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Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related

death in patients with refractory epilepsy. Convergent lines of evidence suggest

that SUDEP occurs due to seizure induced perturbation of respiratory, cardiac, and

electrocerebral function as well as potential predisposing factors. It is consistently

observed that SUDEP happens more during the night and the early hours of the morning.

The aim of this review is to discuss evidence from patient cases, clinical studies, and

animal research which is pertinent to the nocturnality of SUDEP. There are a number of

factors which might contribute to the nighttime predilection of SUDEP. These factors

fall into four categories: influences of (1) being unwitnessed, (2) lying prone in bed,

(3) sleep-wake state, and (4) circadian rhythms. During the night, seizures are more

likely to be unwitnessed; therefore, it is less likely that another person would be able to

administer a lifesaving intervention. Patients are more likely to be prone on a bed following

a nocturnal seizure. Being prone in the accouterments of a bed during the postictal period

might impair breathing and increase SUDEP risk. Sleep typically happens at night and

seizures which emerge from sleep might be more dangerous. Lastly, there are circadian

changes to physiology during the night which might facilitate SUDEP. These possible

explanations for the nocturnality of SUDEP are not mutually exclusive. The increased rate

of SUDEP during the night is likely multifactorial involving both situational factors, such

as being without a witness and prone, and physiological changes due to the influence

of sleep and circadian rhythms. Understanding the causal elements in the nocturnality of

SUDEP may be critical to the development of effective preventive countermeasures.
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INTRODUCTION

The leading cause of epilepsy-related death in patients with refractory epilepsy is sudden
unexpected death in epilepsy [SUDEP; (1–5)]. Among neurological conditions, SUDEP is second
only to stroke in terms of years of potential life lost to disease (4). There are no effective ways to
reliably predict or prevent SUDEP (3, 5–8). SUDEP is hypothesized to be the result of predisposing
factors in the patient and seizure induced perturbation of respiratory, cardiac, and electrocerebral
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function (3, 5, 7–9). In cases of SUDEP which have been recorded
in an epilepsy monitoring unit, respiratory arrest appears to be
the primary cause of death as terminal apnea precedes terminal
asystole in each case (10).

It is consistently observed that SUDEP happens more during
the night and the early hours of themorning (2, 10–14). Lamberts
et al. observed that 62% of SUDEP cases happened between
midnight and noon and that 58% of SUDEP cases were sleep-
related (12). In SUDEP cases occurring in epilepsy monitoring
units, 87.5% of deaths were observed to happen during the
night (10). In a meta-analysis of definite, probable, and possible
SUDEP, Ali et al. observed that 69.3% of SUDEP cases were
presumed to have happened during sleep (13). Furthermore,
patients who die of SUDEP are about twice as likely to have
nocturnal seizures than those who did not die of SUDEP (12, 14).
The increased nocturnal incidence of SUDEP is often attributed
to an increased risk of SUDEP during sleep; however, there are
a number of factors which might contribute to the nighttime
predilection of SUDEP. These factors fall into four categories:
influences of (1) being in the absence of a witness, (2) lying
prone in bed, (3) sleep-wake state, and (4) circadian rhythms.
A consistent issue for determining the cause of the nocturnality
of SUDEP is disentangling the potential effect of sleep from the
effect of circadian rhythms, not to mention complicating factors
such as being without a witness and prone in bed. In humans,
sleep typically happens during the night. Consequently, circadian
rhythms and homeostatic sleep processes are often considered
together; nevertheless, these are distinct processes. Indeed, sleep
and circadian rhythmicity alter physiologic processes, such as
cardiac and respiratory function, independent of one another
(15–20). For a comprehensive meta-analysis of SUDEP cases
which consider sleep state or time-of-day as a potential risk factor,
please see (13) and (21). The aim of this review is to discuss
evidence from patient cases, clinical studies, and animal research
which is pertinent to the nocturnality of SUDEP and to consider
the implications for clinicians, patients, and the development
of preventative strategies. The definition of SUDEP established
by Nashef et al. is used for the purposes of this review unless
otherwise specified (22).

BEING IN THE ABSENCE OF A WITNESS

Most SUDEP cases are unwitnessed (12, 23). This suggests that
the presence of someone who could intervene after a seizure
may be protective against SUDEP (2, 12). Seizures which happen
during the hours of the day usually occupied by sleep are
more likely to be unwitnessed than those occurring during
wakefulness (24, 25). Increasing nocturnal supervision by the
use of monitoring devices, regular checks or having someone
else sleep in the same room is associated with a decreased risk
of SUDEP (2, 6, 14). The mechanism by which the presence of
another person might differentiate survival from SUDEP is not
clear; however, nursing interventions such as repositioning and
supplemental oxygen administration are associated with shorter
seizures, a reduction in postictal EEG suppression and improved
respiratory function (23, 26).

Given the potential for life saving interventions in the time
after a severe seizure, the development and distribution of devices
capable of predicting seizures and/or detecting seizures and
alerting others holds great promise for reducing the rate of
nighttime SUDEP. Accurate seizure forecasting would potentially
allow for preventative measures to be taken to reduce the chance
that an approaching seizure results in SUDEP. Unfortunately,
seizure forecasting has proved quite challenging (27).

Conversely, automated seizure detection devices have the
potential to detect convulsive seizures with some degree of
reliability (28, 29). While EEG is still the most reliable modality
for seizure detection, an EEG apparatus is likely not realistic
in the home setting. Additionally, while over-night video
monitoring improves the detection of nocturnal seizures in a
clinical setting it may not be reasonable to expect someone
to monitor patients in this way in the home setting (30). The
development of automated seizure detection algorithms which
use video data to trigger an alarm in response to seizures have
considerable promise for reducing the rate of nocturnal SUDEP
(31). Unfortunately, there is a scarcity of long-term home-based
data to support the efficacy of nocturnal monitoring and seizure
detection devices (32, 33). Furthermore, reliable alarms only have
the potential to prevent death if there is another person who
is able to quickly intervene in response to the alarm. Lastly,
increased monitoring of at risk patients by caregivers or devices
is unlikely to be successful in all cases as SUDEP has been known
to occur even in the presence of medical professionals after the
patient announced “I’m going to have a seizure” (34, 35).

LYING PRONE IN BED

In the majority of SUDEP cases, the victim is found in the prone
position regardless of the supposed vigilance state of seizure
origin (36–38); however, possible, probable and definite SUDEP
cases which are inferred to have happened during sleep are more
likely to be found prone than those which are inferred to have
happened during wakefulness [Figure 1B, (13)]. Furthermore,
non-fatal convulsive seizures infrequently result in a patient
inverting into the prone position (39). It is generally agreed
that ending a convulsive seizure in the prone position may
contribute to SUDEP (39, 40). The most plausible explanation
for this is that breathing during the postictal period is more
likely to be impaired while prone consequent to upper airway
occlusion or asphyxiation against the substrate on which the body
is positioned (40–42).

The nose and mouth being pressed against pillows or the
other accouterments of beds may impair postictal respiration by
increasing inspiratory resistance and by causing the patient to
rebreathe the trapped air (23, 43). Under normal circumstances,
this obstruction of the airway would arouse the person and cause
them to reposition, this response may not be possible in the time
following a seizure (39, 44, 45). “Anti-suffocation” pillows are
currently available; unfortunately, there is a paucity of evidence
as to their effectiveness (23, 46).

Another sudden death condition, sudden infant death
syndrome (SIDS) shares common features with SUDEP,
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FIGURE 1 | (A) Numbers of SUDEP cases in different vigilance states captured by EEG in the mortality in epilepsy monitoring units study (MORTEMUS: redrawn with

permission from Ryvlin et al. (10). (B) numbers of sleep-related definite, possible, and probable SUDEP cases [redrawn with permission from Ali et al. (13)]; (C)

numbers of witnessed and unwitnessed SUDEP cases in sleep and wakefulness [redrawn with permission from Lamberts et al. (12)]. (D) numbers of definite, possible,

and probable SUDEP cases in sleep and wakefulness and in different body positions [redrawn with permission from Ali et al. (13)].

including that patients are often found prone immediately
following nighttime rest. SIDS rates were reduced significantly
by the “Back to Sleep” campaign, which encourages care givers
to place infants supine to sleep (47). A similar initiative has been
proposed to reduce SUDEP rates (48); however, it is not clear
whether sleeping in a supine position would be meaningfully
protective against SUDEP as body position may change following
a convulsive seizure (39).

SLEEP

Sleep alters respiratory, cardiac, and electrocerebral physiology
in ways that may be relevant to SUDEP. During sleep, airway
patency is decreased thereby increasing airway resistance and
increasing the likelihood of airway occlusion (49, 50). Inspiratory
drive is lower during non-rapid eye movement (NREM) sleep
and lowest during rapid eye movement (REM) sleep (51).
Chemical stimuli potently regulate breathing. Failure of the
respiratory system to respond to rising CO2 and falling O2

levels consequent to seizure induced respiratory dysregulation

is theorized to be important in SUDEP etiology. CO2 levels
are higher during sleep (17, 51).The hypercapnic ventilatory
response is attenuated in NREM sleep in comparison to
wakefulness (51–55). The respiratory response to hypoxia is
decreased in both NREM and REM sleep (56). Interestingly, the
hypoxic ventilatory response of women is less affected by sleep
than men (57). This difference in responsiveness to O2 depletion
during sleep may be responsible for the decreased risk of definite,
possible, and probable SUDEP in females (58, 59). Seizures which
occur during sleep are associated with lower periictal blood
oxygenation (60).

Cardiac and autonomic activity is also modulated by sleep
in ways which are potentially relevant to SUDEP (61, 62). QT
interval is longer during sleep than it is during wakefulness (15).
It is hypothesized that a dramatic shift from parasympathetic
to sympathetic drive may have a role in the dysregulation of
cardiorespiratory function in SUDEP (63).

Sleep disordered breathing may also play a meaningful role
in the nocturnality of SUDEP. Refractory epilepsy patients are
at an increased risk of sleep disordered breathing, particularly
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obstructive sleep apnea [OSA; (64, 65)]. OSA increases a patient’s
risk of sudden cardiac death (66). Interestingly, sudden cardiac
death in patients with obstructive sleep apnea happens more
during the night which is similar to the temporal distribution of
SUDEP but unlike that of sudden cardiac death in the general
population which tends to happen more during the morning
(66, 67). Obstructive sleep apnea is associated with autonomic
dysfunction and lower resting oxygen saturation which might
increase a patient’s vulnerability to SUDEP (68–70). Whether
OSA is increased in SUDEP cases has not been studied yet.

It is generally agreed that NREM sleep facilitates the
occurrence of seizures and that seizures rarely occur during REM
sleep (71, 72). Seizures which occur during sleep are longer and
more likely to evolve into focal to bilateral tonic-clonic seizures
(73). It is unclear whether the incidence of focal to bilateral
tonic-clonic seizures among those with nocturnal seizures can
be explained by the lower seizure threshold during sleep as this
could also attributed to differences in epilepsy etiology (e.g.,
nocturnal seizures are more common in frontal lobe epilepsy)
(74, 75). Regardless, the increased risk of a sleep-related seizure
generalizing may confer an increased risk of SUDEP. Seizures
which originate from sleep have more severe perturbation of
cardiac activity (76). In an analysis of non-fatal seizures in
patients who went on to die of SUDEP it was found that SUDEP
victims had a larger surge in heart rate following seizures which
happen during sleep in comparison to the seizures of patients
who did not die of definite or probable SUDEP (63). It is not clear
whether postictal generalized EEG suppression, a state which
might facilitate SUDEP, is meaningfully altered by vigilance
state of seizure origin. Some studies have observed that sleep
increases the probability and duration of postictal generalized
EEG suppression (60, 77–80). Conversely, other studies have not
seen any association between sleep and postictal EEG suppression
(81–83). In summary, there is some evidence to suggest that
seizures which originate during sleep have different physiologic
consequences than wake seizures in ways that are potentially
meaningful to SUDEP.

The inherently unpredictable nature of SUDEP makes it
difficult to study in humans; however, evoked seizures in
animal models allow the physiological sequelae of seizures to
be studied at any permutation of circadian phase and sleep
state. Seizures which are induced during NREM sleep using
maximal electroshock (MES) are longer, more severe, and more
likely to result in death by seizure induced respiratory arrest
than seizures induced during wakefulness (84). Non-fatal MES-
induced seizures during NREM sleep also result in longer PGES,
a greater degree of respiratory suppression, and longer apnea
than seizures induced during wakefulness (84). Seizures induced
in REM sleep in this model are universally fatal (84). The
increased mortality seen after seizures induced during REM
sleep is interesting given that seizures are less common during
REM sleep (72, 85); however, this may not be true in some
rodent models where REM sleep and the associated hippocampal
theta rhythm might make seizures more likely (86). In one
genetic mouse model with spontaneous seizures escalating sleep
deficits preceded the fatal seizure suggesting that chronic sleep
disturbances might play a role in SUDEP pathophysiology (87).

Because SUDEP is so frequently unobserved and rarely
captured on EEG, it is not possible to determine the sleep state
of origin for the fatal seizure in most cases. Patients who died
of SUDEP are more likely to have had a nocturnal pattern of
seizures and to have a history of seizures originating during sleep
(12, 30, 63). As discussed above, meta-analyses of unwitnessed
SUDEP cases classify a SUDEP case as being “sleep-related” if
it happened at night and in the general vicinity of a bed. These
criteria are suboptimal; notwithstanding, using these criteria,
a majority of SUDEP cases are “sleep-related” [Figures 1A–D,
(12, 13, 37)]. Due to the presence of EEG at the onset of the
fatal seizure, the insights provided by the mortality in epilepsy
monitoring units study (MORTEMUS) are crucial to teasing
apart the role of sleep in SUDEP. In this study, seven of the 10
cases for which sleep state could be determined occurred during
sleep (1 during REM, 1 during stage 1, 2 in stage 2, and 3 in sleep
stages 3 or 4; Figure 1A, (10)).

CIRCADIAN RHYTHMS

Circadian rhythmicity affects breathing independently of sleep
state (17–20). Humans that are subjected to a constant routine
paradigm, which spreads sleep and activity through the 24 h
day, exhibit alterations in breathing at different times of day
regardless of their sleep-wake state (16, 88, 89). Animal studies
also demonstrate circadian differences in breathing (90, 91).
Diurnal organisms, such as humans, are more active during
the day and have greater ventilation during the day (88, 92).
Conversely, nocturnal organisms such as rodents, which aremore
active during the night, display increased ventilation during the
night (17, 91).

In humans, the hypercapnic ventilatory response is higher
during the morning and afternoon but decreases substantially
during the night (16, 88). There are also circadian differences in
sensitivity to CO2 in rodents with a decrease in sensitivity during
the day (90). The hypoxic ventilatory response is regulated in a
circadian fashion in humans with greater sensitivity during the
day (88, 92, 93); however, in rodents the response to hypoxic
conditions is coupled to metabolism which changes in a circadian
fashion in such a way that there are no net differences in
the response to hypoxia at different times of day (91). The
respiratory changes associated with seizures alter blood gas levels
(94–97). Differences in how breathing responds to changes in
blood gas levels at different times of day may alter a patient’s
ability to respond to seizure-induced respiratory changes. Lastly,
respiratory tissues such as the larynx, trachea, and lung have
peripheral circadian oscillators which operate under the purview
of the central oscillator in the suprachiasmatic nuclei (SCN; 97).
Bilateral SCN lesion disables the peripheral oscillators in these
tissues as does genetic deletion of the clock genes cryptochrome
1 and 2 (98).

Circadian oscillations in baseline breathing, respiratory
response to challenges, and clock gene expression in peripheral
tissues are meaningful for a variety of disease states. The airway
occlusion which is seen in sleep apnea is exacerbated by circadian
changes in airway patency (99). Asthma is often worsened
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at night and respiratory irritants and allergens cause worse
respiratory distress at this time (100–102). Chronic obstructive
pulmonary disease symptoms are altered by circadian phase
and these patients are more likely to require intubation in the
morning (103). SIDS is thought to result, in part, from respiratory
failure and occurs predominantly at night (104, 105).

The SCN is thought to play a role in autonomic regulation
and thus explain why circadian changes may also impact
cardiovascular control (106, 107); however, patients with
impaired function of the SCN appeared to have similar cardiac
function during sleep in comparison to healthy controls (108).
Reduced heart rate variability (HRV) is an established risk factor
for sudden cardiac death (109) and has been implicated in
SUDEP risk although the few case-controls studies that have been
published have conflicting findings (110–112). HRV is subject to
circadian regulation in addition to the modulating effect of sleep
state (113, 114). Day-night HRV dynamics appear to be altered in
epilepsy patients; however, without identifying the role of sleep
state or employing a forced desynchrony paradigm to isolate the
influences of sleep state from circadian ones, it is difficult to state
categorically whether this effect is mediated by sleep state or due
to an independent circadian effect (115, 116). Cardiac responses
to stimuli which are known to elicit a vagal response, such as
compression of the eye, are regulated in a circadian fashion with
the largest responses coming in late night and the early hours of
the morning (117). QT lengthening or shortening may lower the
threshold for ventricular fibrillation. Seizure-induced ventricular
fibrillation may be seen in a minority of (near) SUDEP cases
(118, 119). QT interval is modulated by both sleep state and
circadian phase with QT intervals being longer during sleep and
later in part of the night (15, 120).

It is well appreciated that seizures and interictal epileptiform
discharges are regulated in a circadian manner (121–126).
Analysis of seizure type, seizure timing, and sleep state of seizure
origin indicates that sleep state and time-of-day independently
affect seizures (124, 127). The influences of sleep state and
circadian rhythms are also dependent on the site of seizure origin
(128). It is unclear why the location of the seizure onset zone
would alter the circadian distribution of seizures; however, it
is known that different brain areas respond differently to the
progression of circadian time (129).

Recently, infradian patterns in seizures have been identified
which were previously underappreciated (130). These multidian
rhythms have an influence on the occurrence of seizures which
is comparable in strength to that of circadian phase. It is not
clear whether seizures that happen at different points in these
infradian oscillations are more likely to cause cardiorespiratory
complications.

There are day-night differences in seizure severity and
susceptibility consequent to DBA/2 audiogenic seizures and
electrically induced seizures (131). It is postulated that these
differences are causally related to day-night variations in
serotonin and norepinephrine levels in different brain areas
(131, 132). It is unclear on the basis of this study if there are any
day-night differences in seizure induced death and whether these
differences are independent of seizure severity. Furthermore,
whether these differences are endogenously circadian, as opposed

to being due to differential lighting conditions, was not
investigated (131).

The only published data on the time-of-day of spontaneous
death in an animal model of seizure induced death is from
Kv1.1 null mice (133). These mice exhibit spontaneous seizures
originating in the temporal lobe and typically die consequent
to a seizure before 10 weeks of age. Kv1.1 null mice have an
attenuated circadian rhythm in cardiac activity and the majority
of their deaths occur during the night with peaks in mortality at
the light/dark transition points [Figure 2, (133)]. This study did
not monitor the vigilance state of the animal at the time of the
fatal seizure, so it is impossible to determine whether this is an
effect of sleep, circadian time, or both.

Seizures induced by MES during the day, the rodent inactive
phase, are similar to seizures induced during the night in terms of
duration and severity; however, MES seizures induced in the day
during sleep resulted in a greater degree of postictal respiratory
suppression (Figure 3, (134)). Seizures induced during this time
also resulted in prolonged EEG suppression. This effect was even
greater when seizures were also induced during sleep (134). Two
caveats to this data are that only two time points were compared,
and these experiments were conducted with the animals in a
light-dark cycle environment. A broader sampling of time points
throughout the 24 h day and conducting experiments in constant
darkness, i.e., in the absence of circadian entraining light cues,
may reveal a different temporal pattern.

SUDEP victims are more likely to have a nocturnal pattern of
seizures (12, 14). Presently, it is impossible to determine whether
this effect is driven by circadian rhythms or homeostatic sleep
processes. Epilepsy surgery candidates, the population at the
highest risk of SUDEP, have decreased HRV during the night
compared to healthy controls (116). SUDEP is not uniformly
distributed throughout the 24 h day (12). SUDEP presumed to
have happened during sleep most commonly occurred between
0400 and 0800. SUDEP which is presumed to have happened
during wakefulness most commonly occurred between the 0800

FIGURE 2 | Temporal distribution of spontaneous seizure induced death in

Kv1.1 knockout mice [redrawn with permission from Moore et al. (133)].
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FIGURE 3 | Quantification of seizure induced suppression of breathing (RR;

respiratory rate, VT; tidal volume, VE; minute ventilation) following maximal

electroshock seizures induced during wakefulness or non-rapid eye movement

sleep (NREM) at different times of day [redrawn with permission from Purnell

et al. (134)]. *P < 0.05.

and 1200.The increased risk of seizures between 0400 and 1,200 is
interesting as it suggests that there may be a circadian component
to SUDEP which occurs independent of sleep state. If the
nocturnality of SUDEP was attributable to sleep factors alone
it would be expected that SUDEP frequency would decrease
dramatically after 0800 when most people are no longer sleeping.
In the MORTEMUS of SUDEP occurring in epilepsy monitoring
units, most deaths occurred during the night. Conversely, most
cases of near-SUDEP occurred during the day (10).

POTENTIAL MECHANISMS

Serotonin
In the central nervous system, serotonergic neurons are found
in the raphe nuclei along the midline of the brainstem
(135). Serotonergic neurotransmission modulates breathing,
sleep-wake regulation, circadian rhythmicity, and seizures
(136–139). Neuronal activity in the raphe nuclei is highest
during wakefulness, reduced during NREM sleep, and almost
entirely silent during REM sleep (140). Serotonin levels vary
depending on circadian phase in areas such as the dorsal
raphe, locus coeruleus, and hippocampus [Figure 4, (132, 141,
142, 149)]. Seizures suppress serotonergic neurotransmission
in the ictal and the postictal period (150). Increases in
serotonergic neurotransmission is a critical component of the
arousal response to inspired CO2 (151–153). Stable breathing
requires serotonergic neurotransmission (138). Seizure induced
disruption of normal serotonergic arousal mechanisms may
prevent the normal arousal response to CO2 in the postictal
period and facilitate death (105).

In epilepsy patients, selective serotonin reuptake inhibitors
(SSRI) reduce seizure associated hypoxemia (95). Larger seizure
induced changes in serum serotonin are associated with a
reduction in the tonic phase of a convulsive seizure (154).
Furthermore, interictal serum serotonin levels are associated
with shorter PGES (154). In the DBA/1 mouse model of
seizure induced respiratory arrest, administration of the SSRIs

fluoxetine, fluvoxamine, paroxetine, sertraline, and fluoxetine
prevent respiratory arrest and death (155–158). The likelihood
of seizure induced respiratory arrest is also reduced by
administration of 5-hydroxytryptophan, a molecule required
in serotonin synthesis (159). Conversely, serotonin antagonism
increases the likelihood of seizure induced respiratory arrest
consequent to audiogenic seizures (157). Seizures aremore severe
and more likely to be fatal in mice with a genetic deletion of
serotonin neurons in the central nervous system (Lmx1bf /f /p)
mice vs. wild type counterparts. Seizure induced death is reduced
following MES by SSRIs and 5-HT2A receptor agonists, but not
a 5-HT2C agonist (160). Times in which serotonergic activity is
lower, such as the during the night, may lower seizure threshold
and make seizures which do occur more dangerous (149, 161,
162)

Adenosine
Adenosine is a purinergic transmitter which is found in many
brain areas and known for its role in sleep-wake regulation,
breathing, epilepsy, and a variety of other diseases (163–
166). Adenosine accumulation and clearance is regulated in a
circadian fashion in a variety of brain areas [Figure 4, (146–
148, 167)]. Adenosine levels increase during wakefulness and
are depleted during sleep (163, 168). The sleep disturbances
often associated with epilepsy may be explained by alterations
in adenosine signaling (169). Adenosine is an endogenous
anticonvulsant and adenosine levels increase during seizures
(170, 171). Furthermore, manipulations to adenosine or its
clearance modulate epileptogenesis (171–173). Having recurrent
seizures may, in turn, decrease, or increase adenosine levels in
different brain areas (169). Adenosine analogs applied to the
brainstem of rats cause prolonged suppression of breathing (174,
175). Adenosine analogs administered intracerebroventricularly
decrease respiration and elicits apnea in cats (176). Inhibition
of adenosine clearance initially prevents the escalating severity
of motor seizures following kainate injection; however, the
adenosine kinase inhibited animals quickly progress to more
severe motor seizures and invariably die, whereas animals not
subjected to adenosine kinase inhibition do not die. Treating
with caffeine following seizure onset prolongs survival in mice
subjected to inhibition of adenosine clearance prior to seizure
induction with kainate (177). These results suggest that an
unchecked surge in adenosine consequent to a seizure may
result in precariously increased levels of neuronal inhibition and
thereby facilitate death (177).

Norepinephrine
Norepinephrine, a catecholaminergic neurotransmitter found in
the rostral brainstem including in the locus coeruleus, modulates
seizure activity, (178) breathing, (179), and is subject to circadian
regulation in an array of different brain areas [Figure 4,
(132, 143–145)]. Like serotonin, norepinephrine promotes
wakefulness and is an important part of the ascending arousal
system (180). In DBA/1 mice, the selective norepinephrine
reuptake inhibitor venlafaxine and the SSRIs fluoxetine and
fluvoxamine, which also potentiate noradrenergic activity, are
more effective in preventing seizure induced respiratory arrest
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FIGURE 4 | (A) Double plotted day/night differences in serotonin (5-HT) levels in different tissues of humans and rodents [redrawn with permission from Rao et al.

(141); Mateos et al. (142); Agren et al. (132)]. (B) Double plotted day/night differences in norepinephrine (NE) and Monoamine oxidase A (MAOA) in different tissues of

humans and rodents [redrawn with permission from (132, 143–145)]. (C) Double plotted day/night differences in adenosine (ADO) and its metabolizing agents in

different tissues of humans and rodents [redrawn with permission from (146–148)].

than the selective SSRI paroxetine (155, 157). Respiratory arrest
is also reduced in DBA/1 mice with the norepinephrine reuptake
inhibitor atomoxetine (181, 182). In light of this evidence, times
at which noradrenergic tone is low might make seizure induced
respiratory arrest more likely.

SUMMARY

The reason that SUDEP happens more during the night is
likely multifactorial involving both situational factors, such
as being unattended, and physiological changes due to the
influence of sleep and circadian rhythms. Human studies suggest
that being without a witness and prone following a seizure,
which is more likely during the night, might increase risk

for nocturnal SUDEP. At the same time, experimentation in
animal models and observation of human seizures indicate
that both sleep and circadian phase may adversely affect
postictal cardiovascular recovery. Sleep and circadian phase
have additive effects on breathing which may compound in
some way to produce a hazardous postictal state. Similarly,
it may be that sleep, and circadian phase have additive
effects on vulnerability to seizure induced respiratory arrest.
When the factors associated with being without a witness and
prone are added to the mix along with the potential effects
of sleep and circadian phase SUDEP might be more likely
(Figure 5).

Altering the circumstances in which a seizure occurs is
currently the best way for reducing the probability of nocturnal
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FIGURE 5 | A schematic representation of how different factors relevant to the night might alter the likelihood that a seizure results in SUDEP.

SUDEP, but it is not enough. Patients who do not sleep alone or
are being monitored by the use of a device seem to be somewhat
protected against SUDEP; however, numerous SUDEP cases have
occurred in the direct presence of medical professionals and
none of their interventions were sufficient to prevent death.
Families and caregivers should be educated about SUDEP and
given instruction in basic seizure first aid; however, it should
be made abundantly clear that such interventions might be
sufficient to prevent death, but it might not and those who
have lost someone due to SUDEP are in no way at fault. The
risk of SUDEP, nocturnal and otherwise, should be taken into
account by patients considering any choice which might alter
their likelihood of having a seizure such as adherence, titrating
off their medications, switching medication, or pursuing surgical
interventions or other non-pharmacological measures.
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