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Viral infections trigger the innate immune system to produce interferons (IFNs), which
play important role in host antiviral responses. Co-evolution of viruses with their hosts
has favored development of various strategies to evade the effects of IFNs, enabling
viruses to survive inside host cells. One such strategy involves inhibition of IFN signaling
pathways by non-structural proteins. In this review, we provide a brief overview of
host signaling pathways inducing IFN production and their suppression by picornavirus
non-structural proteins. Using this strategy, picornaviruses can evade the host immune
response and replicate inside host cells.

Keywords: IFNs, picornaviruses, non-structural proteins, immune evasion, signaling pathways

INTRODUCTION

Picornaviruses are small, non-enveloped, positive-strand RNA viruses that infect diverse
animal and human hosts (Ehrenfeld et al., 2010; Feng et al., 2014b). As one of the largest
viral families, picornaviruses contain 31 genera and 54 species, including cardioviruses [e.g.,
encephalomyocarditis virus (EMCV) and Theiler’s virus (TEV)], enteroviruses [e.g., enterovirus
71 (EV71); poliovirus (PV); coxsackievirus (CV); and rhinovirus (RV)], hepatitis A virus (HAV),
and foot-and-mouth disease virus (FMDV) (Feng et al., 2014b). Picornavirus genomes are single-
stranded RNAs (7,000 to 9,000 nucleotides in length) which consist (from 5′ to 3′) of a 5′
untranslated region (UTR), a single open-reading frame (ORF), a 3′ UTR, and a poly(A) tail
(Figure 1; Feng et al., 2014b). The ORF is translated into a polyprotein, which is processed by viral
proteases into structural proteins (VP1–VP4) and non-structural proteins (2A, 2B, 2C, 3A, 3B, 3C,
and 3D pro, and in some genera, L pro). Structural proteins are used to assemble viral capsids
whereas non-structural proteins replicate the genomic RNA in conjunction with cell proteins
(Argos et al., 1984; Buenz and Howe, 2006; Ehrenfeld et al., 2010).

Interferons (IFNs) which play important roles in regulation and activation of host immune
responses, were first discovered by Isaacs and Lindenmann in 1950s (Isaacs and Lindenmann, 2015;
Klotz et al., 2017). IFNs are classified into three categories according to their antiviral activities,
genetic, structural and functional features and their cognate receptors (Nagano and Kojima, 1954):
type I (IFN-α, IFN-β, IFN-δ, IFN-ε, IFN-ζ, IFN-κ, IFN-τ, and IFN-ω), type II (IFN-γ) (Klotz
et al., 2017), and type III (IFN-λ1 or IL-29, IFNλ-2 or IL-28A, IFNλ-3 or IL-28B, and IFN-λ4)

Frontiers in Microbiology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 2943

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.02943
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.02943
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.02943&domain=pdf&date_stamp=2018-12-11
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02943/full
http://loop.frontiersin.org/people/567908/overview
http://loop.frontiersin.org/people/591511/overview
http://loop.frontiersin.org/people/578257/overview
http://loop.frontiersin.org/people/545017/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02943 December 7, 2018 Time: 16:19 # 2

Wang et al. Non-structural Proteins of Picornaviruses Inhibit IFNs

FIGURE 1 | The viral genome is a single-stranded(ss) RNA, encoding a single open reading frame (ORF), an untranslated region (UTR) at either terminus, and a
poly(A) tail at the 3′ end. The ORF is translated as a polyprotein, which is processed by viral proteases to release the structural proteins (VP1-4) needed to assemble
virus capsids, and the non-structural proteins (2A-2B-2C-3A-3B-3C-3D pro and in some genera Lpro).

(Schroder et al., 2004; Gonzáleznavajas et al., 2012). Type I IFNs
typically have antiviral effects and are the most broadly expressed,
well-known antiviral IFNs. Although type I IFNs can be secreted
by most parenchymal cells, the main type I IFN producer is
plasmacytoid dendritic cell (pDC) (Coccia and Battistini, 2015;
Kindler et al., 2016). Type II IFN is produced by activated
T cells and NK cells and predominantly induce macrophage
activation stimulating their activity against ingested intracellular
non-viral pathogens (Coccia and Battistini, 2015). Type III IFNs
are produced by epithelial cells, leukocytes, intestinal eosinophils
and pDCs (Ank et al., 2006; Hillyer et al., 2012; Raki et al., 2013;
Hernandez et al., 2015; Mahlakoiv et al., 2015; Pervolaraki et al.,
2017). Type III IFNs are similar to type I IFNs, and also play roles
in regulating the host antiviral response (Reid and Charleston,
2014; Kindler et al., 2016).

Viruses develop various strategies to inhibit secretion of
IFNs and promote viral replication inside host cells. Mounting
evidence shows that infecting viruses can evade IFN response
either by suppressing IFN production or by blocking IFN
induction of interferon-stimulated gene factors (ISGs) (Zinzula
and Tramontano, 2013; Fensterl et al., 2015). Viral non-structural
proteases play an important role in this process. In this review,
we summarize our current knowledge of the role of picornavirus
non-structural proteases in antagonizing IFN induction via
different signaling pathways to inhibit host antiviral responses.

SIGNALING PATHWAYS INDUCING IFN
PRODUCTION

When viruses infect organisms, the host innate immune system
detects the presence of pathogen-associated molecular patterns
via host pattern recognition receptors (PRRs) (Vaccari et al.,
2014; Coccia and Battistini, 2015). These include transmembrane
PRRs such as Toll-like receptors (TLRs), cytosolic RIG-like
RNA helicases such as melanoma differentiation-associated gene
(MDA-5), retinoic acid induced gene-I (RIG-I), and other
molecules (Barbé et al., 2014; Wu and Chen, 2014). PRRs recruit
a number of specific adaptor proteins to trigger a downstream
signaling cascade and activate three major pathways to produce
IFNs: the nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) (Coccia and Battistini, 2015), the mitogen-
activated protein kinase (MAPK), and the IFN regulatory factor
(IRF) pathways (Akira et al., 2006; Honda and Taniguchi, 2006).
IFNs can signal in an autocrine or paracrine manner to induce
hundreds of ISGs that fortify host defenses (Figure 2; Pham et al.,
2016).

Induced IFNs exert their activity by binding and activating
IFN receptors. Type I IFN receptors are composed of interferon-
α/β receptors 1 and 2 subunits (IFNAR1 and IFNAR2) (Olière
et al., 2011). Type III IFNs receptors are composed of two
different chains, the IFN-λR1 high-affinity chain and IL-10R2
low-affinity chain (Chasset and Arnaud, 2017). The binding
of type I IFNs with its receptor leads to the phosphorylation
of Janus kinase1 (JAK1) and tyrosine kinase 2 (TYK2). These
activated kinases then phosphorylate STAT1 and STAT2 and
promote STAT1 and STAT2 heterodimerization. The resulting
heterodimer interacts with IRF9 to form a heterotrimeric
complex called interferon-stimulated gene factor 3 (ISGF3)
(Peng et al., 2017). This complex then translocate to the
nucleus and binds a 12–15 bp IFN-α/β-stimulated response
element (ISRE’ 5′-G/ANGAAAN2GAAACT-3′), which regulates
the transcription of over 300 IFN-stimulated genes, some
of which lead to IFN-α and IFN-β expression (Figure 2).
Type III IFNs have almost the same process with that of
type I IFNs (Blaszczyk et al., 2016; Chasset and Arnaud,
2017).

Type II IFN receptor is composed of two subunits, IFNGR1
and IFNGR2. After the binding of IFN-γ proteins to IFNGR,
STAT1 homodimers is formed and bind to IFN-γ-activated
site (GAS) enhancer elements with the help of the promoters
of IFN-stimulated genes resulting in the production of genes
encoding pro-inflammatory cytokines and apoptotic factors.
Furthermore, IFN-γ can also activate STAT3 homodimers,
which result in the production of pro-inflammatory cytokines
and anti-inflammatory cytokines IL-10 (Gonzáleznavajas et al.,
2012).

In addition, macrophage recognition of virions induces
the secretion of IL-12, IL-18 and other cytokines (Platanias,
2005; Capobianchi et al., 2015). IL-12 binds to the receptor
complex consisting of IL12Rβ1 and IL12Rβ2, stimulating NK
cells and instigating a signaling cascade that induces STAT4
phosphorylation leading to IFN-γ synthesis (Lertmemongkolchai
et al., 2001; Capobianchi et al., 2015). IL-18 stimulates the
full activity of NK cells to secrete IFN-γ in response to IL-12
stimulation (Muhlethaler-Mottet et al., 1998; Lykens et al., 2010).

Although type III and type I IFNs share many similarities in
their promoter regions and binding sites for transcription factors
(Onoguchi et al., 2007; Segundo et al., 2011), for instance, IFN-
β and IFN-λ1/2/3 promoters contain IRF- and NF-kβ-binding
sites; IFN-α promoters have IRF-binding sites (Iversen and
Paludan, 2010; Durbin et al., 2013; Reid and Charleston, 2014),
the expression of type III and type I IFNs is regulated through
different mechanisms (Numasaki, 2009). For example, type III
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FIGURE 2 | The overview of picornavirus non-structural proteins suppress the production of IFNs. When viruses infect organisms, the host innate immune system
detects the presence of pathogen-associated molecular patterns via host pattern recognition receptors, then recruit a number of specific adaptor proteins to trigger
a signaling cascade leading to the establishment of an antiviral state based on IFN and proinflammatory cytokines induction. The green arrays represent observations
that have yet to be associated with a specific mechanism of action of the production of IFNs. The scissors illustrate the inhibition of viral non-structural proteins in the
production of IFNs.

interferons are produced mainly by antigen-presenting cells
and epithelial cells (Chasset and Arnaud, 2017), while the
major cell type responsible for type I IFN production is the
pDC (Mackern-Oberti et al., 2015; Chasset and Arnaud, 2017).
Type I IFNs are induced by mitochondrial-associated MAVS,
whereas type III IFNs are stimulated by peroxisome-associated
MAVS (Odendall et al., 2014). In addition, IRF1 plays a
unique role in type III IFN induction while IRF3 and IRF7
play vital roles in type I IFN production (Österlund et al.,
2007).

PICORNAVIRUS NON-STRUCTURAL
PROTEINS INHIBIT IFN PRODUCTION
TO COUNTERACT HOST ANTIVIRAL
RESPONSES

While the host secretes IFNs to defense against viral infection,
viruses have also developed effective immune evasion
mechanisms to counteract the host’s antiviral responses.
Numerous studies have demonstrated that picornavirus
proteases can cleave adaptors, receptors and regulators involved
in the signaling pathways controlling IFN induction to inhibit
production of type I IFNs (Wang et al., 2012; Lei et al., 2013).
Besides, picornavirus non-structural proteins play important
roles in the suppression of IFNs by down-regulating host
gene expression and blocking the secretory pathway (Table 1).

However, in some picornaviruses, cooperation between non-
structural proteins leads to inhibition of IFN induction (Sim
et al., 2005; Chase and Semler, 2012).

Lpro
Lpro of FMDV
Foot-and-mouth disease virus Lpro is a kind of papain-like
cysteine protease, which was first identified by Strebel and Beck
(1986). FMDV’s RNA genome encodes a polyprotein, Lpro is
located near its N-terminus (residue ∼2330) and there are two
forms of FMDV Lpro, Laboratory (201 aa) and Lb (173 aa)
(Kirchweger et al., 1994). FMDV infection selectively induces
IFN-α1 mRNA, and IFN-β mRNA levels become elevated only
after a significant duration of infection (24 h) (de Los Santos
et al., 2006). By inhibiting IFN production (including type
I and type III IFNs) at the transcriptional and translational
levels, FMDV Lpro down regulates the host innate immune
response to FMDV infection. FMDV Lpro can repress IFN-
β transcription by reducing IFN-stimulated gene products (Li
D. et al., 2016) decreasing IFN-β mRNA levels during early
infection and inhibiting activation of NF-κB via degradation of
the NF-κB subunit p65/RelA and ubiquitination of RIG-I, TBK1,
and TRAF3/6, resulting decreased IRF-3/7 protein expression (de
Los Santos et al., 2007; Wang et al., 2011). Additionally, Lpro
contributes to induce the cleavage of host eukaryotic translation
initiation factor 4γ (eIF4G) (Devaney et al., 1988; Belsham et al.,
2000), shutting off host cap-dependent mRNA translation, thus
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TABLE 1 | Main signaling pathways in suppressing the production of IFNs of non-structural proteins in some picornaviruses.

Non-structural
Proteases

Virus Involved signaling pathways/structure Type of IFN Reference

Lpro FMDV Cleaving eIF4G, shutting off host cap-dependent mRNA translation,
limiting the synthesis of host proteins

Type I IFNs Devaney et al., 1988;
Belsham et al., 2000;
de Los Santos et al.,
2006

Degrading NF-κB subunit p65/RelA, ubiquinating RIG-I, TBK1, and
TRAF3/6, decreasing IRF-3/7, inhibiting NF-κB

IFN-β de Los Santos et al.,
2007; Wang et al.,
2011

Via Lpro’s catalytic activity and SAP domain IFN-λ1 Wang et al., 2011

Disrupting NF-κB and IRF via RIG-I/MDA5 IFN-λ1 Shi et al., 2011; Wang
et al., 2011

EMCV Lpro hinge domain interacting with Ran and disrupting the Ran
GDP-GTP gradient, inhibiting nucleocytoplasmic transport

Unclear Porter et al., 2006; Ma,
2007; Bacotdavis and
Palmenberg, 2013

Interfering IRF3 IFN-α/β Hato et al., 2010

TMEV Inhibiting IRF-3 dimerization IFN-β Stavrou et al., 2010

2A EV71 Cleaving MAVS and MDA5, preventing IRF3 phosphorylation Type I IFNs Feng et al., 2014a

Inhibiting induction of downstream IFN-stimulated genes, the
detailed mechanism is controversial

Unclear Lu et al., 2012; Liu
et al., 2014

Downregulating KPNA1, reducing formation of the
STAT/karyopherin-α1 (KPNA1) complex

Unclear Wang et al., 2017

Reducing serine phosphorylation of STAT1 and inactivating
extracellular signal-regulated kinases

IFN-γ Morrison and
Racaniello, 2009

RV Cleaving MAVS Unclear Mukherjee et al., 2011

CVB3/PV Cleaving MAVS and MDA5 Type I IFNs Feng et al., 2014a

2B HAV Influencing MAVS function IFN-β Ashutosh et al., 2015

Interfering TBK1/IKKε kinase complex, inhibiting RIG-I/MDA-5 and
IRF3

IFN-β Paulmann et al., 2008

2C EV71 Inhibiting IKKβ phosphorylation and NF-κB activation via PP1
binding NF-κB

Unclear Zheng et al., 2011;
Li Q. et al., 2016

Suppressing p65/p50 dimerization by competing p65 IPT domain,
suppressing the activation of NF-κB

Unclear Du et al., 2015

CVA16/CVB3 Inhibiting IKKβ phosphorylation and NF-κB activation via PP1
binding

Unclear Paulmann et al., 2008;
Du et al., 2015

3A FMDV Reducing expression of MDA5, RIG-I and VISA by decreasing their
mRNA levels, inhibiting RLR pathway

IFN-β Li D. et al., 2016

3C EV71 Cleaving TRIF and TBK1, inhibiting TLR3 and RIG-I, preventing
activation of IRF3 and IRF7

IFN-β Lei et al., 2010

Inhibiting IRF7 and IRF9 Type I IFNs Hung et al., 2011; Lei
et al., 2013

Cleaving TAK1/TAB1/TAB2/TAB3 complex, NF-κB Unclear Lei et al., 2014

Binding with RIG-I, impairing RIG-I’s interaction with MAVS Type I IFNs Xu et al., 2014

CV-A16,
CV-A6, EV-D68

Cleaving TAK1 to inhibit the NF-κB response Unclear Rui et al., 2017

Binding with MDA5, inhibiting the interaction with MAVS Type I IFNs Rui et al., 2017

CVB3 Cleaving MAVS and TRIF Type I IFNs Mukherjee et al., 2011

EMCV Cleaving TANK, disrupting the formation of the
TANK–TBK1–IKKε–IRF3 tetramer, decreasing TBK1- and
IKKε-mediated IRF3 phosphorylation, impairing the ability of TANK
to inhibit TRAF6-mediated NF-κB signaling

Type I IFNs Huang et al., 2015,
2017

Blocking formation of SG Unclear

Cleaving IRF3-5D, inhibits JAK-STAT signaling Type I IFNs

Suppressing STAT1 or IRF3 binding to the IFN-β promoter Type I IFNs

FMDV Cleaving NEMO Unclear Zhao et al., 2007

Cleaving TANK, generating a 15-kDa N-terminal fragment and
impairing TANK’s ability to suppress TRAF6-mediated NF-κB
signaling

Unclear Fan et al., 2017

(Continued)
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TABLE 1 | Continued

Non-structural
Proteases

Virus Involved signaling pathways/structure Type of IFN Reference

Suppressing IRF3 by degrading autophagy-related protein
ATG5-ATG12

Unclear Fan et al., 2017

Degrading KPNA1, blocking STAT1/STAT2 nuclear translocation Unclear Du et al., 2014

SVV Cleaving MAVS, TRIF, and TANK Type I IFNs Qian et al., 2017

Reducing the expression of IRF3 and IRF7 and phosphorylating
them

IFN-α1, IFN-α4,
and IFN-β

Xue et al., 2018

HAV Cleaving MAVS Type I IFNs Yang et al., 2007

Cleaving NEMO Unclear Wang et al., 2014; Xu
et al., 2014

Inhibiting NF-κB activation through cleavage of the
TAK1/TAB1/TAB2/TAB3 complex

Unclear Lei et al., 2013, 2014

3ABC HAV Cleaving MAVS and disrupts activation of IRF3 through the RLR
pathway

Unclear Yang et al., 2007;
Debing et al., 2014

3CD Disrupting RIGI/MDA5, inhibiting dimerization of IRF-3 and
translocation of IRF-3 to the nucleus

IFN-β Qu et al., 2011

3D EV71 Attenuating STAT1 tyrosine phosphorylation IFN-γ Wang et al., 2015

limiting the synthesis of host proteins (de Los Santos et al., 2006),
which may possibly include type I IFNs.

Foot-and-mouth disease virus Lpro also antagonizes IFN-λ1:
Lpro’s catalytic activity and SAP domain are involved in the
suppression of IFN-λ1 induction (Wang et al., 2011). In addition,
by disrupting activation of NF-κB and IRFs and inhibiting IFN-
λ1 expression induced by RIG-I/MDA5, FMDV Lpro inhibits
IFN-λ1 promoter activation (Wang et al., 2011).

Lpro of Cardiovirus
Cardiovirus polyproteins begin with short N-terminal Leader
(L) sequences, EMCV Lpro (∼67 residues) and TMEV Lpro
(∼76 residues) contains common zinc-finger and acidic
domains. Although cardiovirus Lpro is different from FMDV
Lpro and does not function as a protease, it represses
IFN-α/β synthesis during viral infection. In eukaryotes,
nucleocytoplasmic transport of RNA and protein relies on
the Ran-GTPase system. EMCV Lpro directly interacts with
Ran and disrupts the RanGDP-GTP gradient leading to
inhibition of nucleocytoplasmic transport (Porter et al., 2006;
Ma, 2007), suppressing the production of IFN. EMCV Lpro
hinge domain plays a major role in the interaction with Ran
GTPase (Bacotdavis and Palmenberg, 2013). EMCV Lpro
interferes with the transactivation function of IRF3 suppressing
IRF3-mediated IFN-α/β production (Hato et al., 2010). Studies
have demonstrated that TMEV Lpro can block the production
of type I IFN at the transcriptional level (Van et al., 2001), this
transcriptional inhibition is correlated with inhibition of IRF-3
dimerization (Ricour et al., 2009).

2A
2A of Enteroviruses
Enteroviruses 2A has protease activity (Racaniello, 2007), which
can not only process the viral polyprotein (Toyoda et al., 1986),
but also cleave a variety of host proteins and inhibit the host
translation whose function is quite similar to Lpro in FMDV.

Enterovirus 71 2A cleaves MAVS from the outer membrane
of mitochondria. The cleaved fragments are released into the
cytoplasm where they effectively inactivate downstream signaling
and cleave MDA5, thus preventing IRF3 phosphorylation,
down regulating production of type I IFNs and increasing
viral replication (as it was shown in Figure 2; Wang et al.,
2013). During this process, EV71 2A cleaves at MAVS residues
Gly209, Gly251, and Gly265, with a strong preference for
cleavage at Gly251 (Wang et al., 2013). Similarly, Rhinovirus 2A
inhibits the production of IFN by cleaving MAVS (Mukherjee
et al., 2011). CVB3 (coxsackievirus B3) 2A and poliovirus
(PV) also mediate the cleavage of MAVS and MDA5, exerting
the same functions in inhibiting type I IFNs (Feng et al.,
2014a).

Enterovirus 71 can still inhibit induction of downstream IFN-
stimulated genes, although the mechanisms of EV71 disruption
of IFN signaling have been controversial. Lu et al. (2012)
reported that EV71 2A acted as an IFN antagonist and that its
protease activity was required for reduction of IFNAR1 levels. By
reducing IFNAR1, EV71 inhibits IFN-mediated phosphorylation
of Tyk2, Jak1, STAT1, and STAT2. However, Liu et al. (2014)
reported that EV71 infection down regulated expression of
JAK1 but did not modify expression of IFNAR1. KPNA1 is
a nuclear localization signal receptor for p-STAT1. A recent
study reported that EV71 infection down regulated expression
of KPNA1, reducing the formation of STAT/karyopherin-α1
(KPNA1) complex and resulting reduction of the IFN (Wang
et al., 2017).

Enterovirus 71 2A attenuates IFN-γ signaling using a
mechanism that is different from type I IFNs. 2A can suppress
IFN-γ signaling by reducing serine phosphorylation of STAT1
and inactivating extracellular signal-regulated kinases without
affecting STAT1 expression (Wang et al., 2015). EV71 2A alters
signal transduction of type II IFNs without affecting the protein
expression of IFN-γ.

Other genera picornaviruses, such as EMCV, do not
encode 2A proteinase. They are sensitive to IFN and are
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unable to replicate in IFN-pretreated cells. Their 2A might
not have function on evading the host immune response
(Morrison and Racaniello, 2009).

2B
2B of HAV
Hepatitis A virus 2B is a peripheral membrane protein, its coding
region has variants (Emerson et al., 1991, 1992, 1993), which
makes it significantly larger than 2B in other picornaviruses. HAV
2B was found in close vicinity to the tubular interconnected
network of mitochondrial membranes through its ability induce
membrane rearrangements resulting in the influence of the
production of IFNs (Gosert et al., 2000). HAV 2B suppresses
MAVS signaling more effectively with the cooperation of HAV
3ABC (Ashutosh et al., 2015). HAV 2B appears to influence
MAVS function without directly affecting the antigenic structure
of MAVS (Paulmann et al., 2008); it also interferes with
the TBK1/IKKε kinase complex. Consequently, RIG-I/MDA-5-
mediated activation is inhibited and inhibition of IRF-3 signaling
results in efficient suppression of IFN-β synthesis (Paulmann
et al., 2008).

2C
2C of Enteroviruses
Enteroviruses 2C (329 aa and 37.5 kDa), such as EV71 and
CVA16 2C ATPase, is not only an RNA helicase but also an
ATP-independent RNA chaperone, which is critical for RNA
replication and viability of enteroviruses (Xia et al., 2015; Guan
et al., 2017). EV71 2C is localized both to the cytoplasm and
the nucleus. EV71 2C interacts with protein phosphatase 1 (PP1)
catalytic subunit through PP1-docking motifs (residues 1 to
47) located near the N-terminus of EV71 2C. Interactions with
IKKβ are formed through a motif (residues 105 to 121) located
within N-terminal region of EV71 2C, resulting in formation
of a complex between PP1 and IKKβ (Li Q. et al., 2016). PP1
binding is crucial for EV71 2C-mediated inhibition of IKKβ

phosphorylation. EV71 2C-mediated PP1 recruitment inhibits
IKKβ phosphorylation, NF-κB activation and NF-κB signaling
pathway-induced IFN production (Zheng et al., 2011; Li Q.
et al., 2016). Other enteroviruses, such as PV, coxsackie A virus
16 (CVA16), and coxsackie B virus 3 (CVB3) also exploit this
mechanism to inhibit the production of IFN (Li Q. et al., 2016).

Additionally, EV71 2C (residues 105–125 and 126–263) is
capable to suppress p65/p50 dimerization by competing p65 IPT
domain in association with p50, suppressing the activation of
NF-κB and IFN (Du et al., 2015).

3A
3A of FMDV
Foot-and-mouth disease virus 3A is a partially conserved protein,
it has no homologous sequence to any other known proteases,
which is unique among the picornaviruses. A recent study
revealed that FMDV 3A down regulates FMDV-associated IFN-
β induction via FMDV 3A inhibition of RLR-mediated IFN-
β induction (Li D. et al., 2016). Residues 103–153 near 3A’s

N-terminus interact with MDA5, RIG-I and VISA, and a 102-
residue region near the N-terminus mediates inhibition of the
IFN-β signaling pathway (Li D. et al., 2016). FMDV 3A reduces
expression of MDA5, RIG-I and VISA by decreasing their mRNA
levels (Li D. et al., 2016). This finding not only reveals a
novel mechanism of FMDV 3A-mediated evasion of host innate
immunity but also provide a new thought to explore this kind of
non-structural proteins in other picornaviruses.

3C
Picornavirus 3C is a unique cysteine protease that combines
features of both serine and cysteine proteases (Di et al.,
2016). Although 3C has similar spatial structures among all
picornaviruses, and can inhibit IFN expression through similar
pathways, including the NF-κB, Jak/STAT and IRF pathways, its
specific sites of action are different.

3C of Enteroviruses
Enterovirus 71 3C is one of the most common functional proteins,
which has been most widely studied in enteroviruses. EV71
3C inhibits induction of IFN by RIG-I or TLR3 and prevents
activation of IRF3 and IRF7. Upon viral infection, TLR3 recruits
TRIF (TIR domain-containing adaptor inducing IFN-β) and
TBK1, which phosphorylate IRF3 and IRF7 (Lei et al., 2010).
The TRIF Q312–S313 junction is critical for its cleavage by
EV71 3C. EV71 3C-induced TRIF cleavage blocks IFN-β and
NF-κB activation by TRIF (Lei et al., 2011). EV 71 3C can
directly inhibit IRF7 and IRF9, repressing type I IFN production
(Hung et al., 2011; Lei et al., 2013). EV71 3C protease activity is
necessary to cleave IRF7. EV71 3C cleaves IRF7 at the Q189–S190
junction, yielding two fragments that are unable to stimulate IFN
production (Lei et al., 2013).

Likewise, EV71 3C reduces IFN production by inhibiting
activation of NF-κB (Lei et al., 2014). Transforming growth
factor-β-activated kinase 1 (TAK1), TAK1-binding protein
(TAB)1, TAB2, and TAB3 are all required for activation
of downstream NF-κB. In mammalian cells, TAK1 binds
to TAB1, forming TAK1-TAB1 complex. Thereafter, TAB2
and TAB3 are recruited to TAK1-TAB1 complex forming
TAK1/TAB1/TAB2/TAB3 complex. This complex activates p38,
IKKαβ and c-Jun N-terminal kinase (JNK), thus inducing IFN
production (Lei et al., 2014). EV71 3C cleaves TAK1 at the
Q360–S361 junction yielding smaller products of about 30 kDa.
The TAB1 Q414–G415 and Q451–S452 junctions are EV71 3C
cleavage sites; cleavage results in about 45 kDa and 50 kDa
products. EV71 3C cleaves TAB2 at the Q113–S114 junction.
EV71 3C cleaves TAB3 at the Q173–G174 and Q343–G344
junctions, resulting in about 45 kDa and 60 kDa products.
Cleavage disrupts the TAK1/TAB1/TAB2/TAB3 complex and
reduces IFN production. It should be noted that TAB2 has NF-
κB-activating function, but cleavage by EV71 3C impairs this
activity (Lei et al., 2014). On the other hand, CVA-16, CV-A6,
and EV-D68 3C cleave TAK1 to inhibit the NF-κB response
(Rui et al., 2017).

Upon viral infection, EV71 3C can directly bind to RIG-I,
impairing RIG-I’s interaction with MAVS and inhibiting RIG-
I-mediated type I IFN responses. It has been reported that
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ubiquitination of RIG-I is controlled by a tumor suppressor
called CYLD (Xu et al., 2014). CYLD is a target of miR-526a, a
potent IFN-β inducer, and miR-526a upregulation during viral
infection is partially mediated by IRF7. By suppressing CYLD
expression, miR-526a positively regulates VSV-associated type I
IFN production. EV71 3C inhibits production of type I IFN by
blocking miR-526a upregulation and CYLD downregulation.

CV-A16, CV-A6, and EV-D68 3C can bind to MDA5 and
inhibit the interaction with MAVS, thus blocking the production
of type I IFN (Rui et al., 2017). CVB3 3C also cleaves MAVS
and Toll/IL-1 receptor domain-containing adaptor inducing
interferon-beta (TRIF) at specific sites and inhibits the induction
of type I IFN (Mukherjee et al., 2011).

3C of EMCV
Encephalomyocarditis virus 3C is the only cysteine protease
encoded by the viral genome, and it has a high degree of substrate
specificity, besides Lpro, EMCV 3C is another antagonist. TANK
is an NF-κB activator, TRAF6 serves as a platform to recruit
the IKK complex and kinase TAK1, and TANK negatively
regulates this function (Papon et al., 2009). EMCV 3C can cleave
TANK at Gln291 and Gln197 (Huang et al., 2015), disrupting
formation of the TANK–TBK1–IKKε–IRF3 tetramer, decreasing
TBK1- and IKKε-mediated IRF3 phosphorylation, impairing the
ability of TANK to inhibit TRAF6-mediated NF-κB signaling,
and reducing type I IFN production (Huang et al., 2015, 2017).
SG is the location for efficient interaction between viral RNA
and RLRs; EMCV 3C can also block formation of SG to inhibit
activation of IFN genes (Huang et al., 2017). By cleaving IRF3-5D
and other key proteins, EMCV 3C inhibits JAK-STAT signaling,
suppressing type I IFN production (Huang et al., 2017). EMCV
3C may also suppress STAT1 or IRF3 binding to the IFN-β
promoter to inhibit type I IFN production (Huang et al., 2017).

3C of FMDV
Foot-and-mouth disease virus 3C plays important roles in
disrupting the translational system of the host and can
negatively regulate innate immune signaling by degrading
essential molecules in different pathways (Ma et al., 2018a).
FMDV 3C has the ability to cleave NEMO at Gln383 (Zhao
et al., 2007); cleavage impairs NEMO-mediated IFN production
and its ability to act as a signaling adaptor in the RIG-I/MDA5
pathway (Wang et al., 2012). Moreover, FMDV 3C cleaves TANK,
generating a 15-kDa N-terminal fragment and impairing TANK’s
ability to suppress TRAF6-mediated NF-κB signaling (Fan et al.,
2017).

Under normal conditions, ATG5-ATG12 promotes activation
of IRF3 and phosphorylation of TBK1 by preventing TRAF3
degradation, resulting in enhanced expression of IFN-β (Fan
et al., 2017). FMDV suppresses IRF3 by degradation of
autophagy-related protein ATG5-ATG12 to attenuate production
of IFN via 3C (Fan et al., 2017).

Karyopherin α1 (KPNA1) is the nuclear localization signal
receptor for STAT1. FMDV 3C interferes with the JAK-
STAT signaling pathway by degrading KPNA1, blocking
STAT1/STAT2 nuclear translocation and inhibiting IFN signaling
(Du et al., 2014).

3C of SVV
Seneca Valley virus (SVV) is most closely related to Cardiovirus
(Hales et al., 2008). SVV 3C has a conserved catalytic box with
His and Cys residues (Qian et al., 2016), which is similar to
FMDV Lpro. SVV 3C can inhibit the production of type I IFN
by directly cleaving MAVS, TRIF, and TANK (Qian et al., 2016).
In addition, a recent result indicates that SVV 3C reduces the
expression of IRF3 and IRF7 and phosphorylates them and then
blocks the transcription of IFN-β, IFN-α1, IFN-α4, and ISG54
(Xue et al., 2018).

3C of HAV
Hepatitis A virus 3C is a cysteine proteinase which is responsible
for most cleavages within the viral polyprotein (Schultheiss et al.,
1994, 1995). HAV 3C cleaves MAVS at Gln428 to inhibit type
I IFN production (Yang et al., 2007). Similar to FMDV 3C,
HAV 3C also cleaves NEMO, impairing NEMO-mediated IFN
production and its ability to act as a signaling adaptor in the
RIG-I/MDA5 pathway (Wang et al., 2014; Xu et al., 2014).
Moreover, HAV 3C inhibits NF-κB activation through cleavage of
the TAK1/TAB1/TAB2/TAB3 complex, inhibiting the induction
of IFNs (Lei et al., 2013, 2014).

3ABC and 3CD of HAV
Processing intermediate HAV 3ABC and 3CD are both unique
and have proteolytically activities in particle assembly (Probst
et al., 1998). HAV 3ABC is a precursor cysteine protease. 3ABC
cleaves MAVS and disrupts activation of IRF3 through the
RLR pathway in mitochondria (Yang et al., 2007; Debing et al.,
2014). With the help of the transmembrane domain of 3A,
3ABC localizes to mitochondria. MAVS cleavage also requires the
protease activity of 3C (Yang et al., 2007). This feature of 3ABC is
unique among picornaviruses.

Hepatitis A virus 3CD is the processing intermediate of
3ABCD. HAV 3CD disrupts RIGI/MDA5, inhibits dimerization
of IRF-3 and translocation of IRF-3 to the nucleus, and impairs
IFN-β promoter activation (Qu et al., 2011).

3D
3D of EV71
Enterovirus 71 3D is a kind of RNA-dependent RNA polymerase
(Jiang et al., 2011; Sun et al., 2012). Wang et al. (2015) found that
without interfering with IFN-γ receptor expression, EV71 3D can
attenuate STAT1 tyrosine phosphorylation resulting in defective
IFN-γ signaling. The detailed signaling pathway how 3D regulate
STAT1 need further investigation, Wang et al. (2015) guess that
the function of EV71 3D may similar to EV71 2A, as a viral factor
for immune-editing.

OUTLOOK

The interactions between picornaviruses and host defenses are
complex and diverse. Moreover, viruses have developed multiple
strategies to evade the host’s innate immune system. To date,
some of these strategies have been uncovered and significant
progress has been achieved in understanding signaling pathways
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related to immune evasion. For example, the mechanism
underlying inhibition by some non-structural proteins of IFN
production in picornaviruses have been well studied. However,
what we know today just represent a drop in the bucket, and
we still need to understand the viral strategies involved in
antagonizing the host’s innate immune system. For example, SVV
3C has similar conserved catalytic box and similar function to
FMDV Lpro in antagonizing the innate immune response and
whether SVV 3C has other similar function to FMDV Lpro
need further research. In addition, there are many similarities
between different genera of picornaviruses. However, further
efforts should be made to explore key mechanisms underlying
inhibition by some non-structural proteins of IFN production,
such as 2B, 2C, 3A, and 3D, across all picornavirus.

Recently, it has been discovered that some picornaviruses
only cause an acute and self-limiting infection without major
pathogenesis in hosts requiring more research on therapeutic
approach (Weinberg and Morris, 2016; Ma et al., 2018b). The
role of non-structural proteins in such picornaviruses may make
contributions to better understand not only the therapeutic
antiviral activity of IFNs, but also may reveal how these proteins

(with or without protease activities) influence and control the
IFN signaling transduction in vivo.
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