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The regulation of genome architecture is a key determinant of gene transcription
patterns and neural development. Advances in methodologies based on chromatin
conformation capture (3C) have shed light on the genome-wide organization of
chromatin in developmental processes. Here, we review recent discoveries regarding
the regulation of three-dimensional (3D) chromatin conformation, including promoter–
enhancer looping, and the dynamics of large chromatin domains such as topologically
associated domains (TADs) and A/B compartments. We conclude with perspectives on
how these conformational changes govern neural development and may go awry in
disease states.

Keywords: neural development, chromatin, chromatin conformation capture (3C), topologically associated
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INTRODUCTION

The human and mouse genomes consist of ∼6 and ∼5 billion base pairs, respectively, and are
packaged in chromosomes that are contained within a nucleus with a diameter of only ∼5 µm.
Chromosomes possess multilayered structures that can be broadly classified on the basis of classical
cytological and biochemical analyses either as euchromatin, an open chromatin state characteristic
of gene-rich regions, or as heterochromatin, a closed chromatin state characteristic of gene-poor
regions. At a higher level of resolution, local associations between gene promoters and other
regulatory elements, such as enhancers, define the structural relations within active transcriptional
domains (Vernimmen and Bickmore, 2015).

High-throughput chromatin conformation capture (3C) techniques have recently allowed the
categorization of chromosomal domains into two major classes (Figure 1; van de Werken et al.,
2012; Bonev and Cavalli, 2016; Dekker and Mirny, 2016; Dixon et al., 2016; Hansen et al., 2018). In
this review, we first briefly summarize advances in our understanding of the molecular mechanisms
that regulate the formation of TADs and A/B compartments. We then address recent studies that
have examined changes in genomic interactions and three-dimensional (3D) genome organization
including TADs and A/B compartments during mammalian neural development, and we discuss
how these chromosomal changes regulate this process.

FORMATION OF TADS AND A/B COMPARTMENTS

Recent studies have revealed some molecular mechanisms underlying the formation of TADs.
The zinc-finger DNA-binding protein CTCF and the ring-shaped cohesin complex bind to many
boundaries between TADs (Dixon et al., 2012; Nora et al., 2012; Rao et al., 2014), and some
studies have proposed that “loop extrusion” mediated by the cohesin complex and the convergent
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orientation of CTCF binding play a role in TAD formation
(Sanborn et al., 2015; Fudenberg et al., 2016). Real-time imaging
revealed that the condensin complex, which belongs to the
same Smc family as the cohesin complex, indeed induced DNA
loop extrusion in vitro (Ganji et al., 2018). Importantly, forced
degradation of CTCF or Rad21, an essential component of
the cohesin complex, with the use of the auxin-induced rapid
degradation system, resulted in the almost complete elimination
of TADs (Nora et al., 2017; Rao et al., 2017). Conditional
knockout of the cohesin-loading factor Nipbl or Scc4 also
induced deformation of TADs (Haarhuis et al., 2017; Schwarzer
et al., 2017). These observations have suggested that CTCF
and the cohesin complex are essential for the establishment of
TADs. However, even though TADs were essentially eliminated
in cells depleted of CTCF or Rad21, A/B compartments were
largely unaffected (Nora et al., 2017; Rao et al., 2017). This
finding indicates that A/B compartmentalization of mammalian
chromosomes emerges independently of proper insulation of
TADs, even though TADs serve as units of A/B compartments.
Interestingly, acute loss of cohesin had only limited effects
on gene expression and the distribution of various histone
modifications (Rao et al., 2017; Schwarzer et al., 2017), which may
suggest that regulatory interactions are somewhat preserved after
the loss of TADs.

With regard to A/B compartments, heterochromatin has
been proposed to serve as a driver of compartmentalization.
Lamina-associated domains (LADs), defined as genomic regions
that contact the nuclear lamina, constitute heterochromatin
at the nuclear periphery (van Steensel and Belmont, 2017).
LADs revealed by a method known as DamID (DNA adenine
methyltransferase identification) analysis showed cell-to-cell
heterogeneity and a strong correlation with the B compartment
(Rao et al., 2014; Kind et al., 2015). Given that the nuclear
lamina provides a platform for chromatin reassembly during
the M-to-G1 phase transition of the cell cycle (Güttinger et al.,
2009), LAD formation may underlie compartmentalization of
heterochromatin domains and the B compartment, although
this is still under debate (Falk et al., 2018). Another emerging
feature of heterochromatin domains is phase separation into
liquid droplets mediated by heterochromatin protein 1 (HP1)
(Larson et al., 2017; Strom et al., 2017). Liquid phase separation
is thought to provide a basis for the formation of membrane-
less structures (Boeynaems et al., 2018). The B compartment
can be considered as such a membrane-less structure given the
enrichment of histone H3 methylated at lysine-9 (H3K9) in
this compartment (Rao et al., 2014), which provides a platform
for HP1 binding and oligomerization required for liquid phase
separation, as supported by a recent modeling experiment (Falk
et al., 2018).

Although these various studies have elucidated the framework
for 3D organization of the genome, many questions regarding
TAD formation – including the role of transcription, whether
loop extrusion is asymmetric, and the relevance of DNA
replication – remain unanswered. In addition, the mechanisms
underlying A/B compartmentalization remain largely elusive.
A key unanswered question regarding genome architecture is,
how do local and global-scale associations, including those

mediated by A/B compartments and TADs, govern changes in
transcription and cell fate during development. In this review, we
focus on studies on neural development in an attempt to tackle
this question.

GLOBAL CHANGES IN 3D GENOME
ORGANIZATION DURING NEURAL
DIFFERENTIATION

Global Compaction During Neural
Differentiation
The 3D architecture of chromatin changes markedly during
the neural development of pluripotent stem cells. Assays based
on micrococcal nuclease (MNase) or DNase I accessibility or
on histone extraction have revealed that the chromatin state
is globally open in embryonic stem cells (ESCs) and becomes
condensed during differentiation into neural progenitor cells
(NPCs) (Meshorer et al., 2006). Even among NPCs, the loss
of neurogenic potential during neocortical development is
associated with chromatin condensation on a large scale (Kishi
et al., 2012a; Tyssowski et al., 2014). The “openness” of chromatin
may be related to differentiation potential (“stemness”) in these
cells, given that the factors responsible for global chromatin
accessibility – Chd1 in ESCs and Hmga in NPCs – are
also required for differentiation potential (Gaspar-Maia et al.,
2009; Kishi et al., 2012a). Chromatin state also undergoes
pronounced changes during neuronal differentiation of NPCs.
For example, the number and shape of chromocenters –
heterochromatin foci strongly stained with DNA-intercalating
dyes – change during neuronal differentiation (Billia et al.,
1992; Solovei et al., 2004, 2009; Clowney et al., 2012; Le
Gros et al., 2016). Likewise, an increase in the deposition
of the active histone mark H3K4me3 (trimethylated lysine-
4 of histone H3) at chromocenters, accompanied by an
increase in transcription of major satellites, is also observed
during neuronal differentiation in the neocortex (Kishi et al.,
2012b). Recent examinations of chromatin accessibility by the
assay for transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq), DNase-seq, and formaldehyde-assisted
isolation of regulatory elements (FAIRE)-seq have revealed
progressive changes in chromatin openness during neuronal
differentiation processes (Frank et al., 2015; Thakurela et al.,
2015; de la Torre-Ubieta et al., 2018; Preissl et al., 2018), which
would link chromatin accessibility to the genome architecture
associated with these processes.

Loss of Active-Domain and Increase in
Inactive-Domain Interactions During
Neural Differentiation
So, how are TADs and A/B compartments regulated during
neural development? TADs are structurally dynamic overall
(Hansen et al., 2018), but TAD boundaries, on the other hand,
are stable for many cell divisions and invariant across diverse
cell types or lineages (Nora et al., 2012; Rao et al., 2014; Dixon
et al., 2015, 2016). Indeed, differentiation of ESCs into NPCs

Frontiers in Neuroscience | www.frontiersin.org 2 December 2018 | Volume 12 | Article 874

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00874 December 7, 2018 Time: 16:22 # 3

Kishi and Gotoh Chromatin Regulation in Neural Development

FIGURE 1 | Three-dimensional genome organization based on TADs and A/B compartments.

and then into neurons is not accompanied by changes in the
boundaries of most TADs (Fraser et al., 2015). Rather, inter-TAD
interactions as well as chromatin interactions within TADs (sub-
TAD or intra-TAD level, including chromatin looping) change
during differentiation (Fraser et al., 2015; Dixon et al., 2016,
2015). Fraser et al. (2015) proposed that TADs are organized
into meta-TADs in a hierarchical manner, and that neural
differentiation of ESCs is accompanied by the rearrangement of
meta-TAD components (Figure 2A). A fraction of inter-TAD
rearrangement is associated with changes in gene expression
within TADs (Fraser et al., 2015), and TAD allocation to A/B
compartments changes during differentiation (Dixon et al.,
2015).

In contrast to TADs, A/B compartments are differentially
regulated during neural development. Recent studies have
examined and compared genome-wide 3D chromatin
organization during neural differentiation from ESCs (Dixon
et al., 2015; Bonev et al., 2017) by Hi-C analysis, which allows the
detection of complete “all versus all” long-distance chromatin
interactions across the entire genome (Lieberman-Aiden et al.,
2009). One study (Dixon et al., 2015) found that the total size of
the A compartment in differentiated cells including NPCs was
reduced by 5% compared with that in ESCs (Figure 2B). This

finding appears to be consistent with the global condensation
of the chromatin state observed when ESCs differentiate into
neural cells mentioned above. Another study (Bonev et al.,
2017) based on higher-resolution Hi-C analysis (maximum
of 750 bp) found that interactions within the A compartment
decreased during the ESC-to-NPC transition, interactions
between A and B compartments transiently increased in
NPCs, and interactions within the B compartment increased
during the NPC-to-neuron transition, supporting the notion
that chromatin undergoes global compaction in association
with differentiation (Figure 2B). Also consistent with this
idea, the positive correlation between active histone marks
[H3K4me1, H3K27ac (acetylated lysine-27 of histone H3),
and H3K36me3] and the A compartment became weaker,
whereas that between the inactive mark H3K9me3 and the
B compartment became stronger, during neural (ESC-NPC-
neuron) differentiation (Bonev et al., 2017). Regarding the
inactive (B) compartment, as extreme cases, rod photoreceptor
cells manifest heterochromatin aggregation in the center of the
nucleus (Solovei et al., 2009), and postmitotic olfactory sensory
neurons show pronounced compaction of olfactory receptor
gene loci (Clowney et al., 2012; Le Gros et al., 2016). However,
Hi-C results suggest that the compaction of heterochromatin
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FIGURE 2 | Global changes in 3D genome organization during neural differentiation. (A) TADs are organized in a hierarchical manner, and their reorganization
accompanies neural differentiation. (B) During neural differentiation from ESCs, interactions within the A compartment decrease while those within the B
compartment increase. The size of the A compartment also decreases during neural differentiation. (C) Nuclear speckles and nucleoli act as hubs for interactions
within A and B compartments, respectively. (D) In ESCs, bivalent genes interact with each other via PRC1 in the A compartment. Neural differentiation is
accompanied by the loss of PRC1-mediated interactions between bivalent genes, with the genes becoming persistently repressed and relocating to the B
compartment.

domains may be a general feature of differentiating neurons
and contribute to the stable silencing of unnecessary genes
for differentiated neurons (Solovei et al., 2009; Clowney
et al., 2012; Bonev et al., 2017). Given the changes in LADs
during neural development (Peric-Hupkes et al., 2010), the
downregulation of a lamin B receptor apparent during neuronal
differentiation provides a possible common mechanism for this
heterochromatin reorganization (Clowney et al., 2012; Solovei
et al., 2013).

How then are regions in the A compartment regulated?
High-level interactions within the A compartment in ESCs
can be explained in part by long-range (>30 Mb) associations
between active promoters, enhancers, and actively transcribed
genes both in cis and in trans (Li et al., 2012; Schoenfelder
et al., 2015; Tang et al., 2015; Bonev et al., 2017). In
addition to 3C-based methods, a technique known as genome
architecture mapping (GAM) can determine the proximity of
genomic loci without cross-linking by ultrathin cryosectioning
of nuclei followed by laser microdissection and DNA sequencing
(Beagrie et al., 2017). GAM confirmed an abundance of
long-range interactions, especially between “super-enhancers”
[which are marked by extremely high levels of H3K27ac
(Hnisz et al., 2013; Parker et al., 2013)] in ESCs. Super-
enhancers are cell type specific and play key roles in cell fate
determination (Hnisz et al., 2013). Given that they are enriched
in binding elements for cell type-specific transcription factors
(Hnisz et al., 2013), it is possible that homotypic interactions

between these factors can induce the aggregation (high-
density interaction) of super-enhancers. Moreover, whereas
high-density contacts between active promoters were found
to be independent of CTCF (Bonev et al., 2017), degradation
of the cohesin component Rad21 resulted in an increase
in the number of long-range interactions between super-
enhancers (Rao et al., 2017), suggesting that the cohesin complex
insulates long-range interactions between super-enhancers and
thereby ensures the fidelity of cell type-specific gene expression
patterns.

On the basis of classical immunocytochemical analyses,
nuclear bodies, which are subcompartments within the nucleus,
were hypothesized to serve as hubs for active or inactive
gene loci (Rino et al., 2007; Sutherland and Bickmore, 2009;
Padeken and Heun, 2014), although there was no genome-
wide evidence to support this notion. A ligation-independent
method known as split-pool recognition of interactions by
tag extension (SPRITE) that relies on uniquely tagged cross-
linked chromatin fragments to determine the proximity
of genomic loci was recently introduced (Quinodoz et al.,
2018). This method detects proximity between both DNA
and RNA molecules and revealed that regions in the active
(A) compartment preferentially interact with U1 spliceosomal
RNA and Malat1 long noncoding RNA localized at nuclear
speckles, whereas those in the inactive (B) compartment
interact with rRNA localized at the nucleolus (Figure 2C).
Consistent with these observations, the contact enrichment

Frontiers in Neuroscience | www.frontiersin.org 4 December 2018 | Volume 12 | Article 874

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00874 December 7, 2018 Time: 16:22 # 5

Kishi and Gotoh Chromatin Regulation in Neural Development

between gene bodies positively correlates with transcriptional
level as well as with the numbers of exons and splicing
events (Bonev et al., 2017). Given the contribution of
nuclear bodies to neural development (Bernard et al., 2010;
Hetman and Pietrzak, 2012), these results suggest that the
dynamic rearrangements of A/B compartments during neural
development may be dependent on or connected to changes in
nuclear bodies.

Global Changes in Polycomb Domains
In general, active and inactive histone modifications are
associated with A and B compartments, respectively (Lieberman-
Aiden et al., 2009; Rao et al., 2014). Interestingly, although
H3K27me3, a modification deposited by Polycomb repressor
complex 2 (PRC2), is generally considered an inactive histone
mark, it is highly associated with the A compartment in ESCs and
becomes associated more with the B compartment in neurons
(Bonev et al., 2017; Figure 2D). This finding can be explained
in part by the role of Polycomb group (PcG) proteins in the
maintenance of developmental genes in the “poised” state in
stem cells for later activation in response to differentiation-
inducing cues (Azuara et al., 2006; Bernstein et al., 2006; Zhao
et al., 2007). Such poised promoters tend to be “bivalent” in that
they possess both active (H3K4me3) and inactive (H3K27me3)
marks, and are thus included in the A compartment. Consistent
with the notion that PcG proteins, including Ring1B – a major
component of Polycomb repressor complex 1 (PRC1) – are
associated with many poised developmental genes included in
the A compartment in pluripotent stem cells and that such
association is attenuated after differentiation, the genomic loci
bound by Ring1B manifest strong interactions in ESCs but
these interactions become progressively reduced during neural
differentiation (Bonev et al., 2017). Furthermore, PcG protein-
mediated chromatin interactions can take place beyond TAD
boundaries and establish inter-TAD and inter-chromosomal
associations in addition to those within TAD boundaries
(Denholtz et al., 2013; Schoenfelder et al., 2015; Kundu et al.,
2017). The global loss of PRC1-mediated, but H3K27me3-
independent, long-range chromatin interactions during neural
differentiation may therefore account in part for the global
changes in chromatin architecture associated with this process.
Conversely, a specific subset of Ring1B-mediated interactions
becomes stronger during differentiation so as to allow for
persistent repression of certain developmental genes associated
with fate restriction (Bonev et al., 2017; Tsuboi et al., 2018).
These inactive genes that are persistently silenced by PcG
proteins are included in the B compartment. Mechanistically,
PcG proteins can mediate high-density chromatin interactions
via self-aggregation within and between PRC1 and PRC2 (Kim
et al., 2002; Francis et al., 2004; Margueron et al., 2008; Eskeland
et al., 2010; Grau et al., 2011; Isono et al., 2013). In particular,
Phc protein components of PRC1 form nuclear nanoclusters
in a manner dependent on polymerization activity of the SAM
(sterile alpha motif) domain, with the formation of these clusters
facilitating long-range chromatin interactions and persistent
silencing (Isono et al., 2013; Wani et al., 2016; Tsuboi et al.,
2018).

LOCAL (INTRA- OR SUB-TAD) CHANGES
IN 3D GENOME ORGANIZATION DURING
NEURAL DIFFERENTIATION

Interactions Between Binding Sites of
Neural-Specific Transcription Factors in
NPCs and Neurons
Topologically associated domains constitute units of gene
regulation (Alexander and Lomvardas, 2014; Dixon et al., 2015;
Lupiáñez et al., 2015; Narendra et al., 2016; Symmons et al., 2016;
Zhan et al., 2017), with most enhancer–promoter interactions
taking place within TADs. High-resolution Hi-C or promoter-
capture Hi-C analyses have confirmed that such interactions
are highly cell type specific (Rao et al., 2014; Javierre et al.,
2016; Bonev et al., 2017; Freire-Pritchett et al., 2017). For
example, neuronal enhancers interact with their promoters more
strongly in neurons than in ESCs and NPCs (Mifsud et al., 2015;
Bonev et al., 2017). Chromatin immunoprecipitation (ChIP)-seq
analyses have revealed a link between intra-TAD interactions and
cell type-specific transcription factors such as the NPC-specific
Pax6 and the immature neuron- and mature neuron-specific
NeuroD2 and Tbr1, respectively (Figure 3A). The interactions of
Pax6-bound sites were thus stronger in NPCs than in neurons
or ESCs, whereas those of NeuroD2- or Tbr1-bound sites were
stronger in neurons than in NPCs or ESCs (Bonev et al.,
2017). Transcription factors may also organize the co-regulation
of target genes through homotypic interactions or association
with partner molecules such as the BAF chromatin remodeling
complex for Pax6 (Ninkovic et al., 2013; Manuel et al., 2015).

PcG Protein-Mediated
Enhancer–Promoter Interactions at
Neural Gene Loci in ESCs
Polycomb group proteins generally mediate repression of gene
expression, as mentioned above. However, recent studies have
revealed that these proteins may contribute to gene activation
via the establishment of enhancer–promoter interactions. PRC1
(Ring1) can mediate the association of a midbrain-specific
enhancer and the promoter of the Meis2 gene during midbrain
development, with the subsequent dissociation of PcG proteins
resulting in the activation of Meis2 expression in the midbrain
(Kondo et al., 2014; Yakushiji-Kaminatsui et al., 2016). PcG
proteins were found to play a similar role in the establishment
of “poised” enhancers in ESCs. The poised enhancers were
defined by the presence of the histone acetyltransferase p300
and H3K27me3 and the absence of H3K27ac and H3K4me3,
and neural genes, especially anterior neural genes, were found
to be enriched in poised enhancers in ESCs (Cruz-Molina
et al., 2017). Importantly, poised enhancers physically contact
their target genes in a PRC2-dependent manner, and the
PRC2 components Suz12 and Eed are necessary for the
induction of anterior neural genes in NPCs (Figure 3B). These
findings point to the essential role of PcG proteins in the
generation of permissive chromatin topology at such gene loci
before their activation, although the molecular basis of their
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FIGURE 3 | Local changes in 3D genome organization during neural differentiation. (A) Intra-TAD interactions between binding regions for cell type-specific
transcription factors such as Pax6, NeuroD2, and Tbr1. (B) Polycomb (PRC2)-mediated interactions between promoters and poised enhancers lead to the activation
of anterior neural genes during differentiation. (C) In cortical neurons, H3K9me3 deposition catalyzed by Setdb1 prevents aberrant CTCF binding at Pcdh gene
clusters. Knockout (KO) of Setdb1 induces excessive insulation and upregulation of Pcdh gene expression.

differential roles in gene activation and suppression remains to
be clarified.

The preferential regulation of anterior neural genes by
poised enhancers in ESCs (Cruz-Molina et al., 2017) per se
is an intriguing finding. Classical developmental models
propose that epiblast cells in vivo and ESCs in vitro are
fated toward the neural lineage by “default” (that is, in
the “absence” of extrinsic signals) (Levine and Brivanlou,
2007; Gaspard and Vanderhaeghen, 2010). Moreover, induced
neural progenitors initially manifest anterior characteristics
(that is, those of the forebrain), which must be overridden
by extrinsic cues for the induction of more posterior neural
fates (such as those of the spinal cord). The readiness of
anterior neural genes to be expressed due to their association
with poised enhancers in ESCs may explain in part the
propensity for default differentiation to an anterior neural
lineage.

TAD Boundary Formation in Neural Cells
As mentioned above, most TAD boundaries are conserved
between ESCs and neural cells, but a fraction of TAD boundaries
appears to emerge and disappear during neural differentiation
(Bonev and Cavalli, 2016) – although the interpretation of
TAD boundaries depends on the precise definition of TADs
(Dixon et al., 2016). Of note, these developmentally regulated
TAD boundaries correlate with H3K4me1-positive enhancers
(Dixon et al., 2015) and active gene marks (Bonev et al.,
2017) as well as with the presence of cohesin, but not that
of CTCF (Bonev et al., 2017). Indeed, the emergence of new
boundaries in NPCs was found to be associated with Zfp608-
and Sox4-dependent transcription, although forced induction
of such transcription with the use of the dCas9 system was
not sufficient to induce a new TAD boundary (Bonev et al.,
2017).

Relevance of TAD Boundaries to
Regulation of Pcdh Gene Clusters
Topologically associated domain boundaries can play a role in the
regulation of neural genes, most notably in Protocadherin (Pcdh)
gene clusters. Pcdh proteins regulate axonal targeting, synapse
formation, and dendritic arborization through their homophilic
trans-interactions (Yagi, 2012; Chen and Maniatis, 2013). The
vast diversity of neurons is generated in part by the stochastic
and combinatorial expression of the clustered Pcdh genes,
which include Pcdhα, Pcdhβ, and Pcdhγ clusters aligned in cis.
In situ Hi-C experiments with NeuN-positive mouse neocortical
neurons revealed that the Pcdh gene clusters are organized as
multiple small TADs (∼100 kb in length) nested into a larger
TAD that encompasses at least 1.2 Mb. The 5′ end of the Pcdhα

cluster is bound to the 3′ end of the Pcdhγ cluster (Jiang et al.,
2017). This TAD structure appears to be important for proper
regulation of Pcdh genes, given that knockout of CTCF disrupted
TADs at this locus and resulted in the aberrant expression of
Pcdh genes (Hirayama et al., 2012; Sams et al., 2016). The unique
TAD structure of Pcdh gene clusters was also apparent in neurons
derived from human induced pluripotent stem cells (iPSCs).
Interestingly, a risk haplotype for schizophrenia (according to
the Psychiatric Genomic Consortium) has been found to be
genetically linked to the 5′ end of the human Pcdhα gene cluster
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). Forced dCas9-mediated localization of
KRAB or VP64 transcriptional repressor or activator domains,
respectively, at the risk gene locus in human iPSC-derived NPCs
resulted in dysregulation of Pcdh gene transcription (Jiang et al.,
2017). Given the neurodevelopmental functions of Pcdh proteins,
an aberrant TAD structure of the Pcdh gene clusters could
potentially contribute to the development of schizophrenia.

With regard to the mechanism responsible for the TAD
structure of Pcdh gene clusters, deposition of H3K9me3 by the

Frontiers in Neuroscience | www.frontiersin.org 6 December 2018 | Volume 12 | Article 874

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00874 December 7, 2018 Time: 16:22 # 7

Kishi and Gotoh Chromatin Regulation in Neural Development

histone methyltransferase Setdb1 (also known as Kmt1e or ESET)
(Schultz et al., 2002) appears to play an essential role. Ablation of
Setdb1 in neocortical neurons reduced the level of H3K9me3 and
increased the binding of CTCF at the Pcdh gene clusters, resulting
in the formation of only small TADs without the large-scale
interaction normally apparent between the borders of the clusters
(Figure 3C; Jiang et al., 2017). Cytosine methylation (5mC) was
shown to inhibit the binding of CTCF (Renda et al., 2007; Wang
et al., 2012), although this finding is still under debate (see Bonev
and Cavalli, 2016). Setdb1 ablation reduced 5mC levels at several
residues in the Pcdh gene clusters, which thus may account for
the increased CTCF binding and aberrant insulation within these
clusters.

Regulation of CTCF binding and TAD structure by Setdb1 is
not restricted to Pcdh gene clusters. Loss of Setdb1 in neocortical
neurons thus resulted in the emergence of more than 3000
ectopic CTCF-binding sites (Jiang et al., 2017). Setdb1 has
also been shown to contribute to the development of several
tissues including the mouse neocortex (Tan et al., 2012; Liu
et al., 2014; Eymery et al., 2016; Kim et al., 2016; Takikita
et al., 2016). Ablation of Setdb1 altered the differentiation
potential of neocortical NPCs by reducing neurogenic potential
and increasing astrogenic potential. Of interest, transcriptome
analysis of Setdb1-deficient NPCs revealed ectopic expression
of genes of nonneural lineages as well as of transposons
(Tan et al., 2012), implicating Setdb1 in repression of these
genes, possibly mediated by inhibition of unwanted CTCF
binding and consequent promotion of proper formation of TAD
structures in addition to its role in heterochromatin formation
through H3K9me3. CTCF binding is also regulated by other
factors including YY1, which may control enhancer–promoter
interactions and transcription in NPCs (Beagan et al., 2017;
Weintraub et al., 2017), although the ubiquitously expressed YY1
alone may not be able to account for cell type-specific CTCF
regulation.

CONCLUSION AND FUTURE
DIRECTIONS

The regulation of 3D chromatin structure has been studied with
regard to its role in determination of gene transcription patterns.
New technologies such as high-resolution 3C-based methods
have revealed that neural development is accompanied by
changes in genome organization at the levels of both interactions
between large compartments and local interactions such as
those between enhancers and promoters. Such advances in basic
knowledge concerning chromatin structure will facilitate our
understanding of the mechanisms and relevance of chromatin
regulation during neural development and the pathogenesis of
related diseases. Given the heterogeneity of NPCs and neurons,
analyses at the single-cell level will be especially important for
studies of neural development, and the recent implementation
of advanced single-cell RNA-seq, ChIP-seq, DamID, ATAC-seq,
and Hi-C technologies should prove highly informative in this
regard (Nagano et al., 2013; Shalek et al., 2014; Buenrostro et al.,
2015; Kind et al., 2015; Macosko et al., 2015; Rotem et al., 2015;

Corces et al., 2016; Stevens et al., 2017). The spatial and
functional nature of the relation between chromatin domains
and nuclear bodies, the nuclear lamina, and other aspects of
nuclear architecture also await clarification in future studies
(Sutherland and Bickmore, 2009; Quinodoz et al., 2018 ). Recent
developments in advanced microscopic technology, including
super-resolution and electron microscopies, as well as in live-
cell imaging of specific genomic loci with the use of zinc-finger
nuclease, transcription activator-like effector nuclease (TALEN),
or CRISPR (clustered regularly interspersed short palindromic
repeats)–Cas9 systems may uncover novel principles of 3D
organization and genomic localization in the nucleus (Chen et al.,
2016; Ricci et al., 2017). We focused in this review on the early
developmental process of neural differentiation, but it will also be
of interest to determine how chromatin architecture is regulated
during neuronal maturation and in association with neural
plasticity triggered by changes in neuronal activity (Wittmann
et al., 2009; Frank et al., 2015; Thakurela et al., 2015; de la
Torre-Ubieta et al., 2018; Gallegos et al., 2018; Preissl et al.,
2018).

As suggested in the case of the Pcdh gene clusters,
aberrant changes in 3D chromatin structure may give rise to
neurodevelopmental disorders (Mitchell et al., 2014). Indeed,
mutations in the genes for cohesin components are known to
be responsible for Cornelia de Lange syndrome in humans,
which is associated with mental retardation (Krantz et al., 2004;
Tonkin et al., 2004; Deardorff et al., 2007, 2012; Fujita et al.,
2017). Mutations in CTCF and Setdb1 genes also cause severe
neural developmental defects in mice (Watson et al., 2014; Sams
et al., 2016). Although access to human tissue is limited, the
organization of the human genome in both the developing
and adult human brain has recently been investigated by Hi-
C analyses (Won et al., 2016). Such studies as well as those of
neurons derived from iPSCs of patients with neurodevelopmental
disorders should provide insight into the pathogenesis of these
conditions as well as a basis for the development of new
therapeutic strategies.
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