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Abstract

Echocardiography plays a crucial role in the diagnosis and management of cardiovascular 

disease. However, interpretation remains largely reliant on the subjective expertise 

of the operator. As a result inter-operator variability and experience can lead to 

incorrect diagnoses. Artificial intelligence (AI) technologies provide new possibilities for 

echocardiography to generate accurate, consistent and automated interpretation of 

echocardiograms, thus potentially reducing the risk of human error. In this review, we 

discuss a subfield of AI relevant to image interpretation, called machine learning, and its 

potential to enhance the diagnostic performance of echocardiography. We discuss recent 

applications of these methods and future directions for AI-assisted interpretation of 

echocardiograms. The research suggests it is feasible to apply machine learning models to 

provide rapid, highly accurate and consistent assessment of echocardiograms, comparable 

to clinicians. These algorithms are capable of accurately quantifying a wide range of 

features, such as the severity of valvular heart disease or the ischaemic burden in patients 

with coronary artery disease. However, the applications and their use are still in their 

infancy within the field of echocardiography. Research to refine methods and validate their 

use for automation, quantification and diagnosis are in progress. Widespread adoption of 

robust AI tools in clinical echocardiography practice should follow and have the potential 

to deliver significant benefits for patient outcome.

Background

Echocardiography plays a crucial role in the diagnosis 
and management of patients with cardiovascular disease. 
Since echocardiography is the only imaging modality 
that permits real-time imaging of the heart, it allows the 
immediate detection of various abnormalities (1). The 
accurate quantitative assessment of cardiac structure 
and function is essential for clinical diagnosis and to 
help guide the most appropriate treatments. However, 
despite the abundance of guidelines for the interpretation 
and assessment of echocardiograms, quantification 
and diagnosis based on subjective review of 2D 
echocardiography remains imperfect and prone to error (2).  

It is a long-standing issue that there is a reasonably high 
level of inter-observer variation in the interpretation  
of echocardiograms, especially amongst those with  
poor-quality images (3).

Although AI has been around since the 1950s, there 
has only recently been a surge of interest and research in 
the use of AI in medical imaging. AI techniques, such as 
machine learning, can be used to recognise a wide range of 
patterns within echocardiograms as they can take account 
of each pixel, and their relationship, as well as associated 
clinical metadata. Machine learning models can be trained 
to ‘learn’ what different features in an image represent so 
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that they can be used to identify images, quantify areas of 
interest or be associated with particular disease patterns (4).

By combining clinician interpretation with 
information derived from machine learning algorithms, 
there is the opportunity to enhance the accuracy of 
echocardiography through a reduction in inter- and 
intra-operator variability, as well as providing additional 
predictive information that may be too subtle to be 
detected by the human eye (5, 6, 7). As such, machine 
learning models show promise as tools for the rapid, 
accurate and precise assessment of cardiovascular 
structure and function, which could pave the way for a 
new era of echocardiography. In this review we consider 
what artificial intelligence is, some of the reasons why it is 
particularly applicable to echocardiography and provide 
examples of the current state-of-the-art applications.

What is artificial intelligence?

AI is defined as the ability of computer systems to 
perform tasks that would usually require human levels of 
intelligence. A subfield of AI is machine learning which 
can be used to teach a computer to analyse a vast number 
of data points in a rapid, accurate and efficient manner 
through the use of complex computing and statistical 
algorithms. These algorithms infer relationships from 
existing datasets and learn which of these relationships 
have the highest predictive power. By harnessing this 
knowledge, machine learning models are then able to 
make predictions based on unseen data (8).

Machine learning can be classified into three groups 
supervised, unsupervised and reinforcement learning 
(Fig. 1 and Table 1) (9). In supervised learning, the machine 
is ‘taught’ to classify data by providing it with a training 

dataset of labelled data. During the training process, the 
machine learning algorithm learns underlying patterns 
within the data and compares these with known outcomes. 
Once the machine has been trained, its ability is tested 
using an unseen dataset. This allows the assessment of the 
accuracy of the model and how it compares to human 
interpretation (4, 10). Examples of supervised learning 
methods include random forests, support vector machines 
and artificial neural networks. The current artificial neural 
networks are only a few sets of neuron layers so, at best, 
represent the outermost layer of cortex and not the full 
brain. In contrast, unsupervised learning techniques uses 
unlabelled data to classify the input data into multiple 
groups, or clusters, based on similarities between the 
data points (10, 11). Reinforcement learning is based 
on interactions with an environment. The learner, also 
called the agent, attempts to discover the most successful 
actions to achieve maximum reward by learning from 
trial and error. This leads to an agent suitable for dynamic 
environments (12, 13). It should be noted however that 
these methods of machine learning are not mutually 
exclusive. Deep learning, a type of artificial neural network 
capable of handling larger, more complex datasets using 
techniques such as convolutional neural networks, can 
be either supervised, unsupervised or semi-supervised 
(4). Also, the subfields within machine learning have 
been integrated together to create even more powerful 
techniques, such as deep reinforcement learning (14, 15).

Model training is a process common to all types 
of machine learning. It is the process whereby the 
model analyses a variety of features within the data 
provided and uses these to learn how to generate an 
output label. For example, within echocardiography, 
a model could analyse a variety of features such as left 
ventricular wall thickness and left ventricular ejection 

Figure 1
Types of machine learning algorithms.
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fraction to determine whether a patient has a particular 
condition. However, the inclusion of irrelevant features 
in the analysis can lead to over-fitting of the model, 
thus rendering it less accurate when presented with new 
datasets. This emphasises the importance of having a 
training dataset that is representative of the population. 
Information gain analysis is used to determine which 
features to include in the model to ensure that it has the 
highest predictive power, yet can still be applied to other 
populations (10, 16). Once the model is trained, it can 
be applied to unseen datasets to test its predictive ability 
before being used fully.

Whilst machine learning models provide the potential 
to be able to rapidly analyse large volumes of data, they, 
themselves, require large volumes of data to ensure that 
they are thoroughly trained. In the medical field, access 
to this data can be difficult to obtain and, once obtained, 
requires a great deal of effort to ensure that the data is 
clean, of sufficient quality and accurate before being used 
to train the model. Furthermore, it is important to ensure 
that these datasets are representative of the population the 
model will be used for, since sampling bias and missing data 

can negatively affect the predictive ability of the model. 
Data leakage, the unintentional use of training data to test 
the model’s accuracy, can lead to an inaccurate assessment 
of a model’s predictive power (17), this demonstrates the 
need for a thorough training process.

Whilst it is anticipated that these models will 
provide additional information and act as a tool to guide 
clinicians in the decision making process, it is important 
for clinicians to bear the limitations of machine learning 
models in mind when employing them in clinical 
practice and to integrate their output into the wider 
clinical picture. Whilst these models have been designed 
to mimic human intelligence, their role is to identify 
correlations within data and classify it based on these 
correlations it does not provide any causal information. 
In addition, deep learning models are complex so that 
it can be difficult to understand how the model came 
to a particular conclusion (18). As such, it is up to the 
clinicians to identify the cause and decide on the most 
appropriate course of action.

AI, in particular machine learning, has been applied 
to a variety of techniques in the medical imaging field, 

Table 1  Definition of machine learning classes.

Class of machine 
learning Definition

Supervised learning Uses human-coded information to train machine learning models to classify unseen data.
  Random forest This is an ensemble of decision trees. An item is classified according to the most common output from 

all of the decision trees. Due to the increased exposure to samples of training data, random forests 
have the advantage of not over-fitting a model to the data, compared to a single decision tree.

  Support vector 
machines (SVMs)

SVMs allow the construction of models capable of separating training data into different classes. When 
presented with new data, these models are able to predict which class it should belong to.

  Artificial neural 
networks (ANNs)

ANNs are modelled on the design of the brain. Due to their structure of interconnecting layers of 
neurons, artificial neural networks have been likened to the outer cortex of the brain. These networks 
are comprised of interconnected layers that are involved in the analysis and classification of input data. 
The greater the number of layers a network has, the higher the level of analysis; this forms the basis 
for deep learning. ANNs are able to learn which connections are the most useful for classifying data 
and thus weight these accordingly.

Unsupervised learning The model is not provided with human-coded outcomes, so the model has to classify data itself based 
on its own analysis. This has the potential to identify novel relationships within the data.

  Clustering techniques This method is similar to SVMs, however as the data is unlabeled, the model is unable to classify it based 
on human-coded information. Instead, the model identifies the natural groupings, or clusters, of data 
and uses these clusters to classify new data.

  Naive Bayes These are a family of techniques which apply Bayes’ Theorem (Bayes’ Theorem states that the 
probability of an event can be affected by prior evidence) to classify data, assuming that the data are 
independent from each other.

  Principal component 
analysis (PCA)

PCA is a technique that makes data easier to analyse by transforming potentially correlated variables 
into non-correlated variables, known as principal components. These principal components allow for 
feature extraction from the original dataset.

  Autoencoders These are a type of ANN that encode the input into a compressed dataset, learn from this compressed 
information, and then reconstruct this information as output. By compressing the input data, this 
technique aims to learn the most important features of the input data.

Reinforcement learning The machine learns how to interact with its environment through trial and error, to maximize the 
rewards. It is analogous to how a baby learns to interact with its environment.

  Q-Learning In Q-Learning, the agent learns how to optimally process different types of data in different ways.
(NB. whilst this is a powerful machine learning technique, its use in the medical field is limited  

at present).
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for example calcium scoring in CT coronary angiograms, 
detection of diabetic retinopathy in retinal photography 
and skin cancer classification in dermatology (19, 20, 21).

The need for AI in echocardiography

Echocardiography is an essential tool in the diagnosis 
and management of a wide range of cardiovascular 
diseases. As a result guidelines have developed to ensure 
accurate quantification and interpretation (22) but the 
final analysis remains reliant on the operator having the 
experience and knowledge to adhere to these guidelines. It 
may be possible to overcome or reduce this limitation by 
use of machine learning models. For example, guidelines 
recommend quantitative measures of chambers and valves 
during assessment to inform clinical decision-making 
(2, 23). However, in busy clinical environments such as 
acute emergency settings, quantitative analysis may not 
be practical because of the additional time required for 
manual tracing. Therefore, it is acknowledged that visual 
estimation remains the mainstay in many areas of clinical 
practice; although this requires considerable experience 
in echocardiography (24, 25). Application of machine 
learning to either highlight need for quantification or 
provide fully automated measures rapidly to the clinician 
could therefore overcome this issue and improve accuracy 
of diagnosis (26).

In busy clinical settings, there is also usually a narrow 
window in which to fully analyse and report the results 
of the scan and, as such, not enough time to analyse 
complex datasets (27). During a routine echocardiogram, 
a large volume of potentially diagnostically useful data 
are generated and with the advent of multi-dimensional 
imaging modalities, such as 3D echocardiography and 
speckle tracking, the volume of the data acquired is 
expected to increase (28, 29). Most data obtained remains 
under-utilised (5, 30) but machine learning techniques 
offer the potential to interpret simultaneously multiple 
datasets extracted from echocardiograms in an efficient 
and automated manner (10). Furthermore, these models 
are able to link available clinical data from electronic 
health records with echocardiography data, thus 
providing clinicians with more information, and allowing 
them to make more informed decisions about their care 
of patients (11).

One of the main advantages of using machine 
learning models within the interpretation process is 
that models can also bring these data together to act as 
predictive tools with potentially high levels of accuracy.  

Following training, the machine learning algorithm 
should be able to recognise different cardiac structural 
and functional patterns that, if subtle, could potentially 
be missed during the interpretation by the clinician. These 
data are predicted by comparing features from new data 
to a model fitted on features extracted from the training 
data (31, 32, 33).

Figure  2 provides a summary of these potential 
applications of machine learning within the field of 
echocardiography, which should not only make the 
interpretation process more accurate and reproducible, 
but also allow the incorporation of currently unused data 
into the overall assessment of cardiac function to provide 
a more accurate diagnosis. This increase in accuracy, 
combined with the time-saving benefits, suggest a real 
potential benefit for incorporation of machine learning 
into routine clinical echocardiography.

Machine learning models have also been shown 
to provide an almost instantaneous assessment of an 
echocardiogram. Knackstedt et  al. demonstrated that 
left ventricular ejection fraction and longitudinal strain 
could be analysed in approximately 8 s (24). This rapid 
assessment of echocardiograms offers the potential to 
save the time of clinicians, who would otherwise have to 
manually derive these measurements and generate a report 
of their findings. Since the number of echocardiograms 
performed worldwide is increasing, this technology could 
allow for an increase in scanning, without the concomitant 
increase in reporting time that would otherwise limit 
their ability to see other patients. This rapid and accurate 
assessment could also have benefits extending beyond the 
Cardiology setting, to the Emergency Department where 
point-of-care ultrasound scans are becoming increasingly 
common. However, in this setting the operators are usually 
less experienced in image acquisition and interpretation 
(34). By incorporating machine learning algorithms, there 
is the potential to improve the diagnostic accuracy of 
echocardiography in the acute setting.

Machine learning has been demonstrated to provide 
numerous benefits to the field of echocardiography, 
which will not only make the interpretation process 
more accurate and reproducible, but will also allow the 
incorporation of currently unused data into the overall 
assessment of cardiac function to provide a more accurate 
diagnosis (Fig.  2). This increase in accuracy, combined 
with the time-saving benefits, demonstrate the value 
of incorporating machine learning into the field of 
echocardiography.

However, in order to incorporate this new 
technology into the healthcare setting the necessary 
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infrastructure, such as computers, networks and servers 
capable of processing and securely transporting and 
storing such data, needs to be in place especially in 
the era of cloud-based systems. This may be a potential 
‘bottle neck’ in the adoption of this technology, since 
healthcare IT systems are often in need of update (35). 
In addition, clinicians will need to be trained to ensure 
that these tools are used appropriately in order to get 
the most accurate information from the models, this is 
especially important as the validity of the output data 
is heavily dependent on the quality of the data fed into 
the model. As such, clinicians will have to work closely 
with data scientists to help facilitate the integration and 
adoption of these computational tools into the clinical 
setting (35).

State of the art – future and 
potential applications

Although application of machine learning to 
echocardiography is at a relatively early stage, several 
applications have already been developed to facilitate 
interpretation. These methods cover image recognition, 
classification of pathological patterns and automated 
quantification. Table  2 summarises the accuracy, 
sensitivity and specificity of current machine learning 
applications in the field of echocardiography.

Image recognition

A first step to ensure the accurate assessment of 
echocardiograms is correct identification of views, 
videos and ultrasound modality such as pulsed and 
continuous wave Doppler traces. This recognition has 
proved relatively straightforward for machine learning 
applications. A deep learning model, consisting of a 
convolutional neural network, has been trained to detect 
and recognise specific features in each view, regardless of 
image resolution. In the study, a wide range of randomly 
selected echocardiograms, including normal variants, as 
well as a range of pathology and image qualities were used. 
The model was able to classify 15 major echocardiography 
views with an overall accuracy of 97.8% (7). In a separate 
study, machine learning algorithms were used to 
accurately identify apical four-, two- and three-chamber 
views. Despite the similarities between these views, the 
supervised learning model was able to recognise each view 
with an accuracy of approximately 95% (36). Figure  3 
shows an example of a convolutional neural network 
model for echocardiography image classification.

Classification of pathological patterns

Different physiological and pathological conditions 
can share similar phenotypes that prove difficult to 
differentiate without detailed operator experience. For 
example, left ventricular hypertrophy is commonly 

Figure 2
Advantages of machine learning assisted 
echocardiography interpretation.
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observed in the athletic population, but is also found in 
hypertrophic cardiomyopathy. Given the increased risk of 
sudden cardiac death in inherited cardiac disease accurate 
differentiation is important. Narula and co-workers 
developed an ensemble technique consisting of support 
vector machines, random forests, and artificial neural 
networks to accurately differentiate between these two 
conditions, with a sensitivity of 96%, when adjusted for 
age (5). In addition to this, machine learning models 
have further demonstrated their ability to accurately 
differentiate between similar phenotypes in patient 
groups with constrictive pericarditis and restrictive 
cardiomyopathy. These pathologies share a similar 
presentation and since there is no single parameter in 
the field of echocardiography that can clearly distinguish 
between them, this diagnosis can be challenging. A 
machine learning classification algorithm was able to 
accurately differentiate between these pathologies, with 
accuracy of up to 90%, using multiple echocardiography 
features (27, 30). A diagram of an example of machine 
learning model process is shown in Fig. 4.

Automated quantification

Echocardiography interpretation and guidelines rely 
heavily on use of quantitative measures. Image processing 
techniques with underlying machine learning algorithms 
have shown promise for rapid identification of structures 
and quantification of related parameters. Assessment of left  

ventricular volume and function was one of the first 
applications of artificial intelligence to minimise 
error and reduce operator subjectivity (37, 38, 39, 40). 
Methods have evolved so that, recently, Knackstedt et al. 
demonstrated that left ventricular ejection fraction and 
longitudinal strain could be analysed in approximately 
8 s using machine learning methods (24). Within 3D 
echocardiography, random forest models to identify 
borders have been shown to provide an accurate 
identification of left and right ventricular cavities so that 
derived left and right ventricular volumes are comparable 
to those measured by cardiac magnetic resonance (28, 41, 
42, 43, 44, 45). Furthermore, machine learning has been 
shown to aid in the assessment of valvular heart disease, 
for example, mitral valve disease (22, 46). Automated 
assessments of 3D transoesophageal echocardiograms of 
the mitral valve provided more reproducible and consistent 
quantitative assessment of the mitral valve annulus size 
and its morphology than human interpretation (6, 47). 
An extensive work also has been done in the field of aortic 
valve segmentation for planning transthoracic aortic 
valve implantation procedure (48, 49, 50).

Quantification of wall motion abnormalities

One of the widest uses of echocardiography is in the 
diagnosis and care of heart failure either related to coronary 
artery disease or other cardiac pathology. Identification and 
assessment of systolic heart failure relies on identification 

Figure 3
An example of a Convolutional Neural Network model for image classification. A2C, apical two chamber; A3C, apical three chamber; A4C, apical four 
chamber; PLAX, parasternal long axis; PSAX, parasternal short axis.
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of wall motion abnormalities. Quantitative assessment of 
changes in regional wall motion is also important in stress 
echocardiography to identify patients with prognostically 
significant coronary disease. Echocardiography allows 
real-time visualisation of myocardial contractility during 
stress and by comparing left ventricular wall motion 
between baseline images and peak or post stress images, it 
is possible to detect presence of a functionally significant 
coronary narrowing (51). Typically, contractility is 
assessed visually by an operator and a meta-analysis of 62 
published stress echocardiography studies demonstrated 
a wide variation in reported sensitivities and specificities 
for dobutamine stress echocardiography. Sensitivity 
ranged from 33 to 98%, whilst the specificity ranged from 
38 to 97% resulting in average sensitivity and specificity 
for dobutamine stress echocardiography of 81 and 82%, 
respectively. Whilst this is comparable to other functional 
assessments of coronary artery disease, it still means that 
approximately one in every five patients could potentially 
be misdiagnosed (52). In order to enhance the accuracy 
of stress echocardiography, machine learning models 
have been evaluated as means to identify and quantify 
inducible wall motion abnormalities (53, 54, 55, 56). 
In one study, Omar et  al. used imaging derived models 
of 3D motion at rest and stress within random forests, 
support vector machines and a deep learning approach 
consisting of a convolutional neural network. They found 
that the convolutional neural network provided the most 
sensitive model, with a sensitivity of 81.1% in a training 
dataset compared to expert operator interpretation (55). 
In another study, an unsupervised learning model was 
used to detect 12 features for linear discrimination, which 
could differentiate between patients with obstructive 
disease and normal responses through use of a new 
coronary artery disease risk index (54). The majority of 

studies to date have been on relatively small datasets, 
without adequate testing validation or have only 
compared against expert readers rather than outcome. 
Nevertheless, they show promise that machine learning 
models may be able to support clinical decision-making 
for stress echocardiography; one of the most commonly 
used functional imaging tests for coronary artery disease.

Conclusion

Although echocardiography is the most accessible imaging 
modality for the diagnosis of cardiovascular disease, its 
interpretation remains subjective and operator dependent. 
In this article, we have highlighted some of the research 
demonstrating the value of AI, in particular machine 
learning, in medical imaging and its potential to improve 
patient care. The inclusion of machine learning models in 
echocardiography appears very promising, as they are able 
to accurately identify various echocardiographic features 
and predict outcomes, without the limitations currently 
inherent to human interpretation. These technologies 
therefore have the potential to improve clinical decisions 
and lead to a reduction in the number of unnecessary 
investigations, therapies and interventions. Although 
there are concerns that integration of AI in healthcare 
settings could replace clinicians, it is more likely that AI 
will serve as a valuable tool for clinicians, in particular 
those with less experience, to allow them to treat and 
diagnose with greater accuracy and confidence. This 
should have the impact of reducing the opportunity for 
error and, as such, improve patient care. Whilst the use 
of machine learning has advanced a great deal over the 
past decade, the full application is still in its infancy and 
further research is required to refine and improve its use 
and implementation in clinical applications.

Figure 4
Diagram of an example of machine learning model process.
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