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Opioids remain among the most effective pain-relieving therapeutics. However, their
long-term use is limited due to the development of tolerance and potential for addiction.
For many years, researchers have explored the underlying mechanisms that lead to this
decreased effectiveness of opioids after repeated use, and numerous theories have
been proposed to explain these changes. The most widely studied theories involve
alterations in receptor trafficking and intracellular signaling. Other possible mechanisms
include the recruitment of new structural neuronal and microglia networks. While
many of these theories have been developed using molecular and cellular techniques,
more recent behavioral data also supports these findings. In this review, we focus
on the mechanisms that underlie tolerance within the descending pain modulatory
pathway, including alterations in intracellular signaling, neural-glial interactions, and
neurotransmission following opioid exposure. Developing a better understanding of the
relationship between these various mechanisms, within different parts of this pathway,
is vital for the identification of more efficacious, novel therapeutics to treat chronic pain.
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DESCENDING PAIN PATHWAY IN OPIOID FUNCTIONS

Opioids are widely used pain therapeutics; however, the development of tolerance limits the long-
term use of opioids due to the need for dose escalation over time in order to maintain analgesia.
While there are four main types of opioid receptors, most pain therapeutics, including morphine,
methadone, fentanyl, and oxycodone, target the mu opioid receptor (MOPr). The MOPr is a
G-protein coupled receptor that couples to inhibitory heterotrimeric G-proteins (Gi/o) producing
subsequent intracellular signaling and ion conductance (Goode and Raffa, 1997; Gintzler and
Chakrabarti, 2004). MOPr expression within the descending pain modulatory pathway, which
includes the ventrolateral periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and
the dorsal horn (DH) of the spinal cord, contribute to opioid-induced antinociception and the
development of opioid tolerance (Fang et al., 1989; Fairbanks and Wilcox, 1997; Tortorici et al.,
2001; Morgan et al., 2006; Bobeck et al., 2009).

GABAergic neurons within the PAG are a critical site of action by opioids. Under normal
conditions, these neurons have tonic activity (Figure 1, naive); however, upon binding of opioids
to MOPr, the activity of these neurons is decreased, disinhibiting PAG projections to the RVM
(Figure 1, Acute Morphine) (Stiller et al., 1996; Vaughan et al., 1997; Bobeck et al., 2014). In vitro
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electrophysiology studies have shown that opioids reduce the
frequency of spontaneous mIPSCs in PAG (Vaughan et al.,
1997; Bobeck et al., 2014), which indicates a reduction in the
probability of GABA release. This is also supported by in vivo
studies. Microinjection of bicuculline (GABAA agonist) into
the PAG produces antinociception, which suggests that GABA
is being tonically released (Bobeck et al., 2014). Furthermore,
microdialysis in the PAG reveals a reduction in extracellular
GABA following administration of morphine (Stiller et al., 1996).

Opioids activate different signaling cascades depending on
whether the MOPr is expressed at pre- or post- synaptic sites.
Opioid binding to postsynaptic MOPr results in the activation
of a G-protein inwardly rectifying potassium channels (GIRK)
that hyperpolarize GABAergic neurons in the PAG producing
an overall decrease in GABAergic neuron activity (Figure 1;
Acute Moprhine) (North and Williams, 1983; Pan et al., 1990).
Alternatively, when MOPr are expressed at presynaptic sites they
produce an inhibition of voltage gated calcium channels and
voltage gated potassium channels (Kv) resulting in the inhibition
of GABA release (Figure 1; Acute Morphine) (Wilding et al.,
1995; Vaughan et al., 1997; Connor et al., 1999; Williams et al.,
2001). Overall, the combined action of MOPr binding by opioids
is a decrease in GABAergic neuronal activity, and therefore an
increase in output from the PAG to the RVM (Figure 1; Moreau
and Fields, 1986; Depaulis et al., 1987; Jacquet, 1988; Osborne
et al., 1996). Recent studies support the hypothesis that this
increase in PAG output to the RVM is a main contributor to the
opioid-induced antinociception by demonstrating that selective
inhibition of GABAergic neurons or activation of glutamatergic
output neurons in the PAG mimics the antinociceptive effects
of opioids (Samineni et al., 2017). In summary, these findings
support the notion that analgesia is produced by disinhibition of
excitatory outputs from the PAG.

The overall effect of MOPr activation in the PAG is an increase
in output to the two distinct cell types within the RVM: off-cells
and on-cells (Fields et al., 1983; Fields and Heinricher, 1985).
The activity of off-cells pauses just prior to the response to a
painful stimulus, while the activity of on-cells increases during
this response, and both of these activities are blocked during
the administration of opioids. There is conflicting evidence
regarding the excitatory versus inhibitory nature of the PAG
projections to the on- and off-cells in the RVM. Studies in
GAD67-GFP mice, a marker for GABAergic neurons, show
that retrogradely labeled neurons from the RVM do no co-
localize with GAD67 in the PAG (Park et al., 2010), indicating
that the PAG to RVM projection is glutamatergic. In contrast,
studies in rats demonstrate that PAG to RVM projections are a
mix of GABAergic and glutamatergic neurons (Morgan et al.,
2008). Furthermore, these studies demonstrate that GABAergic
neurons project from PAG and target on-cells and glutamatergic
neurons project from the PAG and target off-cells (Morgan et al.,
2008). Despite these differences, both studies support the notion
that opioids inhibit GABA release from interneurons in the
PAG, which disinhibit (i.e., excite) glutamate projections to off-
cells. Given that the off-cells in the RVM are GABAergic, they
subsequently inhibit pain responses in the DH (Fields et al., 1983;
Moreau and Fields, 1986; Morgan et al., 2008). Overall, these

studies support the concept that opioid-induced antinociception
is mediated by direct excitation of off-cells and subsequent
inhibition of pain in the spinal cord.

At each level of this pathway, a myriad of cellular effects
drives the physiological changes mentioned above, and are highly
correlated with the development of opioid tolerance. One of the
most studied mechanisms involves regulation and signaling at
the MOPr. Current research demonstrates that while MOPr is
a key player in the development of antinociceptive tolerance,
mechanisms beyond simple receptor desensitization, including
alterations in neurotransmission and β-arrestin dependent
signaling, are also critical. Furthermore, MOPr expression in
non-neuronal cells, specifically on microglia and astrocytes
within the spinal cord, and more recently within the PAG, greatly
contributes to the development of opioid tolerance.

OPIOID TOLERANCE AND
NEUROTRANSMISSION IN THE
DESCENDING PAIN PATHWAY

Evidence suggests that tolerance is due to changes in the
properties of GABAergic neurons in the PAG (Morgan et al.,
2003). First of all, while microinjection of morphine into the
PAG or RVM produces antinociception, repeated microinjection
into the PAG and not the RVM results in tolerance (Morgan
et al., 2005; Campion et al., 2016). Secondly, inhibition of
MOPrs within the PAG blocks tolerance to systemic morphine
(Lane et al., 2005). Furthermore, inactivation of RVM by a
GABA agonist during direct administration of morphine into
the PAG still leads to tolerance development (Lane et al., 2005).
Therefore, MOPr within the PAG are necessary and sufficient in
the development of opioid tolerance.

However, the development of tolerance within the PAG
produces downstream effects along the descending pain pathway.
This is evidenced by the fact that direct injection of morphine into
the PAG affects RVM signaling, suggesting that their activity is in
fact coupled (Tortorici et al., 2001). While acute administration
of opioids into the PAG disrupts the activity of on- and off-
cells in response to painful stimuli, these cells respond normally
following chronic infusion that is associated with tolerance (Lane
et al., 2004). Another side effect of chronic morphine treatment
is hyperalgesia, or the increased sensitivity to pain following
chronic morphine treatment. One theory is that hyperalgesia may
manifest as opioid-induced tolerance since increased sensitivity
to pain would counteract the pain-relieving effects of opioids.
Some studies suggest that increased activation of the descending
pain pathway by chronic morphine produces neuroadaptations
with in the RVM that result in hyperalgesia (Vanderah et al.,
2001). In support of this, one study demonstrated that chronic
morphine produced an increase in the number of active on-
cells, likely increasing sensitivity to noxious stimuli (Meng and
Harasawa, 2007), which may be responsible for morphine-
induced hyperalgesia. While RVM plays a role in opioid-induced
tolerance, direct injections into the RVM leads to a lesser
development of tolerance compared to PAG administration

Frontiers in Neuroscience | www.frontiersin.org 2 November 2018 | Volume 12 | Article 886

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00886 November 24, 2018 Time: 12:25 # 3

Lueptow et al. Pain Pathway and Opioid Tolerance

FIGURE 1 | The effects of morphine on neuronal transmission in the descending pain pathway. In the naïve state, GABAergic interneurons in the periaqueductal
gray (PAG) fire tonically, thereby producing a steady release of GABA and inhibition of PAG output neurons. Upon administration of acute morphine, postsynaptic
mu opioid receptor (MOPr) activate GIRK channels via Gα proteins resulting in K+ release and hyperpolarization of the neuron. Additionally, MOPr activate Gi/o

proteins, which result in the inhibition of adenylyl cyclase (AC) and decrease cAMP production. Morphine binding of presynaptic MOPr inhibits voltage dependent
calcium (Ca2+) conductances via Gβγ proteins and activated voltage dependent potassium conductances (Kv) via Phospholipase A (PLA). Overall, these two
mechanisms block release of the neurotransmitter GABA, therefore suppressing inhibition, increasing output, of the PAG neurons projecting to the rostral
ventromedial medulla (RVM). Acute morphine treatment also activates toll-like receptor 4 (TLR4) receptors on astrocytes and microglia in the PAG inducing several
signaling cascades.

(Morgan et al., 2005), indicating that activation of the entire
descending pain circuit is essential.

The neurophysiological mechanisms of tolerance in the PAG
are mediated by MOPr uncoupling from downstream G-protein
mediated signaling (Figure 2). One key study demonstrated
that chronic morphine decreases opioid-mediated GIRK currents
in the PAG (Bagley et al., 2005), supporting the notion that
morphine tolerance is associated with uncoupling of G-protein
mediated signaling. Since GIRK channels regulate neuronal
excitability, this mechanism would result in a reduction in
the ability of MOPr activation to suppress GABAergic neuron
activity. Additionally, morphine tolerance is also associated with
decreased efficacy of other MOPr agonists ability to reduce
voltage gated calcium currents in the PAG (Bagley et al., 2005).
The net effect of the uncoupling of MOPr activation from voltage
gated calcium channels would be the attenuation of MOPr
mediated inhibition of GABA release. However, the precise

mechanisms underlying MOPr uncoupling from voltage gated
calcium channels are complex, as cellular tolerance associated
with this effect was not observed in β-arrestin two knockout mice
(Connor et al., 2015), suggesting that β-arrestin two also plays a
role in this interaction.

GABA release is also regulated by signaling through
phospholipase A2-mediated activation of voltage gated
potassium channels (Figure 1; Wimpey and Chavkin, 1991;
Vaughan et al., 1997). This signaling pathway is differentially
affected by morphine tolerance versus withdrawal. Morphine
tolerance is associated with a decrease in opioid-mediated
inhibition of GABA release (Figure 2) that is not a result of
MOPr desensitization (Fyfe et al., 2010). However, during
naloxone-precipitated withdrawal following chronic morphine,
GABA release is enhanced via an increase in adenylyl cyclase
(AC) signaling (Sharma et al., 1975; Ingram et al., 1998; Hack
et al., 2003). These two outcomes may be related as studies have
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FIGURE 2 | Effects of repeated morphine treatment on glial and neuronal
signaling in the PAG. Chronic morphine treatment induces several side effects
that block opioid-induced decreases in GABAergic interneuron activity at the
neuronal level, postsynaptically. This includes the uncoupling of MOPr from
G-protein mediated effects on GIRK channels and AC. This results in an
upregulation of cAMP. Uncoupling also occurs in the presynaptic region,
blocking the Gβγ mediated inhibition of calcium channels and PLA mediated
activation of Kv channels. In this state, binding of opioids to MOPr no longer
results in suppression of GABA release. At the level of glial signaling, upon
repeated treatment with morphine, there is a rapid upregulation of TLR4 on
astrocytes and microglia within the PAG, resulting in an increase in excitatory
cytokine release, as well as a switch from Gi/o to Gs coupling at MOPr,
resulting in an overall increase in excitatory tone that is correlated with opioid
tolerance.

demonstrated that inhibition of AC in the PAG prevents the
development and expression of morphine tolerance (Bobeck
et al., 2014). Moreover, AC activation is sufficient to increase
GABA release from PAG neurons (Bobeck et al., 2014).

INTRACELLULAR SIGNALING CHANGES
IN THE PAG-RVM-DH PATHWAY IN
OPIOID TOLERANCE

Direct activation of the MOPr results in the Gα subunit-mediated
inhibition of the AC-cyclic adenosine monophosphate (cAMP)-
protein kinase A (PKA) pathway (Figure 1; Sharma et al., 1975;
Guitart and Nestler, 1989; Hirst and Lambert, 1995). However,
opioid binding activates other signaling proteins, such as protein
kinase C (PKC) and extracellular signal-regulated kinase 1/2
(ERK1/2) via β-arrestin pathways, which are independent of
G-protein signaling. As mentioned previously, downstream of
G-protein mediated signaling, there is an inhibition of calcium

channels and activation of potassium channels that leads to
hyperpolarization and a reduction in neurotransmitter release
in the PAG that produces antinociception (Bourinet et al., 1996;
Ippolito et al., 2002; Torrecilla et al., 2002). Chronic morphine
produces adaptations that contribute to opioid-tolerance within
all these downstream signaling pathways.

Long-term opioid treatment leads to adaptations in many
signaling proteins within the PAG-RVM-DH pathway, which
have been proposed as mechanisms of opioid tolerance. In
contrast to the acute inhibitory effect of opioids on cAMP
production, chronic morphine treatment upregulates cAMP
(Figure 2; Guitart and Nestler, 1989; Gintzler and Chakrabarti,
2004). It has been proposed that this upregulation in cAMP
is caused by compensatory changes in intracellular signaling,
or an uncoupling of Gi/o-proteins from the receptor and a
switch to coupling with Gs-proteins (Gintzler and Chakrabarti,
2004). Very few in vivo studies have evaluated the role of the
AC pathway in morphine tolerance, but inhibition of the AC
pathway, via either intracerebroventricular (ICV) or intra-PAG
injection, during morphine pretreatment has been shown to
block the development of morphine tolerance (Smith et al., 2006;
Gabra et al., 2008; Bobeck et al., 2014). In the DH, administration
of morphine results in no change or even an increase in MOPr
expression, but a significant down-regulation of the G-protein
activation in the DH, as measured by [35S]-GTPyS (Maher et al.,
2001; Ray et al., 2004). The loss of G-protein signaling is likely a
switch in MOPr G-protein coupling, from Gi/o to Gs coupling
(Gintzler and Chakrabarti, 2004). Recently, adrenomedullin,
a pronociceptive peptide from the CGRP family, has been
implicated in mediating this G-protein switch in the DH.
Following chronic morphine, adrenomedullin is significantly
upregulated in the DH and dorsal root ganglia, and inhibition of
its receptor prevents or reverses morphine tolerance and blocks
the MOPr Gi/o to Gs switch in coupling (Wang et al., 2016).

Behavioral studies suggest that the mechanisms underlying
tolerance are dependent on the specific MOPr agonist being
studied. Some agonists, such as morphine, do not readily recruit
β-arrestin or internalize the receptor, as compared to high efficacy
agonists, such as DAMGO or fentanyl, which readily do both.
This difference in signaling suggests differences in tolerance
mechanisms, where morphine-mediated tolerance utilizes a
G-protein dependent mechanism, and other MOPr agonists, such
as DAMGO or fentanyl, use a β-arrestin dependent mechanism
(Hull et al., 2010; Melief et al., 2010; Bobeck et al., 2014, 2016;
Morgan et al., 2014). For example, inhibition of ERK1/2 within
the PAG during the development of tolerance enhances morphine
tolerance (Macey et al., 2009), but reduces tolerance to DAMGO
and has no effect on fentanyl tolerance (Bobeck et al., 2016).
Furthermore, inhibition of the G-protein dependent pathway
(i.e., c-Jun N-terminal kinase) blocks development of tolerance
to morphine, but not fentanyl. However, inhibition of β-arrestin
dependent signaling (i.e., G protein-coupled receptor kinase)
blocks expression of fentanyl tolerance (Morgan et al., 2014).

Neuropeptides within the descending pain pathway have
also been shown to regulate opioid tolerance. One such
neuropeptide, cholecystokinin (CCK), is particularly enriched
in supraspinal midbrain regions known to regulate spinal
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nociception (King et al., 2005). There is evidence that CCK acting
within the PAG-RVM-DH pathway regulates morphine tolerance
(Xie et al., 2005; Thomas et al., 2015). A CCK receptor antagonist,
directly injected into the PAG, is able to block morphine tolerance
(Xie et al., 2005). In the RVM, injection of CCK blocks opioid
activation of off-cells that mediate descending antinociception,
resulting in a blockade of the analgesic effects of morphine (Xu
et al., 2014; Thomas et al., 2015).

N-methyl D-aspartate receptors (NMDArs) have been
heavily implicated in the development of both spinal-mediated
hyperalgesia and opioid tolerance. NMDAr antagonists or the
targeted disruption of the NR2 subunits, NR2a and NR2b,
attenuates opioid tolerance (Price et al., 2000; Zhao et al., 2012).
Deletion of PSD-93, the anchoring protein for NR2a and NR2b
in the synapse, leads to a DH site-specific down-regulation of
both subunits from the plasma membrane into the cytosolic
compartment, and a reduction in the development of morphine
tolerance (Liaw et al., 2008). This is a region-specific effect,
as other portions of the descending pain pathway did not see
changes in the NR2 subunit localization (Kozela and Popik,
2007). Interestingly, NMDArs in the PAG have not been
implicated in tolerance (Morgan et al., 2009).

A few other main signaling targets have been implicated
in DH-mediated opioid tolerance, as well. Mammalian target
of rapamycin (mTOR) is found to be upregulated following
repeated intrathecal morphine administration, and this effect is
mediated by activation of PI3K/AKT following MOPr activation
(Xu et al., 2015). Administration of mTOR inhibitors is able to
both prevent and reverse morphine tolerance (Xu et al., 2014,
2015; Jiang et al., 2016; Chen et al., 2017). Calcium/calmodulin-
dependent protein kinase IIα has also been implicated in the
development of tolerance (Brüggemann et al., 2000). It has been
shown to colocalize with MOPr, in the DH specifically, following
opioid administration, possibly resulting in increased MOPr
phosphorylation and desensitization (Brüggemann et al., 2000).

IMPACT OF OPIOID-INDUCED
NEUROINFLAMMATION ON THE
DEVELOPMENT OF TOLERANCE

Over the past few decades, researchers have discovered that
opioids are potent activators of immune cells within the
CNS, and this inflammation is a strong contributor to the
development of opioid tolerance (Giron et al., 2015; Cahill and
Taylor, 2017). Specifically, repeated administration of opioids,
which leads to activation of glia within the PAG and spinal
cord of the descending pain pathway, results in alterations in
both intracellular signaling cascades and signaling properties of
neurons. Furthermore, microglial inhibitors have been shown
to attenuate morphine-induced tolerance (Song and Zhao,
2001; Raghavendra et al., 2002, 2004; Cui et al., 2008; Eidson
and Murphy, 2013; Harada et al., 2013). Though the precise
mechanisms that underlie these changes are only beginning to be
uncovered, a few notable pathways have emerged that are likely
significant contributors to the development of opioid tolerance.

One prominent pro-inflammatory signaling cascade that
has been implicated in opioid tolerance involves the immune
receptor, toll-like receptor 4 (TLR4, Figure 2). Upon agonist
binding to TRL4, sphingomyelinase produces ceramide, which
allows for interaction of the receptor with its co-activators
myeloid differentiation factor-2 (MD-2) and CD14, resulting in
subsequent activation of 3 parallel pathways: the p38-MAPK
pathway, the PI3K/AKT pathway (cell survival/apoptosis),
and the NFκB pathway (proinflammatory cytokine release)
(Rönnbäck and Hansson, 1988; Watkins et al., 2009; Nakamoto
et al., 2012; Eidson and Murphy, 2013). In the spinal cord, TLR4
is primarily expressed on microglial cells and is shown to be
upregulated (Figure 2) along with its cofactor MD-2 following
morphine treatment (Wang et al., 2012), and activation of TLR4
signaling can induce “naïve tolerance” to opioids (Eidson and
Murphy, 2013; Grace et al., 2015). Furthermore, inhibition of
TLR4, co-activators MD-2 or CD14, or inhibition of ceramide
biosynthesis, leads to attenuation of morphine tolerance, as well
as decreased microglial activation, suggesting a prominent role
for the TLR4 pathway in the development of opioid tolerance,
at the level of the spinal cord (Ndengele et al., 2009; Hutchinson
et al., 2010, 2011; Muscoli et al., 2010; Thomas et al., 2015).

Interestingly, it is also thought that TLR4 is directly activated
by opioids (Figures 1, 2; Hutchinson et al., 2011; Wang et al.,
2012; Grace et al., 2015), and, perhaps more importantly, the
accessory protein MD-2 is able to non-stereoselectively bind
opioids and signal through TRL4 (Grace et al., 2015). Since the
classic opioid receptors only bind the (−)-opioid isomer, the (+)-
opioid isomer antagonists could be used to block TLR4-mediated
microglial activation and pro-inflammatory cytokine production.
In fact, studies have demonstrated that (+)-naloxone is able to
attenuate morphine-induced analgesia, specifically at the level
of the spinal cord (Hutchinson et al., 2010; Lewis et al., 2010).
This non-stereoselectivity at the TLR4 receptor complex could
potentially be leveraged for the enhancement of the therapeutic
efficacy of opioids, including enhancing analgesic effects and
reducing tolerance.

How does the activation of glial cells lead to alterations in
neuronal signaling? One possibility is through the alteration of
neuronal excitability via increased release of glially-derived pro-
inflammatory cytokines, including TNF (tumor necrosis factor)
and IL-1β, which are known to increase neuronal AMPA and
NMDA receptors, as well as down regulate GABA receptors
(Viviani et al., 2003; Stellwagen, 2005). Within the PAG, repeated
morphine administration results in an upregulation of TLR4,
which subsequently leads to an increase in release of TNF and
IL-1β (Eidson and Murphy, 2013; Eidson et al., 2017). This
upregulation is concurrent with a downregulation of astrocyte
glutamate transporters GLT-1 and GLAST, which are responsible
for synaptic glutamate uptake. The overall effect is an increase
in neuronal excitability, thereby lowering the ability of opioids
to hyperpolarize mu-containing GABAergic neurons (Figure 2).
Within the PAG to RVM circuitry, this results in an inability
for morphine to disinhibit output neurons to RVM (Eidson and
Murphy, 2013; Eidson et al., 2017).

Another potential point of cross talk is via purinergic
receptors, specifically P2X4 and P2X7, which are primarily
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expressed on microglia. These receptors are also capable of
upregulating pro-inflammatory cytokines, and blocking their
activity in the spinal cord attenuates morphine tolerance
(Horvath et al., 2010; Zhou et al., 2010; Xiao et al., 2015). P2X4
activates the p38-MAPK pathway, resulting in the release of IL-
1β, TNF-α, and BDNF, which, as mentioned above, are known to
alter neuronal excitability and contribute to pain hypersensitivity,
but no direct connection has been made to opioid tolerance
(Ferrini et al., 2013; Grace et al., 2015; Thomas et al., 2015).
However, P2X7 mediated release of IL-18 from microglia induces
activation of the IL-18 receptor on astrocytes, thereby increasing
the release of D-serine, which is able to activate NMDA receptors
in neurons. Activation of both receptors is able to alter glial
activation and neuronal excitability, suggesting a complicated
crosstalk between cell types in the spinal cord that is correlated
with morphine tolerance (Chen et al., 2012).

CONCLUSION

The descending pain pathway is a critical modulator of
nociception and plays an important role in mediating
endogenous and exogenous opioid-induced analgesia. Because
of this, it is highly implicated in allostatic cellular and
molecular changes following repeated opioid use that lead
to the development of tolerance. While this review has
touched on a number of those changes at each level of the
descending pain pathway, including desensitization of MOPr,
altered cellular excitability and signaling, and induction of
immune-competent cells, we do not yet have a complete
understanding of all the factors that might be contributing to
opioid tolerance.

Much of the literature on opioid tolerance has focused the
effects of morphine on this system. Future research must expand
to include other commonly used opioids, especially in light of
the increasing use of oxycodone and fentanyl, as each of these
has widely different pharmacokinetic and signaling profiles, and

may have differential effects on each level of the PAG-RVM-
DH pathway. Indeed, studies looking at cross-tolerance between
opioid analgesics suggest that differences in the distribution of the
drug within the pain pathway may be differentially contributing
to the development of tolerance. Furthermore, the cellular
signaling pathways initiated within these spinal and supraspinal
regions following administration of different opioids are known
to vary.

Finally, the research design of the studies related to opioids
and tolerance has varied widely in terms of not only the drugs
used, but also routes of administration, length of exposure,
and use of biological systems. Also, the majority of studies
on opioid tolerance have focused on males and have largely
excluded females. Given that males show greater morphine
potency, tolerance, and activation of neurons from PAG to RVM
following morphine, as compared to females (Loyd et al., 2008),
it is imperative to further explore these differences. Overall,
these variations in research design have resulted in a myriad
of observed cellular changes that correlate with tolerance, but
with no definite conclusions or unifying theories of tolerance.
While no one specific etiology may exist, future researchers
must be careful in designing these studies, in order to make
meaningful conclusions regarding the cellular impact of opioids
in the development of tolerance.
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