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Roots are vital plant organs that determine adaptation to various soil conditions.
The present study evaluated a core winter wheat collection for rooting depth under
PEG induced early stage water stress and non-stress growing conditions. Analysis
of phenotypic data indicated highly significant (p < 0.01) variation among genotypes.
Broad sense heritability of 59 and 73% with corresponding genetic gains of 7.6 and 9.7
(5% selection intensity) were found under non-stress and stress conditions, respectively.
The test genotypes were grouped in to three distinct clusters using unweighted pair
group method with arithmetic mean (UPGMA) clustering based on maximum Euclidian
distance. The first three principal components gave optimum mixed linear model for
genome wide association study (GWAS). Linkage disequilibrium (LD) analysis showed
significant LD (p < 0.05) amongst 15% of total marker pairs (25,125). Nearly 16% of
the significant LDs were among inter chromosomal marker pairs. GWAS revealed five
significant root length QTLs spread across four chromosomes. None of the identified
QTLs were common between the two growing conditions. Stress specific QTLs,
combined explaining 31% of phenotypic variation were located on chromosomes 2B
(wPt6278) and 3B (wPt1159). Similarly, two of the three QTLs (wPt0021 and wPt8890)
identified under the non-stress condition were found on chromosomes 3B and 5B,
respectively. The B genome showed significant importance in controlling root growth
both under stress and non-stress conditions. The identified markers can potentially be
validated and used for marker assisted selection.

Keywords: genome wide association, hexaploid wheat, linkage disequilibrium, root length, water stress

INTRODUCTION

Common wheat (Triticum aestivum L.) is one of the earliest cereals ever domesticated and is
currently one of the major sources of food and feed in the world. Wheat is adapted to diverse
climatic zones including drought prone areas (Tardif et al., 2007; Monneveux et al., 2012). Changes
in global climate and expansion of wheat production to less optimum production zones are causing
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severe cop losses annually (Olmstead and Rhode, 2010; Tanaka
et al., 2015). Water stress is one of the grand challenges limiting
crop growth and productivity in various parts of the world
(Fleury et al., 2010; Zhao and Dai, 2015). The unabated expansion
of global warming and erratic rainfall pattern remain to be threats
for global food security (Wheeler and Von Braun, 2013).

Crop productivity in dry areas can be improved through
appropriate exploitation of available genetic variability of crop
plants to better adapt to climate change (Pieruschka and
Lawson, 2015; Reynolds and Langridge, 2016). Reintroducing
valuable alleles from wild progenitors of crop plants helps enrich
domesticated gene pool (Feldman and Millet, 2001; Gur and
Zamir, 2004). In this regard, wild emmer (Triticum turgidum)
has been reported to harbor rich allelic diversity for numerous
traits, including deep rooting for water stress resistance (Peng
et al., 2012; Merchuk-Ovnat et al., 2017).

Water stress resistance in plants involves intricate
physiochemical pathways ranging from cellular to whole-plant
signaling (Tardieu, 2012, 2016; Janiak et al., 2015). Therefore, it
is necessary to break down genetic analysis into smaller scales
including cells and organs to better understand the underlying
genetic mechanisms of water stress resistance. Plant structural
traits including deep rooting, thick wax layer, spiny leaves, and
acute leaf angle are frequently investigated due to their role
in water stress resistance (Wasson et al., 2012; Comas et al.,
2013). Deep rooting is an important root architectural trait that
enables access water from deeper soil profiles thereby improving
crop productivity. Gao and Lynch (2016) demonstrated that
deeper roots in maize improved water acquisition, and as a
result, biomass and grain yield. Similarly, deep rooting has been
reported to improve grain yield in rice (Uga et al., 2013) and
chickpea (Varshney et al., 2013). However, phenotyping roots on
a large number of genotypes is time taking and labor intensive.
As a result, plant roots are less explored compared with above
ground parts (Fleury et al., 2010). Employing molecular markers
to run foreground and background germplasm screening helps
minimize labor and time required to phenotype roots thereby
improving selection efficiency (Varshney et al., 2009; Beyene
et al., 2016; Rai et al., 2018). Deep rooting QTLs have been
identified and closest markers have been validated for marker
assisted breeding in wheat (Ayalew et al., 2017), and rice (Obara
et al., 2010; Uga et al., 2013). However, most previous studies used
bi-parental structured populations, which are not effective in
exploiting available allele diversity in the gene pool. Genome wide
association studies (GWAS) on the other hand is an innovative
approach to accommodate as many allelic diversity as possible.

Gaut and Long (2003), Meuwissen and Goddard (2004),
Bradbury et al. (2007), Kang et al. (2008), Ramya et al. (2010),
Zhang et al. (2010), Lipka et al. (2012), Qie et al. (2014),
Tadesse et al. (2015), Ayalew et al. (2018), Onyemaobi et al.
(2018). Compared with above ground plant parts, genome wide
association studies on root growth are limited. This study
was conducted to (1) characterize genotypic and phenotypic
diversity of a core winter wheat collection, (2) analyze LD
and population structure, and (3) identify genomic regions
significantly associated with root length under water stress and
non-water stress growing conditions.

MATERIALS AND METHODS

Plant Materials and Phenotypic
Evaluation
Ninety-one genotypes of a winter wheat core collection obtained
from the Institute of Field and Vegetable Crops (Novi Sad,
Serbia) (Table 1) were evaluated for root length at early plant
growth stage both under water stress and non-stress conditions.
The core collection consists of diverse genotypes which were
collected from 21 countries across five continents (Neumann
et al., 2011). Phenotypic evaluation for osmotic stress was carried
out in a controlled growing environment at the school of plant
biology, The University of Western Australia. A hydroponic
culture optimized for a similar research by Ayalew et al. (2015)
was used. Plastic boxes of 3,000 ml were used with 8 mm
diameter holes drilled on lids. The tops of the lids were lined
with filter paper to keep plants in place and the surface moist.
Seeds were first germinated in Petri dishes lined with filter
paper for 48 h and then healthy and vigorous seedlings were
transferred to the water system organized in a randomized
complete block design with three replicates. Each replication was
represented by mean value of two individual plants. Osmotic
stress of −0.5 MPa was induced using PEG 6000 (Sinopharm
Chemical Reagent Co., Ltd., Shanghi, China). The final stress
level during data collection was measured using MP4 dewpoint
potentiameter (Decagon Devices Inc., 2003) and the stress
was progressive which reached −0.6 ± 0.1 MPa at the last
date of the stress period. Plant nutrition in the form of half
strength Hoagland’s solution, and water stress (−0.5 MPa) using
PEG6000 solution were added 7 days after germination for the
treatment set (stressed), and Hoagland’s solution alone for the
control (non-stressed) set, respectively. The pH of the solution
was adjusted to 5.5–5.7 while relative humidity was between
65 and 70%. The temperature was set to 25/22◦C day/night
while light intensity of 300 µmol.m−2.s−1 was supplied using
cool florescent lamps in 10/14 h dark and light timing. The
solution was being constantly aerated by bubbling air in to the
solution using an electric bubbler. Data were scored on root
length 17 days after planting. Graduated ruler (cm) was used
to measure the length of the longest roots in each replicate
sample.

Molecular Marker Data
The test genotypes were previously assayed using diversity
array technology (DArT) markers by Triticarte Pty. Ltd.
(Canberra, ACT, Australia1), a whole-genome profiling service
laboratory, as described by Neumann et al. (2011). Five
hundred and thirty-three polymorphic DArT markers with
known linkage positions, based on CIMMYT integrated map
(Crossa et al., 2007) were used (Supplementary Figure S1).
Average p-value, call rate and polymorphism information
content (PIC) of all of the markers were 86, 0.35, and 95,
respectively.

1http://www.triticarte.com.au/
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TABLE 1 | Genotypes (91) used in this experiment and their respective countries of origin.

Accession name Origin Accession name Origin Accession name Origin

Magnif 41 Argentina Acciaio Italy PKB Krupna Serbia

Gala Argentina Ai-bian Japan NS 46/90 Serbia

Kite Australia Norin 10 Japan Mina Serbia

Minister Dwarf Australia Saitama - 27 Japan NS 63-24 Serbia

Mexico 120 Australia Tr. Compactum Latvia NS 74/95 Serbia

Timson Australia Vireo “S” Mexico NS 79/90 Serbia

Triple dirk “S” Australia Mex. 3 Mexico Avalon United Kingdom

Tr. dirk “B”(GK 775) Australia Cajeme 71 Mexico Brigand United Kingdom

Cook Australia Siete Cerros Mexico TJB 990-15 United Kingdom

Tr. dirk “B”(GK 12) Australia Inia 66 Mexico Highbury United Kingdom

Rusalka Bulgaria Mex. 17 bb Mexico Mironovska 808 Ukrain

Lambriego Inia Chile BCD 1302/83 Moldova HAYS 2 United States

Ching-Chang 6 China F 4 4687 Romania WWMCB 2 United States

Al Kan Tzao China Donska polup. Rusia INTRO 615 United States

Peking 11 China Bezostaya 1 Rusia UC 65680 United States

Ana China NS 602 Serbia Vel - USA United States

ZG 987/3 China NS 559 Serbia Semilia Eligulata United States

ZGK 238/82 China L 1A/91 Serbia Holly E United States

ZG 1011 China L 1/91 Serbia Centurk United States

Tibet Dwarf China NS 33/90 Serbia Helios United States

Tom Thumb China Sofija Serbia Florida United States

Durin France Nizija Serbia Tr.Sphaerococcum United States

Capelle Desprez France Sava Serbia Benni multifloret United States

L-1 Hungary NS 55-25 Serbia Hope United States

Szegedi 768 Hungary Slavija Serbia Norin10/Brevor14 United States

Bankuty 1205 Hungary Nov. Crvena Serbia Phoenix United States

Hira India Pobeda Serbia Lr 10 United States

UPI-301 India Renesansa Serbia Purd./Loras United States

Sonalika India Ivanka Serbia Red Coat United States

Suwwon 92 India NS 22/92 Serbia Purdue 39120 United States

Purdue 5392 United States

Data Analysis
Phenotypic Data Analysis
Phenotypic data were subjected to statistical analysis using
CropStat 2007.3 (International Rice Research Institute, 2007)
software accounting for measurement and block effects based on
the following fixed effects model: yij = µ+ gi + bj + εij, where yij
is the observed mean, µ is the general mean, gi is the genotype, bj
is the block and εij is the error effects. Variance components were
estimated as: δ2

g = (MSg−MSe)
r while δ2

e = MSe
r , where MSg is mean

square of the lines, MSe is the residual error and r the number
of replicates and broad-sense heritability were estimated using
the following expression: H2 = δ2

g/(δ
2
g + δ2

(e/r)), where δ2
g and

δ2
e are the estimated genotypic and error variances, respectively

(Nyquist and Baker, 1991). Genetic gain was calculated using the
formula: Gs = K∗H2∗(δ2

p)−1/2, where K is the selection intensity
at 5% (k = 2.056), H2 is heritability in broad sense and, (δ2

p)−1/2

is phenotypic standard deviation.

Population Structure and Linkage Disequilibrium
Linkage disequilibrium values (r2 and p-values) between DArT
markers were calculated using TASSEL software version 5.2.18

(Bradbury et al., 2007). Minor allele loci with <0.05 frequency
were filtered out to reduce biased LD estimations between
pairs of loci (Gaut and Long, 2003). The r2 values for
pairs of loci were plotted as a function of map distances,
and LD decay (r2 < 0.19) was estimated using the average
distances of marker pairs showing LD values lower than 0.19
(Whitt and Buckler, 2003).

Principal components and a kinship matrix were calculated
using GAPIT statistical package in R software (Kang et al., 2008;
Lipka et al., 2012). The kinship matrix was calculated based on
VanRaden’s method (VanRaden, 2008). Unweighted pair group
method with arithmetic mean (UPGMA) was used to cluster
the wheat genotypes based on polymorphism of the 533 DArT
markers with known chromosomal positions. The distribution
of correlation coefficients (r2) between DArT markers located at
different physical distances of the wheat genome was calculated
to establish LD among loci.

Genome-Wide Association Scan
GWAS analyses were performed using the Genomic Association
and Prediction Integrated Tool (GAPIT) package in R (Lipka
et al., 2012). Compressed mixed linear model (CMLM) approach
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FIGURE 1 | Distribution of mean root length (cm) under stress (A), and
non-stress (B) growing conditions, and the mean root length (cm) ± SE of all
genotypes under stress and non-stress conditions (C).

accounting for population parameters was used (Zhang et al.,
2010). The optimum number of principal components (PCs) to
be included in the final GWAS model was determined by forward
model selection based on Bayesian information criterion (BIC).
The following mixed model, accounting for genetic relatedness
among lines was used (Zhang et al., 2010). Y = Xβ + Zu + e,
where Y is the vector of observed phenotypes; β is fixed effects,
including the genetic marker, population structure (Q), and the
intercept; u is random additive genetic effects from multiple
background QTL for individuals/lines; X and Z are the known
design matrices; and e is the unobserved vector of residuals. The

p-values from CMLM analysis were adjusted based on Benjamini-
Hochberg false discovery rate controlling procedure (Benjamini
and Hochberg, 1995).

RESULTS

Phenotypic Variation
Mean root lengths ranged from 5 to 25 cm under stress, and from
13 to 32 cm under non-stress conditions (Figures 1A,B). The
induced stress reduced average root length by 50.5% (Figure 1C).
Genotypes “NS 63-24” and “Tr. dirk “B” (GK 12)” showed the
longest roots under stress condition while genotypes “Suwwon
92” and “Holly E” were longest rooted genotypes under non-
stress condition.

Analysis of variance showed significant variations for root
length under the two growing conditions (Table 2). Heritability
was moderate (59%) to high (73%) under non-stress and stress
conditions, respectively. Genetic gain at 5% selection intensity
ranged from 7.6 to 9.6 under non-stress and stress conditions,
respectively (Table 2).

Genotypic Diversity and Linkage
Disequilibrium
Unweighted pair group method with arithmetic mean (UPGMA)
clustering based on maximum Euclidian distance grouped the 91
wheat accessions into three major clusters (Figure 2A). Several
of the principal components (PCs) also showed high eigenvalues
suggesting significant diversity among the test genotypes. The
first three principal components (PCs) were found optimum to
fit the mixed linear model. Nearly 15% (3,877 out of 25,125) of
the marker pairs showed significant LD (p < 0.05). A total of 196
marker pairs were in complete linkage spanning a total length of
10.45 kbp. Nearly 16% (2,285 of 14,436) of the significant LDs
were found among inter chromosomal marker pairs, which were
caused by factors other than physical linkage. Generally, LD value
declined as the physical distance between the loci increased. The
average LD value for inter chromosomal markers was 0.019 while
the same was 0.069 for intra chromosomal markers. The overall
average LD for all of the marker pairs showed r2 value of 0.039.
The average genetic distance between markers with p < 0.05 was
25.39 kbp.

Genome Wide Association Scan
Highly significant marker trait associations were identified
under the two growing conditions. The two growing conditions
showed different marker-trait-associations such that none of
the significant associations were common between the two

TABLE 2 | Variance, heritability and genetic gain of root length among 91 diverse wheat genotypes grown under non-stress and stress conditions.

Growing condition Genotypic variance Error variance Heritability (H2) (%) Genetic gain (GA) (5%)

Non-stress 39.0∗ 27.0 59 7.6

Stress 41.7∗∗ 15.5 73 9.7

∗∗, ∗ indicate significant variation at p ≤ 0.01and p ≤ 0.05, respectively.
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FIGURE 2 | Major clusters of the 91 wheat collections based on unweighted pair group method with arithmetic mean (UPGMA) algorism (A) and genome-wide
average LD (B) over genetic distance (bp).
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TABLE 3 | Significant root length QTLs, associated DArT markers, their chromosomal positions, and level of phenotypic variation (r2) explained by each of the QTLs.

Condition Marker name Chromosome Position MAF R2 (%) p q

Stress wPt6278 2B 83.9 0.08 17 3E-04 1E-03

wPt1159 3B 44.4 0.06 14 1.1E-03 2E-03

Non-stress wPt0021 3B 96.64 0.11 22 5E-04 1E-03

wPt4487 4A 174.62 0.43 22 5E-04 2E-03

wPt8890 5B 77.95 0.09 19 1.6E-03 3E-03

MAF, minor allele frequency; p, level of significance without adjustment; q, adjusted level of significance based on Benjamini-Hochberg false discovery rate controlling
procedure.

FIGURE 3 | Genomic locations of significant QTLs under stress (A), and non-stress (B) conditions. Numbers along the horizontal indicate individual chromosomes.
Labels for some chromosomes with smaller number of markers are omitted (can be seen from the diffenet colors) to avoid cluttering the graph. Data pionts above
the horizontal green line showed adjusted p-values < 0.001.

water regimes. Under the stress condition, genomic regions on
chromosomes 2B and 3B showed the highest peaks with p-values
of 3E-04 and 1.1E-3, explaining 17 and 14% of phenotypic
variation, respectively (Table 3 and Figure 3A). The DArT
markers wPt6278 (2B) and wPt1159 (3B) were significantly
associated with root length under stress condition. Similarly
under non-stress condition, markers wPt0021 (3B), wPt4487
(4A) and wPt8890 (5B) showed significant association with root
length, explaining 22%, 22 and 19% of phenotypic variation,
respectively (Figure 3B). The minor allele frequency (MAF)
of DArT markers ranged from 0.09 to 0.43 while the smallest
p-value was 3E-4. It was interesting to note that chromosome 3B

harbored two loci significantly associated with root length each
explaining 14 and 22% of phenotypic variation, under stress and
non-stress conditions, respectively (Table 3).

DISCUSSION

Marker Trait Association
Identification and mapping of significant association between
molecular markers and various traits of interest has been the
focus of modern breeding programs. The present study was one
of similar efforts aimed to identify QTLs that control root length
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under early stage water stress and normal growing conditions.
A total of five DArT markers were found significantly associated
with root length under the two water regimes (Table 3). All of
the significant associations reported in this study were based
on adjusted p-values using Benjamini-Hochberg false discovery
rate control (Benjamini and Hochberg, 1995). The adjusted
p-values (indicated as q-values on Table 3) were at least 10
times higher than unadjusted p-values, which as a result has
lowered the number of significant associations reported. The B
genome of wheat harbored both of the significant QTLs identified
under water stress condition (Table 3). Water stress resistance
QTL on chromosome 3B was consistently mapped across three
populations in our previous studies (Ayalew et al., 2017, 2018).
Pattern of marker trait associations in the two growing conditions
were quite different that none of the significant associations
were common between the two water regimes even though
chromosome 3B had two significant QTLs, one for each growing
condition located 52 kbp apart. This might be due to the
differential gene expression patterns triggered by the induced
stress, which is in agreement with Bac-Molenaar et al. (2015).

On the other hand, DArT markers wPt0021 (3B), wPt4487
(4A) and wPt8890 (5B) were significantly associated with root
length under non-stress growing condition. Similar previous
studies reported significant early vigor QTLs located on
chromosomes 3B and 4A, which were in agreement with the
present findings (Bai et al., 2013; Ayalew et al., 2017, 2018).
These QTLs can be incorporated into breeding programs to
enhance early crop establishment and high biomass and grain
yield production. The marker trait associations in this study
tended to be on the B genome while none were on D genome
which could be partly due to the scant marker density in the D
genome. The B genome of wheat showed the highest frequency
of significant associations in both water regimes indicating its role
in controlling early root growth and water stress resistance.

Linkage Disequilibrium and Genetic
Structure
Thorough understanding of the genetic structure and linkage
disequilibrium is vital for successful GWAS. Unweighted pair
group method with arithmetic mean (UPGMA) clustering
resulted in three major clusters (Figure 2A). This same
population (the 91 lines included in this study plus three more
genotypes) was reported to have two clusters (Neumann et al.,
2011). However, Neumann et al. (2011) used only 219 of the
available markers for the structure analysis which might be the
reason for the fewer clusters (two) than in the present analysis
(three). Principal component analysis (PCA) also showed large
genetic diversity in genotypes calling for the use of mixed linear
model to account for population structure and relatedness
(Zhang et al., 2010).

Neumann et al. (2011) have published a detailed LD analysis
of this population elsewhere using 525. The present analysis
found significant LD (p < 0.05) in 3,877 of 25,125 (15.4%) inter
chromosomal marker pairs with an average r2 value of 0.25 which
was comparable (0.26) with the aforementioned publication.
Comparable proportion of significant LD values (14.9%) were

previously reported in wheat (Neumann et al., 2011; Dreisigacker
et al., 2012; Edae et al., 2014). The average genetic distance
between markers with r2 > 0.1 was 15 kbp. Average LD decay
for all chromosomes was estimated at approximately 35 kbp,
with r2 cut-off value set to 0.25 (Figure 2B). This relatively long
LD might be caused by inbreeding which limits the number
of heterozygotes and the number of effective recombination
rates leading to correlated genetic polymorphisms, hence long
physical LD (Gaut and Long, 2003). Breeding and selection,
population stratification and relatedness, genetic drift and genetic
bottlenecks were reported to be among the main factors that
could cause LD among non-collinear markers (Ohta, 1982; Chao
et al., 2010).

Phenotypic Variation and Potential for
Genetic Improvement
As evidenced in this study early stage water stress can inflict up
to 50% reduction in crop root length. Comparable reductions
(40–54%) in root length were previously reported on segregating
populations and diverse wheat collections (Ayalew et al., 2015,
2016a). Water stress can induce signals in different genotypes
differently. Some genotypes respond by halting growth while
others keep on normal physiology by defying the stress. This
growth differential was observed in changes in the ranking
of genotypes across the two water regimes in this study.
This differential response/ranking of genotypes, which was also
observed in previous experiments (Ayalew et al., 2015, 2016a,b),
indicated the validity of selecting stress tolerant genotypes under
the target environment (Blum, 2011). Previous findings reported
the complex and dynamic nature of plant growth highlighting the
different roles played by specific genes at specific growth stages
(Blum, 2011; Bac-Molenaar et al., 2015). Broad sense heritability
was moderate to high (59–73%) in this study, which indicated the
possibility of successful root length improvement using diverse
germplasm.

CONCLUSION

In conclusion, the B genome of hexaploid wheat harbored
two major QTLs for root length under stress condition. The
importance of the B genome for early root vigor is also
indicated by the presence of two root length QTLs under
non-stress condition in chromosomes 3B and 5B. Genetic
improvement programs for contrasting moisture conditions
need to be targeted separately due to qualitative QTL by
environment interactions. The identified markers can potentially
be validated and incorporated into MAS programs for root length
improvement.
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