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Statistical and machine learning (ML)-based methods have recently advanced in
construction of gene regulatory network (GRNs) based on high-throughput biological
datasets. GRNs underlie almost all cellular phenomena; hence, comprehensive GRN
maps are essential tools to elucidate gene function, thereby facilitating the identification
and prioritization of candidate genes for functional analysis. High-throughput gene
expression datasets have yielded various statistical and ML-based algorithms to infer
causal relationship between genes and decipher GRNs. This review summarizes the
recent advancements in the computational inference of GRNs, based on large-scale
transcriptome sequencing datasets of model plants and crops. We highlight strategies
to select contextual genes for GRN inference, and statistical and ML-based methods
for inferring GRNs based on transcriptome datasets from plants. Furthermore, we
discuss the challenges and opportunities for the elucidation of GRNs based on large-
scale datasets obtained from emerging transcriptomic applications, such as from
population-scale, single-cell level, and life-course transcriptome analyses.
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INTRODUCTION

Gene regulatory networks (GRNs) represent the causal relationship between genes regulating
cellular functions (Barabasi and Oltvai, 2004; Blais and Dynlacht, 2005). GRNs play important
roles in cellular regulatory systems such as signal transduction and transcriptional regulation, which
underlie almost all cellular phenomena. Therefore, comprehensive GRN maps are essential tools to
elucidate gene function, thereby facilitating interpretations of biological processes, such as cellular
differentiation and response to environmental stimuli at system-level (Lopez-Maury et al., 2008),
and enabling the identification and prioritization of candidates of genes for molecular regulators
and biomarkers (van Dam et al., 2018).

A number of approaches have been proposed for reconstruction of GRNs based on high-
throughput biological datasets. Transcriptome datasets, usually from time-series samples, have
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enabled us to infer gene expression networks using various
statistical and machine learning ML-based algorithms (Dewey
and Galas, 2010). The inferred GRNs are complementary to
gene networks obtained from other types of data: transcription
factor networks based on high-throughput methods to examine
the interaction between transcription factors (TFs) and DNA-
binding sites on target genes (Ikeuchi et al., 2018), and gene
networks genetically determined using large-scale populations
and mutant panels (Fuxman Bass et al., 2015; Hanson et al., 2018).

In this review, we provide an overview of recent advances
in the computational inference of GRNs, based on large-scale
transcriptome sequencing datasets of model plants and crops.
We highlight statistical methods, including sparse modeling
and machine-learning methods, for inferring GRNs based on
transcriptomic datasets from plants. Furthermore, we discuss the
challenges and opportunities for the elucidation of GRNs based
on large-scale datasets obtained from emerging transcriptomic
applications, based on population-scale, single-cell level, or life-
course analyses.

CONTEXTUAL GENE SELECTION

Since statistical and ML-based approaches for GRN inference
often have high computational complexities with high-
dimensional transcriptome datasets, selection of contextual
genes may be a strategy to solve the NP-hard nature (large
number of genes to limited number of data points). Differentially
expressed genes, including those encoding transcription factors
(TFs), across spatial and temporal transcriptome datasets, form
a context filter widely used to select genes for GRN inference.
To predict GRNs involved in stem cell regulation in Arabidopsis
roots using spatial and temporal transcriptome data, de Luis
Balaguer et al. (2017) selected 1,625 genes, identified by their
differential expression in the stem cells, and focused on 201 TF
genes to infer GRNs, based on their observation of enriched
GO categories, such as the regulation of transcription and TF
activity in the genes. Comparing the DNA-binding capabilities
between selected TFs and promoter regions of selected genes,
such as DEGs and co-expressed genes, would also facilitate
further narrowing down of genes that would be potentially
regulated by the selected TFs in the TF network (Ni et al.,
2016; Wilkins et al., 2016; Hickman et al., 2017). For example,
(Wilkins et al., 2016) identified 5,447 putative target genes
for 445 TFs by searching for known cis-regulatory motifs in
open promoter regions, determined by an ATAC-seq analysis
to select genes and TFs involved in a GRN that responds to
environmental stimuli. Constructing an initial network by
assumption-free methods, such as information theory-based
methods or co-expression analysis, would be feasible to minimize
false-positive edges with high computational efficiency in GRN
inference, enabling us to apply statistical or ML-based methods
to examine causalities between genes with respect to each local
subnetwork in the initial networks (Liu et al., 2016). To predict
the drought stress-responsive GRN in sunflower, Marchand
et al. (2014) selected 145 genes that were co-expressed under
drought stress conditions, and subsequently used a Gaussian

graphical modeling method and a Random Forest method
to infer the robust edges (Marchand et al., 2014). In addition
to these approaches, genetics-based approaches to identify
genotype-phenotype relationship can provide plausible sets of
genes that are involved in a GRN. Calabrese et al. (2017) adopted
an approach, integrating GWAS and co-expression network
analysis, to narrow down the causal genes for bone mineral
density, suggesting the feasibility of genetics-based selection of
genes whose interplay underlies biological processes related to
traits of interest. Through analysis of eQTL and eQTL-guided
co-expression network, Basnet et al. (2016) identified candidate
genes that genetically regulate the fatty acid composition in
Brassica rapa seeds, based on cis- and trans-QTLs, detected by
the eQTL analysis; this demonstrated that eQTLs can suggest a
causal relationship between genes, complementary to networks
inferred by computational methods.

GRN INFERENCE APPROACHES

Statistics-Based Approaches
Since time-series datasets contain dynamic information, which
assists us in understanding temporal dynamics of various
biological processes, statistics-based approaches have been often
applied to time-series transcriptome datasets to infer GRNs
(Table 1). The Autoregressive exogenous variables (ARX) model,
a kind of state-space model, is useful to describe time-varying
processes observed in time-series datasets, which enable us
to reconstruct a GRN in combination with sparse estimation
algorithms. Fused Lasso, a sparse estimation algorithm, was
employed to reconstruct GRNs with time-series expression
datasets from Escherichia coli, Mycobacterium tuberculosis, and
Mus musculus (Omranian et al., 2016)1. In a model grass
Brachypodium distachyon, Koda et al. (2017) had formulated
gene-gene temporal interactions for 3,621 periodically expressed
genes, observed in a time-series RNA-Seq dataset based on ARX
models, combined with a statistical sparse estimation method
Group SCAD (Smoothly Clipped Absolute Deviation), a kind
of L_1 regularization technique to estimate sparse GRNs, and
predicted GRNs containing 2,187 genes and 3,107 directed
edges. The Inferelator algorithm2, a kind of sparse regression
approach (Greenfield et al., 2013), was also applied to infer an
environmental gene regulatory influence network (EGRIN) from
datasets of time-series transcriptome (RNA-Seq) and chromatin
accessibility (ATAC-seq) in five tropical Asian rice cultivars to
understand their physiological response to high temperature
and water deficiency under agricultural field conditions (Wilkins
et al., 2016). de Luis Balaguer et al. (2017) developed GENIST3,
based on a dynamic Bayesian network algorithm, and applied it to
infer GRN from cell-type specific and time-series transcriptome
data of Arabidopsis root stem cells. Comparing its performance in
GRN inference with previously published methods, the authors

1https://github.com/omranian/inference-of-GRN-using-Fused-LASSO
2https://sites.google.com/a/nyu.edu/inferelator/home
3https://github.com/madeluis/GENIST
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TABLE 1 | Examples of statistics-based and machine learning-based algorithms used for GRN inference in plants and other species.

Data type Algorithm Organism Reference

Statistics-based algorithms

Time series Fused LASSO regression Escherichia coli Omranian et al., 2016

Mycobacterium tuberculosis

Mus musculus

ARX model and GroupSCAD Brachypodium distachion Koda et al., 2017

Inferelator Oryza sativa (five tropical Asian rice) Wilkins et al., 2016

GENIST Arabidopsis thaliana de Luis Balaguer et al., 2017

Non-time series CLR Zea maize Xiong et al., 2017

PRC Saccharomyces cerevisiae Blum et al., 2018

Machine learning-based algorithms

Various biological and experimental conditions MinReg Fusarium graminearum Guo et al., 2016

Various tissues GENIE3 Zea maize Huang et al., 2018

Time series (spatial and temporal) DFG Arabidopsis thaliana Varala et al., 2018

demonstrated that the GENIST algorithm outperformed with
datasets used in DREAM 4 challenge 2.

There also exist examples of statistics-based approaches
to infer GRNs using non-time-series transcriptome datasets
(Table 1). Xiong et al. (2017) inferred GRNs to identify key
genes in the maize seed development process with RNA-Seq
data from various tissues: embryos, endosperms, whole seeds,
and other tissues, by Context Likelihood of Relatedness (CLR4)
(Faith et al., 2007), which is a mutual information (MI)-based
GRN inference approach (Xiong et al., 2017). They inferred
gene regulatory relationship based on z-score of MI between a
TF gene and a non-TF or another TF gene, and generated a
GRN composed of 10,932 nodes and 48,740 edges. They also
verified eight regulatory relations between TF and non-TF genes,
through yeast one-hybrid (Y1H) assay, to assess TF-promoter
binding, and assessed the Opaque-2 TF network, inferred in
the GRN, by comparing it with previously identified regulatory
network based on the results from ChIP-seq analysis and RNA-
Seq analysis of its mutants. Since GRNs inferred by MI-based
approach basically show undirected graph, regulatory relations
between genes are usually based on their putative function, i.e.,
TF-encoding genes or non-TF genes. To estimate regulatory
relations between genes, Blum et al. (2018) developed a GRN
inference algorithm based on partial response coefficients (PRC),
and assessed its performance on synthetic datasets, as well as
transcriptome datasets, from gene knockout mutants of yeast
(Kemmeren et al., 2014), demonstrating its superior performance
for GRN inference in studies with large-scale knockout mutant
resources (Blum et al., 2018).

Machine Learning-Based Approaches
Machine learning, an area of computer science that offers
data-driven prediction, has attracted wide attention for its
various applications in modern biology (Camacho et al., 2018;
Webb, 2018), besides putting forth its strength in GRN
inference (Table 1). Guo et al. (2016) applied the MinReg

4http://m3d.mssm.edu/network_inference.html

algorithm5, based on a derivative of Bayesian networks, and
a greedy algorithm, to infer the global GRN in Fusarium
graminearum with 27 (9 experiments with three biological
replicates) and 166 transcriptome datasets retrieved from the
PLEXDB (Guo et al., 2016). They identified 968 candidates
of regulators and represented a subnetwork for a regulatory
gene FAC1 by superimposing information from its protein–
protein interaction (PPI) network and the differentially expressed
genes of its mutant in F. graminearum. GENIE36, a tree-
based ML algorithm (Huynh-Thu et al., 2010), has been widely
employed in recent GRN inference studies with both static and
dynamic transcriptome data from various species (Banf and
Rhee, 2017; Desai et al., 2017; Redekar et al., 2017). Huang
et al. (2018) applied GENIE3 to infer GRNs with over 1,000
publicly available RNA-Seq data from various tissues such as
leaf, root, shoot, apical meristem, and seed, and created four
tissue-specific GRNs. They validated the predicted regulatory
networks for transcription factors KN1 (KNOTTED1), FEA4
(fasciated ear4), and O2 (Opaque2), by using publicly available
ChIP-seq datasets. Varala et al. (2018) applied dynamic factor
graph (DFG) models (Mirowski and LeCun, 2009) to a fine-
scale time-series transcriptome in response to nitrogen supply in
Arabidopsis shoots and roots, and illustrated a GRN composed
of nitrogen responsive TF and non-TF genes (Varala et al.,
2018). They validated the predicted regulatory networks for
transcription factors CRF4, SNZ, and CDF1, which showed early
N-response in shoots and roots, by using the TARGET (Transient
Assay Reporting Genome-wide Effects of Transcription factors)
method, and demonstrated that five key genes involved in
N uptake and assimilation were included in the predicted
and validated targets of these three TFs (Bargmann et al.,
2013). These examples suggested that ML-based approaches
provide opportunities to reconstruct GRNs from various types of
transcriptome datasets, thereby assisting the identification of key

5http://www.cs.huji.ac.il/labs/compbio/minreg/
6https://bioconductor.org/packages/release/bioc/html/GENIE3.html

Frontiers in Plant Science | www.frontiersin.org 3 November 2018 | Volume 9 | Article 1770

http://m3d.mssm.edu/network_inference.html
http://www.cs.huji.ac.il/labs/compbio/minreg/
https://bioconductor.org/packages/release/bioc/html/GENIE3.html
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01770 November 28, 2018 Time: 11:2 # 4

Mochida et al. GRN Inference With Transcriptome Data

TABLE 2 | Examples of combined approaches for GRN inference in plants and other species.

Data type Algorithm Organisms Reference

Time series Inferelator, TIGRESS, and GENIE3 Arabidopsis thaliana Foo et al., 2018

ARACNE, GENIE3, TIGRESS, Partial correlation, and CLR Glycine max Redekar et al., 2017

Time series (development) GRACE (Random forest and ensembles of Markov Random Fields) Arabidopsis thaliana Banf and Rhee, 2017

Drosophila melanogaster

TF-genes involved in cellular systems related to various biological
functions in plants.

Combined Approaches
Combinatorial use of multiple algorithms could be a promising
strategy for GRN inference (Marbach et al., 2012; Table 2). Foo
et al. (2018) employed three different algorithms, Inferelator,
TIGRESS (Trustful Inference of Gene REgulation with Stability
Selection7) (Haury et al., 2012), and GENIE3, to infer GRNs
involved in defense response of Arabidopsis with its microarray-
based time-series transcriptome data (Foo et al., 2018), and
verified a particular subnetwork using Y1H assay, information
from an Arabidopsis cistrome map, and gene expression profiles
from overexpressors of a related gene. Redekar et al. (2017)
used five different algorithms, ARACNE8 (Margolin et al., 2006),
GENIE3 (Huynh-Thu et al., 2010), TIGRESS (Haury et al., 2012),
partial correlation (GeneTS9) (Schafer and Strimmer, 2005), and
CLR (Faith et al., 2007), to infer the GRNs between TFs and
co-expressed modules for seed development in soybean10, based
on 60 RNA-Seq datasets (three biological replicates, five stages
of developing seeds, and four experimental lines), and evaluated
the resultant GRNs by comparative analysis with published
GRNs of Arabidopsis (Redekar et al., 2017)10. Banf and Rhee
developed a novel GRN inference strategy called GRACE (Gene
Regulatory network inference ACcuracy Enhancement11), which
generates GRNs through multiple steps to integrate various
knowledge related to the regulation of gene expression: initial
network prediction from gene expression data using a random
forest regression model and integrating information related
to gene regulation, subsequent network module extraction by
meta-network construction based on information of functionally
related genes, and further selection of regulatory links using
ensembles of Markov Random Fields (Banf and Rhee, 2017).
To infer the developmental GRN in Arabidopsis, the authors
incorporated conserved sequence information in its promoter
regions and experimentally determined cis-motifs for TFs,
together with gene expression data from 83 tissues and stages,
and obtained an initial GRN containing 325 regulators, 4,305
targets, and 10,098 links. To enhance confidence of the initially
predicted GRN, the authors integrated knowledge from various
information resources such as AraNet12, ATRM (Arabidopsis

7http://projets.cbio.mines-paristech.fr/~ahaury/svn/dream5/html/index.html
8http://califano.c2b2.columbia.edu/aracne/
9https://bioconductor.org/packages/2.1/bioc/html/GeneTS.html
10https://lilabatvt.github.io/LPANetwork/
11https://github.com/mbanf/GRACE
12http://www.functionalnet.org/aranet/about.html

Transcriptional Regulatory Map13), SUBA314, and AraCyc15, and
demonstrated its potential to produce high-confidence regulatory
networks, thereby suggesting a benefit of integration of multiple
clues from various information resources to improve accuracy of
the GRNs.

GRNs WITH EMERGING APPLICATIONS

In terms of recent advances in both resolution and throughput
to acquire genome and transcriptome datasets (Reuter et al.,
2015), and computational methodologies to analyze the datasets,
GRNs have yielded various applications which allow us deeper
understanding of cellular systems at population, life-course and
single-cell level. Here, we highlight emerging applications of
these approaches, through GRN reconstruction, from these three
specific aspects.

Population Transcriptomics for GRN
Construction
Population-scale transcriptome sequencing enables us to shed
light on molecular consequences of regulatory variations
in complex traits. Through transcriptome sequencing across
mapping populations, eQTL analysis has been widely used
to identify cis- and trans-QTLs, and reconstruct regulatory
networks to mine genetic factors that determine various traits,
including agronomic traits of crop species (Albert et al., 2018;
Galpaz et al., 2018; Wang et al., 2018; Zhang et al., 2018).
Moreover, a transcriptome-wide association study (TWAS) was
proposed to identify associations between gene expression and
traits (Gusev et al., 2016), and has recently been applied
to construct GRNs. For example, integrating genome and
transcriptome data of whole blood RNA-Seq samples across
3,072 unrelated individuals, Luijk et al. (2018) constructed a
GRN that suggests 49 regulatory genes that affect transcriptional
changes of their downstream genes. Moreover, population-scale
transcriptome sequencing across multiple tissue types, have
been applied to reconstruct GRNs through integration with
other resources on molecular networks, such as PPI and TF
motifs, to reveal tissue-specific gene regulation (Sonawane et al.,
2017).

13http://atrm.cbi.pku.edu.cn/
14http://suba.live/
15https://www.plantcyc.org/databases/aracyc/15.0
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Spatial-Temporal GRNs at Single-Cell
Level
High-throughput sequencing applications at single-cell level
have rapidly emerged, and enabled us to decipher GRNs
underlying cellular heterogeneity (Liu and Trapnell, 2016;
Libault et al., 2017; Dasgupta et al., 2018; Fiers et al.,
2018). For GRN inference from single-cell transcriptome
datasets, several computational algorithms have recently been
developed. Chan et al. (2017) developed an algorithm, PIDC,
which identifies regulatory relations between genes based on
partial information decomposition (PID), and is applied to
infer GRNs from single cell-qPCR datasets. SCENIC16 constructs
GRNs and identifies cell-status based on scRNA-Seq data, which
uses GENIE3 to predict TF targets based on co-expression,
RcisTarget to assess TF-motif enrichment, and AUCell to assess
regulon activities in each cell; it was recently applied to GRN
analysis in a single-cell transcriptome from adult fly brain
sampled across its lifespan (Davie et al., 2018). Although, till
date, there are only a small number of scRNA-Seq datasets from
higher plant species (Perroud et al., 2018), single-cell level high-
throughput data in plants, and GRNs based on such datasets,
will provide invaluable resource to facilitate in-depth elucidation
of various cellular systems in plants (Efroni and Birnbaum,
2016).

GRNs Throughout Life-Course
Longitudinal transcriptome study provides insights into the
trajectory of GRNs, underlying the biological phenomena
throughout life-span/life-course, such as aging and phenology.
Through a longitudinal transcriptome analysis of short-lived
killifish, Nothobranchius furzeri, Baumgart et al. (2016) identified
mitochondrial respiratory chain complex I genes as the hub
in a co-expressed gene expression module that negatively
correlated with its lifespan. For crop improvements, trajectories
of physiological states, resulting from interaction between genetic
and environmental factors, often influence the phenotypes of
eventual agronomic traits; longitudinal study of cellular networks
provides clues to identify gene-environment interactions
associated with the phenotypic changes in crops (Mochida et al.,
2015; Sun and Dinneny, 2018). Through construction of an
integrated atlas of gene expression and regulatory networks
in developing maize, Walley et al. (2016) demonstrated that
integration of transcriptome, proteome, and phospho-proteome
data can improve GRN inference. In tropical rice, as introduced
in the previous sections, integrating time-series datasets of
transcriptome, nucleosome-free chromatin from ATAC-seq,
and known cis-motifs for TFs from five tropical rice cultivars
under controlled and agricultural field conditions, Wilkins et al.
(2016) constructed GRNs that represent relationships between
the timing and gene expression in response to environmental
changes. These examples from staple crops illuminate that
combinatorial use of multiple omics data is a promising
approach to improve the performance of GRN inference, as well
as to mine better clues to improve agronomically important traits
of crops under field conditions.

16https://github.com/aertslab/SCENIC

CONCLUSION AND PERSPECTIVES

In the last few years, approaches to reconstruct GRNs
have advanced by synergistic innovation of high-throughput
sequencing and computational techniques; GRNs have played
crucial roles to elucidate cellular systems and identify key
genes that manipulate cellular functions. A lot of statistical-
and ML-based approaches have been proposed and applied
to infer GRNs based on transcriptome datasets; these have
contributed to identify regulatory relationships of genes involved
in various biological phenomena in plants. Coupled with
applications recently developed in high-throughput sequencing,
GRNs dramatically improve their resolution with emerging
aspects of transcriptomics, such as across accessions/individuals,
cell types, and life stages, each of which provides opportunities to
address challenges for these emerging areas in plant science.

Integration of GRNs and other networks, such as epigenetic,
PPI, and metabolic networks, provides clues to identify molecular
relations that function as interfaces, and will provide new insights
into trans-omics networks across multiple omics layers (Yugi
et al., 2016). ML has provided algorithms to find useful patterns
from large and heterogeneous (unstructured) data, acquired
through multiple high-throughput techniques (Ma et al., 2014;
May, 2014; McCue and McCoy, 2017). Recently, ML-based
approaches have been applied to extract features associated
with cellular states and responses from high-throughput data,
including transcriptomic and epigenomic data, and develop
computational models that classify the cellular states and
responses in applications such as precision oncology and drug
development (Aliper et al., 2016; Malta et al., 2018). In plant
science, ML-based integrative analysis of large-scale data from
multiple omics spectra, such as genomic variations and molecular
networks, as well as high-throughput phenomics, will enable us
to decipher complex cellular systems and figure out molecular
features associated with quantitative traits in plants and crops,
and apply the results to design traits through optimizing GRNs
in crop breeding. From the perspective of ML in GRN study,
it will offer us algorithms not only for GRN inference but also
for feature extraction across multi-dimensional datasets from
various high-throughput experimental techniques.
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