk models (Masoomi and van de Lindt, 2016; Peng et al., 2016;
Standohar-Alfano and van de Lindt, 2016), load models (Thampi
et al., 2011; Roueche et al., 2015; Koliou et al., 2017) and new
building code wind provisions (Ramseyer et al., 2016). The study
of tornado damage to buildings is of particular importance to the
estimation of tornado intensity, as building structures constitute
a majority of damage indicators (DIs) in the Enhanced Fujita
Scale (currently 23 of 28 DIs are building structures).

Case Study: Moore, OK
The Moore, Oklahoma, EF-5 tornado of 2013 damaged over
4,000 structures, producing a full range of damage levels (EF-0
to EF-5) to residential structures (Ortega et al., 2014). Pictometry
International (now EagleView Technologies) collected over
20,000 aerial (nadir and oblique) images of the affected area
during the 2 days immediately following the tornado. This survey
covered an area of 123 square miles and included vertical and
oblique images of each property (PropertyCasualty360, 2013).
Atkins et al. (2014) collected over 1,100 aerial photographs with a
digital single-lens reflex camera from a Cessna 172 aircraft 2 days
after the tornado. Atkins’ team assigned EF-Scale damage values
to more than 4,000 structures using the NationalWeather Service
EF Kit (LaDue and Mahoney, 2006) and compared their dataset
of EF-Scale values for consistency with an independent ground
survey of the Moore tornado conducted by teams affiliated with
the U.S. National Weather Service (Burgess et al., 2014).

Low-Level Aerial Imaging
Low-level aerial surveys can also prove advantageous for
building-level (and city-block sized) surveys, particularly for
small, non-major events of interest (where NOAA aerial imaging
may not be deployed) and/or where access is limited or restricted.
The authors commissioned the Aerial Oklahoma Corporation
to obtain low-level (5-cm) aerial images of major buildings at
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FIGURE 10 | Low-level (5-cm) aerial imagery of metal building structures

damaged by the EF-3 tornado at the Halliburton Oilfield Services facility outside

Pampa, TX, in November 2015. (Image Credit: Authors/Aerial Oklahoma Inc.).

the Halliburton industrial facility that was severely damaged by
an EF-3 tornado in November 2015. Due to safety and liability
concerns, the property managers restricted site access; however,
the authors were permitted to obtain damage information
remotely (from overhead and/or aerial platforms and from the
fence lines). Figure 10 shows an example of 5-cm imagery
for individual buildings at the Halliburton facility. The image
resolution is sufficiently fine to observe global failure patterns for
overall structures and even for some larger structural members.

Unmanned Aircraft Systems (Per-Building
Scale)
Adams et al. (2014) detail the recent use of UASs for collection
of building-level damage data for earthquakes, hurricanes, and
tornadoes. Of particular interest here is the case study of the
use of a UAS platform to obtain sub-centimeter still images as
well as video imagery [from a height of ∼20m above ground
level (AGL)] for damage to structures from the 2012 EF-3
tornado in Athens and Harvest, AL. Through the use of a
UAS platform and the resulting imagery, the research team
was able to identify specific construction materials, building
condition, failure mechanisms, and even failure sequences for

specific structures. Womble et al. (2016) utilized UAS platforms
to view additional buildings at the Halliburton facility; the
UAS was particularly helpful for viewing the interior of the
building shown in Figure 11 at an altitude of ∼80 feet AGL. It
revealed the presence of an overhead crane system within the
building that gave the building additional lateral support, and
therefore additional lateral wind resistance than would ordinarily
be assumed by use of the metal building system damage indicator
from the current Enhanced Fujita Scale.

Ground-Based Lidar
With the ability to supply sub-cm spatial resolutions,
ground-based (also known as terrestrial or stationary) lidar
(GBL) systems may be used to provide three-dimensional
damage information at either the per-building level or the
member/connection level. Given the time and expense required
to obtain a set of scans (generally 4–6 or more scans with ∼8–
15min per scan), the present operational use of GBL appears to
be most effective for the Tier 4 level rather than for determining
damage at the per-building level. Investigations utilizing GBL
for Tier 3-type analyses (e.g., Kashani et al., 2014, 2015, 2016;
Kashani and Graettinger, 2015) demonstrate that lidar-based
wind damage signatures can be correlated with wind speeds
estimates from other (independent) sources, such as the EF Scale;
in such applications, the lidar data are used to arrive at a general
damage state without considering member damage at the Tier 4
level. It is notable that such correlations of damage states with
independently determined wind speeds may also be similarly
achieved with Tier 3 photographic images, as shown by Brown
et al. (2012) and (Thomas et al., 2012, 2014); such damage states
depend on the overall performance of a structure or portions of
a structure and are not necessarily assessed based on member
deflections (Tier 4).

Complementary Uses of Photogrammetry
and Lidar for Point Cloud Analysis
Techniques
Modern photogrammetry techniques offer the ability to produce
point clouds from handheld digital cameras and UAS platforms
with onboard cameras, with a distinct advantage being the much
faster possibility for data acquisition as compared to GBL systems
(minutes as opposed to hours). Zhou et al. (2016) examined
mobile-platform digital photogrammetric (DPG) techniques and
mobile lidar platforms and found that these mobile platforms
facilitated damage assessments consistent with >1 cm pixel
size (Tier 3). Lidar scanning equipment is relatively costly
and requires more time for data acquisition; however, later
processing of acquired lidar data into a 3D point cloud is
relatively fast and straightforward. DPG requires relatively low-
cost digital camera equipment and software, using an advanced
computer vision technique known as Structure-from-Motion
(SfM). DPG has found widespread use in vehicle and aircraft
crashes (Jurkofsky, 2015; Osman and Tahar, 2016) and crime
scene investigations (Buck et al., 2013); many such investigations
are also now complementary with lidar scanners. Limited
comparative studies indicate that DPG or SfM and lidar data
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FIGURE 11 | UAS-based imagery of metal building structures damaged by the EF-3 tornado at the Halliburton Oilfield Services facility outside Pampa, TX, in

November 2015. (Image Credit: R. L. Wood).

are, in general, complementary for common applications at the
per-building (Tier 3) level (Stal et al., 2013; Gneeniss et al., 2015;
Jurkofsky, 2015; Kedzierski and Fryskowska, 2015), though lidar
may exhibit slightly better accuracy (Szabo et al., 2016) with less
noise and thus may be most optimally used for limited collection
of high-resolution data where sub-centimeter information (e.g.,
member deformations—Tier 4) are desired.While vehicle crashes
and wind-damage investigations both require rapid evidence
preservation, the spatial extent of the wind damage is typically
far more immense (by orders of magnitude), highlighting the
time required to collect evidence for each of numerous individual
structures as well as the need to balance the breadth (DPG)
and depth (lidar) of data-acquisition capabilities. DPG data
acquisition is relatively quick and can be accomplished by static,
walking, driving, or low-level aerial surveys. Data processing
into the 3D point cloud requires more computational time, and
overall results are expected to have slightly lower accuracy than
ground-based lidar scanning for observing member sizes and
deflections, making such data a good candidate wherever cm-
(rather than mm-) level accuracy and resolution (e.g., GSD) is
sufficient at Tier 3. To streamline the investigation of tornado-
damaged structures enhanced by reality capture, optimized
strategies for collecting pertinent data with these complementary
platforms are required to achieve an optimal balance (depth vs.
breadth) of damage evidence within Tier 4.

Semi-Automated Damage Assessments
In an operational capacity, remote-sensing-based damage
assessments are presently pursued using a mixture of semi-
automated algorithms visual assessments. Notable progress has
been made in the pursuit of automated wind damage assessments
for large, simple-form industrial buildings and single-family
residences (the highest percent of structures). To date, semi-
automated assessments of wind damage have been achieved
in research applications, while operational damage assessment
using remote-sensing imagery remains predominately reliant on
visual assessments, as robust damage assessment algorithms have
been slow in development and verification (Ghosh et al., 2011;
Thomas et al., 2014; Womble et al., 2016).

Rapid assessment of damage requires the ability to utilize first-
available imagery, which may encompass a variety of spatial and

spectral resolutions. Automated change detection using before-
and-after images from different platforms is aggravated by a lack
of spatial correspondence in pixels; hence, comparisons of objects
or features (pixel groups) are more effective than pixel-to-pixel
comparisons (Womble et al., 2007b). In the early development of
semi-automated damage assessment algorithms, Womble (2005)
identified remote-sensing signatures of wind damage for the four
most common building types: single-family residences, mobile
homes, metal warehouses, and industrial buildings with built-
up roofs; this study showed that wind damage has distinctly
different remote-sensing characteristics depending on building
type. For each type of building, progressive levels of wind
damage were described from a remote-sensing perspective.
Womble (2005) identified 4 distinct levels of damage for single-
family residences discernable in aerial and satellite images and
consequently formulated separate damage descriptions for each
of the building types. Subsequent researchers (Brown et al., 2012;
Luo et al., 2014a,b) have further refined these damage levels for
single-family residences by subdividing these original damage
levels into as many as 36 different levels. (Thomas et al., 2012,
2014) made additional strides toward automated remote-sensing
wind damage assessment for simple rectangular (commercial)
buildings damaged by hurricanes and the 2011 Joplin tornado
using moderate resolution imagery (50 to 1m). The resulting
algorithms predicted damage with an overall accuracy of 72 to
80% for simple-form buildings (such as rectangular warehouses).
Radhika et al. (2015) employed high-resolution, pre- and post-
event satellite data for the estimation of percent damage to
individual building structures, observing a correlation factor
of 0.78 between automatically identified damage and manually
(visually) identified damage.

Crowdsourcing and Citizen Science
In the absence of fully automated damage-assessment
quantification algorithms, “crowdsourcing,” (i.e., web-based
rapid visual assessments by a large number of interested and
semi-trained volunteers) provides a means of streamlining rapid
damage assessments that can prove useful for the proposed
project. Crowdsourcing was employed extensively for time-
sensitive remote-sensing analysis of the 2010 Haiti earthquake
(Ghosh et al., 2011; Bevington et al., 2015; Glasscoe et al., 2016)
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and showed similar promise for use in wind-related disasters.
Commercial satellite image providers also began providing open-
access satellite imagery for areas affected by natural disasters
such as Hurricanes Patricia (2015), Matthew (2016), and Harvey
(2017), for use in organized crowdsourcing efforts such as the
Tomnod Project (DigitalGlobe, 2017). It is anticipated that such
crowdsourcing efforts will also help to streamline large-scale
quantification of damage for major, widespread tornado events
which can assist in damage assessments as well as advance the
field of “citizen science” or “citizen engineering.” (Potential
drawbacks to citizen science and citizen engineering stem from
the fact that may of the participants are only partially trained;
as a result, damage metrics often utilize multiple detectors to
eliminate false positives or erroneous selections).

MEMBER-CONNECTION LEVEL (TIER 4)

Overview
The most recent advances in remote-sensing technologies
now enable the detection and analysis of damage, as well
as the preservation of damage evidence, at the individual
member-connection level via non-contact methods enabling
measurements from a safe distance—especially helpful when
access is prohibited, restricted, difficult, and/or dangerous.
With sub-centimeter resolutions, these technologies facilitate the
measurement of deflections for individual structural members
and cladding panels. Such measurements are critical for the
calibration and/or validation of structural analysis models aimed
at the back-calculation of (estimated) tornado wind speeds based
on damage to structures.

Lidar Technology
Lidar technology, an active remote sensing technique, has
rapidly progressed and proven highly effective for the rapid
collection of 3D scene-condition information from both mobile
and stationary platforms. Terrestrial (stationary) 3D lidar (or
laser) scanners provide the means to rapidly obtain accurate
and measurements of structures from a distance, enabling
investigators to obtain measurements of member sizes and
deformations that would not otherwise be possible due to issues
with safety, access, and time. Systems typically offer the added
benefit of supplemental full-color imaging to colorize the 3D
point cloud nodes for enhanced reality capture and visual
identification. Lidar has seen notable applications in detailed
analysis of earthquake and tsunami effects (Olsen et al., 2012;
Chock et al., 2013; Brando et al., 2015; Wood and Mohammadi,
2015; Bose et al., 2016; He et al., 2016) as well as storm-
surge actions (Hatzikyriakou et al., 2015). Lidar has also seen
use in the collection of recent tornado and hurricane damage
data (Prevatt et al., 2011, 2013; Graettinger et al., 2012; Wood
and Mohammadi, 2015; Womble et al., 2016; Kijewski-Correa
et al., 2018). Lidar provides copious amounts of 3D data for
damaged structures but, at present, is relatively slow compared
to other data-collection technologies; for optimal analysis of
widespread damage. Consequently, it has been strategic to use
lidar sparingly and strategically for carefully selected structures
(for which detailed forensic analysis can yield higher quality

information about tornado-induced loads) and to supplement
data collection for other structures with other technologies. This
is due to the time and planning required to collect lidar point
clouds of structures.

Unmanned Aerial/SfM Systems
One of the newer platforms for the remote sensing of
wind damage include unmanned aerial vehicles (UAV) with
payloads of digital and/or still cameras (making these into
unmanned aerial systems—UAS). UASs offer a number of distinct
advantages for the rapid acquisition of high-resolution damage
information for windstorms and other hazards over large areas
including mountainous terrains and urban centers (Moss et al.,
2015; Bose et al., 2016). UASs are available in a variety of
grades and user levels—ranging from the amateur/hobby level to
the commercial (near-survey-grade, real-time kinematics) level.
Early use of UASs in earthquake-damaged areas (Brando et al.,
2015; Wood and Mohammadi, 2015; Bose et al., 2016) has
proven the utility of UASs for damage data collection. UASs
are well-equipped for rapidly capturing wind damage data, as
they offer the advantage of overhead imaging at various altitudes
and with user-controlled imaging angles (nadir and off-nadir).
Overhead imaging has been found to be particularly well-suited
for detection and assessment of damage due to wind action, and
thus offer viewing angles generally superior to those which are
available for ground-based investigations (Womble et al., 2007a).
UASs also offer the advantage of user-configurable flight controls
from manual to fully-autonomous missions. “Remote pilots”
(operators) can direct a UAS in real time and observe conditions
of structures at extremely close range to the object or areas of
interest—from positions and view angles not otherwise available
due to accessibility or safety concerns (Murphy, 2015). UASs also
are well-suited for following linear tornado paths as they can be
controlled manually in real-time for exploratory investigations
of specific damage sites or pre-programmed to follow specific
autonomous flight plans, e.g., Miller, 2017. However, UASs are
unable to acquire data in high-wind conditions, and short battery
life can also provide obstacles for extended uses; the extents
of the limitations are specific to the selected UAS platforms.
UAS platforms are also well-suited as a cost-effective substitute
to aerial lidar platforms, using photogrammetric approaches
to construct 3D point clouds using a series of 2D images
through SfM algorithm (as detailed in section Complementary
Uses Of Photogrammetry and Lidar For Point Cloud Analysis
Techniques).

Unlike satellite imaging platforms, the application of UAS
platforms requires operators to travel to damage areas. However,
UAS platforms are less-limited by revisit times and atmospheric
conditions such as cloud cover and haze than are satellite-
imaging platforms. UASs can therefore collect data more
rapidly provided that investigators are able to travel quickly
to the damage site. UASs can also provide much finer spatial
resolution for detailed damage assessments, with sub-centimeter
ground sampling distances or pixel spacing. Given the proper
circumstances, UAS systems can often provide first-available
and highly-detailed damage information, e.g., Miller, 2017,
although legal and operational issues can hinder the timeliness
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of UAS-based acquisitions, as under the governance of the
Federal Aviation Administration (FAA) and other local agencies.
Commercial UAS flights in the U.S. are presently limited to
uncontrolled airspace, but permission is improving with the FAA
adoption of the Low Altitude Authorization and Notification
Capability (LAANC). Rapidly changing government restrictions
on the legal operation of UASs, e.g., requirements for pilot
certification of commercial UASs, restrictions on flight altitudes,
and line-of-sight (LoS) operations, may create some of the
primary hindrances to the most-efficient use of UASs for such
data acquisitions, e.g., beyond line of sight (BLoS).

Emphasis on Damage to Simple
Engineered Structures
Investigation of damage to simple engineered structures is of
particular interest, since the resistance of simple structures can
often be estimated, helping researchers to more fully understand
the load mechanisms producing failures (Lloyd’s of London,
2013). Such determination requires accurate measurement of
structural member sizes, which can be prohibitive due to time,
site access, and safety issues. Lidar and UAS geospatial data is
particularly well-suited to provide highly detailed forensic studies
of individual structural members, thereby leading to wind speed
estimates that can provide much-needed updates (or validations)
for the EF Scale.

Joplin, MO, Tornado Case Study (2011)
The 2011 Joplin, MO tornado damaged more than 8,000
residences. Tornado damage forced evacuation and demolition
of the St. John’s Regional Medical Center. Close inspection and
measurements were impractical due to its size and prohibitions
on site access, so inspection teams utilized ground-based lidar
scanning to rapidly obtain high-precision geometric data for
subsequent detailed forensic studies (Prevatt et al., 2013). The
resulting 3D point cloud enabled determination of elevations,
distances, lengths, and deformations, which could not otherwise
be rapidly or directly measured. Graettinger et al. (2012) also
employed lidar scanning to rapidly capture post-storm condition
data for residential buildings, institutional structures, terrain
features, and trees. In each case, lidar scanning was able to
obtain measurements that could not otherwise be obtained due
to accessibility constraints and time limitations.

Pilger, NE Tornado Case Study (2014)
A severe weather system in the U.S. Great Plains on June 16
to 19, 2014 produced more than 100 tornadoes, including two
EF-4 tornadoes near the small town of Pilger, NE. The historic
Wisner-Pilger Middle School was severely damaged (Figure 12).
Wood and Mohammadi (2015) deployed stationary terrestrial
lidar and a tethered UAV with an onboard camera to characterize
the damage to the exterior of the school. The lidar scanning
directly produced a 3D point cloud, while the UAS images
required further processing via SfM to reconstruct the scene
as a 3D point cloud. Using point clouds, the geometry and
textural details were captured, thereby enabling non-destructive
evaluation of potential damage (Wood and Mohammadi, 2015).
For this building, 11 exterior lidar scans and multiple UAS passes

were conducted to acquire 844 2D images for the SfM algorithm
that yielded a point cloud with sub-centimeter level details.
Figure 12 illustrates the resultant point cloud of the Wisner-
Pilger Middle School that is useful for future engineering analysis
and assessment. For this study, the performance of two different
roof systems was assessed. The light-gauge truss roof section
experienced a 50% failure rate compared to a failure rate for
rolled-steel W-section roof supports of only 6%.

Pampa, TX Tornado Case Study (2015)
An intense tornado outbreak produced at least 17 tornadoes
stretching across portions of the Texas Panhandle, Oklahoma,
and Kansas on November 16 and 17, 2015. The most intense of
these tornadoes (EF-3) severely damaged a group of engineered
structures at the HalliburtonOilfield Services facility near Pampa,
TX (Figure 13). The Halliburton facility contained numerous
types of engineered structures for which structural resistances
could be estimated, thereby enabling the estimation of tornado
wind speeds required to cause the observed damage. The tornado
also overturned nearby engineered center-pivot irrigation (CPI)
systems (Figure 14), which are common to many rural and
tornado-prone areas of the U.S. For safety and security concerns,
owners of the Halliburton facility made immediate plans to
demolish the damaged buildings and restricted all access to the
site; investigators were thus not able to make direct contact
measurements of structural member sizes and deformations to
permit resistance calculations. Engineering researchers (Womble
et al., 2016, 2017a,b; Mohammadi et al., 2017) were able to utilize
stationary terrestrial lidar and UAS platforms to acquire 3D data
of damaged structures from the property line. Primary structural
steel members of the pre-engineered metal buildings were visible,
so measurements of the member sizes could be utilized in
structural analysis models to validate or correct the wind speed
estimates for damage to pre-engineered buildings in the current
EF Scale. Lidar scanning as well as aerial imaging and UAS
imaging provided effective solutions for rapidly and accurately
preserving damage data for subsequent detailed forensic analysis.

Although direct access to the nearby CPI system was
possible, measurements of the overall structure (∼350m) and
deformations were most readily accomplished by lidar scanning
and UAS imaging. Scanning of this structure introduced a
unique challenge due to its length and geometry. Unlike typical
infrastructure-type structures (e.g., bridges and buildings), the
CPI structure does not have large or wide members. The
structure’s length and the lack of wide surfaces and shapes,
made the scanning plan and registration process particularly
challenging due to a non-closed traverse scan strategy. To achieve
this task, a total of six 225mm diameter retro-reflective sphere
targets were used within the 12 scans at a spacing of 35m. The
CPI was scanned at distances of roughly 10m with similar scan
settings to that of Halliburton facility, resulting in a point cloud
with an average point-to-point spacing of 1 cm. The resultant
point cloud contained ∼800 k points. The sphere targets were
used for an initial target-based registration which was later
refined using a cloud-to-cloud optimization process. The final
registration had a mean registration error of 21mm.
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FIGURE 12 | Tornado damage to Wisner-Pilger Middle School: ground-survey image (Left) and point-cloud imagery derived from lidar and SfM (Right), located at

Pilger, NE. (Image Credit: R. L. Wood/M. E. Ebrahim Mohammadi).

FIGURE 13 | UAS imagery (Left) and lidar point-cloud data of damaged Halliburton facility at Pampa, TX (Right). (Image Credit: R. L. Wood/M. E. Ebrahim

Mohammadi).

DISCUSSION AND RECOMMENDATIONS

Optimal Use of Sensors
Present-day tornado damage researchers are now equipped with

an immense and ever-expanding array of remote-sensing-based
platforms that enable them to rapidly and thoroughly obtain and
preserve damage conditions for detailed forensic studies. Such
studies can assist with the estimation of tornado wind speeds
and with gaining a better understanding of near-ground tornado
wind velocity and pressure distributions. There is an overlap

between sensors and the various levels of their applications. A
challenge is most effectively matching the sensor to the needs and
objectives for data acquisition, to best leverage equipment costs,
data collection times, and spatial resolutions for the information
that is required. Table 1 presents recommendations for optimal
use of various sensors according to the desired spatial scales.
With a view toward optimizing data collection in the wake of a
tornado by balancing time, equipment, personnel, and financial
resources, assessment of damage across a wide area may be
accomplished with satellite or aerial imagery, which can be
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FIGURE 14 | Lidar point-cloud data for overturned center-pivot irrigation system at Pampa, TX. (Image Credit: R. L. Wood/M. E. Ebrahim Mohammadi).

collected more rapidly and across a much larger area to give
a broader view of relative damage states. For instance, Prevatt
et al. (2011, 2013) describe an effective and comprehensive
strategy for field investigation of damage resulting from the
severe (EF 5) tornado outbreaks of 2011 in Tuscaloosa, AL,
and Joplin, MO. Investigators implemented a sampling strategy
with an existing three-tier approach leveraging data acquisition
speeds with various levels of detail, utilizing highly-detailed
lidar-scanning data for engineered buildings where damage and
failure mechanisms were of particular interest and where direct
measurements of member sizes and deformations were not
physically or practically possible. Particular attention should also
be given to the relatively newly available stationary terrestrial
lidar platform. The precision and detail offered by Tier 4 finds
perhaps its most optimal niche in the detailed modeling of
tornado failures at the member-deformation (sub-centimeter or
even millimeter level): in emphasizing depth rather than breadth
of damage (highly detailed damage for a few selected structures
rather thanmore general damage levels for structures throughout
a larger area). Due to relatively long scan times required to
canvass an affected area with Tier 4 data as opposed to Tier 3 data,
Tier 4 data are best reserved for strategically selected structures,
for which detailed forensic analysis can yield higher quality
information about tornado-structure interaction and induced
loads.

Remote Sensing Data for Enhanced
Understanding of Tornado Effects
The rapid preservation of detailed and perishable tornado-
damage scenes enables researchers to advance the understanding
of tornado effects by validating damage prediction models via
physical modeling, computer modeling, and other predictive
damage modeling (e.g., loss estimation and risk assessment
models). The optimal use of available sensors minimizes
collection times, costs, and efforts and also facilitates forensic
structural engineering investigations, whenever access is limited.
Data concerning the behavior of structures subjected to tornado
loads are valuable to engineers, atmospheric scientists, and wind-
hazard researchers, because the performance of these structures
under the extreme tornado-induced loads help to validate
(and/or correct) the wind speed estimates for the EF Scale.

TABLE 1 | Recommended optimal use of sensors by spatial scale.

Spatial scale Recommendation for

optimal sensor(s)

Tier 1 (Tornado Path) Earth-Observing Satellites

Aerial

Tier 2 (Neighborhood) Aerial

UAS

Commercial Satellites (sub-meter)

Mobile lidar

Tier 3 (Per-Building) UAS

Aerial (especially oblique)

Commercial Satellites

Digital Photogrammetry

Mobile lidar (some views limited)

Tier 4 (Member/Connection) Lidar

UAS

Digital Photogrammetry

Due to the scarcity of direct measurements, the EF Scale has
thus necessarily relied upon wind speeds estimates based on
common damage indicators (e.g., trees, signs, light poles, and
buildings). The majority of these damage indicators are situated
in urban or forested areas, while damage indicators in rural
areas remain scarce. For accurate populating of the national
tornado database (necessary for risk assessments for engineering
design and insurancemodeling), it is necessary to obtain intensity
information for all tornadoes: including urban and rural settings.
Damage information for new damage indicators can be obtained
using the above-mentioned platforms.

Remote Sensing in the Development of
Tornado Wind Speed Standards
The inclusion of tornado effects in design standards currently
varies throughout the world, understandably due to limited
knowledge concerning near-ground tornado wind speeds and
tornado-structure interactions. Guidance for tornado effects
now lags far behind the guidance for hurricane effects in
wind loading standards. The 2011 National Building Code of
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Canada has made significant forward strides in the inclusion
of tornado effects based on historical records and statistical
projections (Sills, 2012; Sills et al., 2012). Although tornado load
effects are not yet formally addressed in U.S. wind load and
governing design code standards, Huang et al. (2016) describe
a path for eventual inclusion of tornado loads in building
code design: the process integrates the study of comprehensive
tornado wind fields using atmospheric observations, numerical
and physical simulations of tornado wind fields, and detailed
structural analysis. NIST (2014a) recommends the continued
exploration of remote-sensing technologies for post-storm
damage investigations and field measurements to help validate
windborne debris models as part of a comprehensive plan to
change the current state of engineering practice to “improve
life safety, reduce property damage, and improve the resiliency
and sustainability of communities.” Insurance industry leaders
(Lloyd’s of London, 2013) further emphasize the need for detailed
studies of tornado damage to engineered structures to more
fully understand the load mechanisms producing failures. The
thorough preservation and detailed analysis of such damage is
of particular significance given the relatively rare instances of
tornadoes striking engineered structures compared to residential
structures.

Remote-sensing technologies at a variety of geospatial scales
offer various means for advancing the development of tornado
wind load standards, including the improvement of regional
tornado climatology for risk analysis by more thoroughly
capturing all tornado occurrences (Tier 1), the advanced
understanding of ground-level tornado wind fields (Tier 2), and
an improved understanding of tornado-structure interactions
and tornado wind speeds (Tiers 2–4).

An active joint effort of the American Society of Civil
Engineers Structural Engineering Institute, the American
National Standards Institute, and the U.S. National Weather
Service seeks to significantly improve the accuracy of tornado
wind estimates and the Enhanced Fujita (EF) Scale through
the forthcoming ASCE Standard for Tornado Wind Speed
Estimation (Lombardo et al., 2015a). Remote sensing of
damage and the archiving of data for future analyses have

received detailed and methodical attention since 2004, as new
technologies and algorithms have become available (Womble
et al., 2016) and play a critical role in the newASCE standard. The
Remote Sensing Subcommittee (of which authors JAW and RLW
are leaders) is responsible for establishing accepted practices
for assessment of damage to individual Damage Indicators
and determination of tornado tracks using remote-sensing
technologies.
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