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Abstract 
Some research has shown that Lyme disease cases among United States (U.S.) military veterans have 
increased since the early 2000s. The purpose of this study is to determine whether high 
concentrations of military veterans live in areas where Lyme disease is hyper-endemic. Lyme disease 
case-report data for 2015 were retrieved at the county-level from the Centers for Disease Control and 
Prevention. Veteran population density at the county level was determined using data from the U.S. 
Census. County control variables, such as weather patterns, forestation, and socioeconomic 
conditions were retrieved from various sources. Multiple linear regression was used to examine 
associations between variables. After controlling for county-level environmental and social 
conditions, results showed that military veteran population density was positively associated with 
Lyme disease incidence rates. U.S. military veterans, due to their choice of geographic residence and 
recreation, may be a population at risk for developing Lyme disease. 
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Introduction 
Vector borne diseases, particularly those spread by various species of ticks, have become a major 
public health issue throughout the world (1). Except for mosquitoes, ticks are considered the primary 
sources of vector borne disease in most countries, but especially those in North America (2-5). In this 
area of the world, there are approximately 15 tick species currently known to be capable of causing 
disease in humans and animals (6). In fact, the problem has grown to the extent that tick-borne 
diseases are considered the most commonly reported vector-borne disease (2,4). When it comes to 
the U.S., the majority of human infections are caused by only three genera of ticks belonging to the 
Ixodidae family: Ixodes, Amblyomma, and Dermacentor (4). According to the United States Army Center 
for Health Promotion and Preventive Medicine (7), in the U.S., Dermacentor variabilis, Ixodes 
scapularis, and Amblyomma americanum are the primary vectors of concern, since they spread most of 
the microorganisms capable of infecting humans. Unfortunately, many researchers (8-10) have 
demonstrated that, within the last few decades, the prevalence of tick-borne disease (TBDs) has  
increased significantly. 

During the 1970s, only two tick-borne diseases (TBDs) were of concern to human health: 
Rocky Mountain spotted fever and Colorado tick fever (11,12). Since then there has been an 
emergence and reemergence of TBDs, many of which have the potential to cause severe illness or 
even death (2,13). According to the Centers for Disease Control and Prevention (CDC) (14), there 
are currently 16 TBDs known to exist in the U.S. While the number of cases for all TBDs has 
increased, the most frequently contracted is Lyme borreliosis (15,16).  

Literature Review 
Commonly referred to as Lyme disease, Lyme borreliosis was initially discovered in Lyme, 

Connecticut, in 1976. During that time, 24 children developed what physicians originally believed to 
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be a juvenile form of rheumatoid arthritis (17). These cases were unique in the fact that shortly 
before the onset of this unusual condition, the majority of stricken children exhibited a rash 
resembling a bull’s eye. This prompted doctors to suggest the possibility of a link between the 
arthritic symptoms and the bite of an arthropod (17,18). 

In the early 1980s, researchers ascertained that the causative agent was a spirochete, 
subsequently named Borrelia burgdorferi sensu lato (16,17,19). Further investigations led to the 
discovery that B. burgdorferi was comprised of several genospecies (4,13,17,20). While there are 19 
genospecies known to exist throughout the world, only eight are known to cause human disease (21). 
According to the CDC (14), there are only two genospecies capable of causing illness in humans in 
the U.S.: B. Burgdorferi ss and B. mayonii. Franke and colleagues (21), on the other hand, state that two 
additional genospecies can be found in the U.S.: B. kurtenbachii and B. bissetti. To date, the vast 
majority of infections have been caused by B. burgdorferi s.s. (16). 

While many researchers and physicians originally believed that Borrelia subspecies were 
transmitted through arthropod bites, the causative agent was not isolated from an Ixodes tick until 
1982, providing definitive evidence that the infectious microorganism was transmitted by an 
arthropod vector (17). Through extensive field investigations, these individuals concluded that Ixodes 
scapularis, commonly referred to as the deer tick or blacklegged tick, served as the main vector east of 
the Rocky Mountains; whereas in areas west of the Rocky Mountains, Ixodes pacificus (also known as 
the western black-legged tick) was the responsible vector (16,17,22). 

At the time of its initial discovery, Lyme disease was only known to exist in three distinct 
areas: along the middle and northern portions of the East coast, throughout the upper Midwest, and 
in the Northern part of the West coast (18). Since being first discovered, this disease has steadily 
increased in geographical range and can now be found in all fifty states and most countries 
(4,13,21,23-25). However, the incidence rate is considerably greater in geographical locations (13) 
that have ample food resources, reservoir hosts, and appropriate temperature and humidity levels 
capable of supporting the existence of the ticks (6).  

In 1982, the CDC created a surveillance program to monitor the incidence of Lyme disease. 
The baseline case count for Lyme disease in 1982 was 1000 (26,27). Owing, in part, to the sharp 
increase in the number of human infections over the next few years, Lyme borreliosis became a 
nationally reportable disease in 1991 (13, 27). So far, the highest annual incidence occurred in 2009, 
during which there were 29,959 confirmed cases (28). Since then, the number of confirmed infections 
has ranged from a low of 22,014 cases in 2012 to a high of 28,453 in 2015 (29). However, according 
to the CDC (29), even though Lyme disease is a reportable infection, not all cases are actually 
reported. As a result, researchers estimate that the true number of annual cases is closer to 300,000 
(29, 30). 

This risk for contracting Lyme borreliosis increases as the amount of time spent in areas such as 
tall grass prairies and wooded areas increases (6,24). Although anyone has the potential of becoming 
infected, certain occupations place individuals at an increased risk of becoming infected (31). One 
group of individuals that are particularly at risk, because of their occupation and choice of 
recreational activities, are those serving in the armed forces as well as the veteran population 
employed on military bases (32,33). According to Hurt and Dorsey (34), the increased risk observed 
for military personnel can be attributed to the fact that training drills are typically conducted either in 
or next to locations that are known to harbor a variety of tick species (e.g. woodlands or grasslands). 
Additionally, military veterans are at risk mainly because they often engage in outdoor activities as 
part of their on-base occupation, rehabilitation programs, and/or leisure activities (35). 
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Due to the noted increased risk for Lyme disease among military-connected persons, the Tick-
Borne Disease Laboratory of the U.S. Army Center for Health Promotion and Preventive Medicine 
developed the Human Tick Test Kit Program in 1989 to assess the danger of contracting TBDs on 
military bases located throughout the U.S. (36, 37). This program allowed physicians working at VA 
facilities access to free testing services capable of ascertaining whether ticks removed from 
individuals serving in or retired from the armed forces and their families were infected with B. 
burgdorferi (37). Recent updates to the test kit have allowed for the testing of several tick-borne 
pathogens, including but not limited to, Ehrlichiosis, Anaplasmosis, and Rocky Mountain spotted 
fever, in order to assess the true risk of TBDs on military bases around the country (37, 38). It 
should be noted, however, that this testing only indicates the actual risk based on whether the tick 
itself is a carrier of an infectious disease and does not provide the number of actual cases of TBD 
observed among those in the military or their beneficiaries (37).  

For reporting of actual cases of TBD, the Disease Reporting System Internet (DRSi) was 
developed in 2008 by the Navy Marine Corps Public Health Center. This system is utilized by all 
branches of the military and compiles data on the number of tick-borne disease cases for both active 
duty military and others who utilize Military Health Services (35). According to Garcia et al. (32), 
there was a gradual increase in the number of cases observed in personnel from every branch of 
service during the early 2000s. In fact, from 2005 to 2014, there were between 489 and 934 total 
cases (active duty and retired members of the military and their dependents) of Lyme disease 
observed annually at Military Health Services throughout the country, with the highest total number 
of cases among veterans and dependents occurring in 2008 (35).  

Purpose 
The purpose of the present study was to evaluate the relationship between veteran population 

composition and Lyme disease incidence rates at the county level in the U.S. in 2015, after adjusting 
the aforementioned relationship for historically validated predictors of Lyme disease, such as middle 
and upper socioeconomic status (e.g., relatively high income and educational attainment) (19) and 
environmental conditions, such as summer temperatures, rainfall, and forestation (6). In order to 
assess the aforementioned relationships, constructs – such as social and environmental conditions–
were operationalized. Social conditions were defined by whether a county was urban or rural, 
educational attainment, and household income. Environmental conditions were defined by 
temperature patterns, precipitation patterns, and the extent of forestation.  

Methods 
Data Collection 

Secondary data at the county-level in the U.S. were retrieved from several sources for the 
present ecological study. First, Lyme disease cases reported in 2015 were retrieved from the CDC 
(39). Lyme disease incidence rates per 100,000 were calculated by combining the Lyme disease case 
data with county population estimates generated by the United States Census Bureau (USCB) in 
2015 (40). County-level veteran population data–from 2015–was obtained from the United States 
Department of Veterans Affairs (41). So as to discern veteran population composition in each county 
(VET), total veteran population estimates at the county level were divided by total population (POP) 
estimates–obtained from the USCB–at the county level.  

Second, rurality was assessed by retrieving 2013 Rural-Urban Continuum Codes from the 
United States Department of Agriculture (42). The United States Department of Agriculture 
(USDA) assigned counties in the U.S. a code between one and nine in 2013, where a code of one 
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indicated an urban environment with a population of at least 1,000,000 and a code of nine indicated a 
rural environment with a population less than 2,500. Educational attainment was measured by 
obtaining–from the USDA–the percent of the population, aged 25 or older, without a high school 
education in 2015 (43). Household income was measured by obtaining–from the USCB–the median 
household income for counties in 2015 (44). Forestation was measured by obtaining–from the USDA 
Forest Service–the number of forested acres in a county and the number of total acres in a county 
(45); subsequently, the aforementioned variables were used to calculate the percent of forested area 
in a county in 2015.  

All weather data were obtained from the National Oceanic and Atmospheric Administration’s 
(NOAA) National Centers for Environmental Information (46). Because the life cycle of the “black 
legged tick,” Ixodes scapularis, is two years in North America, weather data were lagged two years 
relative to Lyme disease incidence rates (47, 48). Specifically, average temperatures (in Fahrenheit) 
for the month of June 2013 were obtained for all weather stations in the U.S. with at least 15 days of 
data, as summer temperatures have been shown to correlate with tick abundance (49). Total 
precipitation (in inches) for the month of June 2013 was obtained for all weather stations in the U.S. 
with at least 15 days of data, as summer precipitation has been shown to correlate with tick 
abundance (49). Aggregation of weather station data to the county level ensued in accordance with 
Barreca and Shimshack’s (50) procedure. Specifically, data from all weather stations within 50 miles 
of each county’s geographic centroid–not to exceed the county’s border–were included in a 
calculation of an arithmetic mean of temperature or precipitation.  

Data Analysis 
First, a choropleth map was created with 2015 USCB county boundaries (51) in QGIS 

version 2.14 (52) to represent the geographic distribution of Lyme disease incidence rates in 2015. 
Second, means and standard deviations were calculated for each variable in the study at the USCB 
regional level (53), as research has shown that Lyme disease has clustered–historically–in the 
northeastern and upper Midwestern regions of the U.S. (54).  

Third, hierarchical ordinary least squares (OLS) multiple regression analysis was carried out 
(55), where Lyme disease incidence rates per 100,000 were regressed on the following independent 
variables: rurality, educational attainment, median household income, June temperatures (t–2 years), 
June precipitation (t–2 years), forestation, total county population, and veteran composition. In the 
second block of the analysis, a second order polynomial was added to the model in order to determine 
whether the relationship between Lyme disease incidence and June temperatures (t–2 years) was 
quadratic. The F-test for a change in the coefficient of determination was utilized in order to 
determine whether improved prediction in the variance of Lyme disease (LD) incidence was realized 
as a result of the inclusion of the quadratic term (56). Diagnostic analysis revealed that the residuals 
of the aforementioned models did not conform to a Gaussian distribution; therefore, each model was 
bootstrapped with 1,000 resamples so as to improve the precision of estimates (57, 58). The 
regression equation for the final model is shown below (Eq. 1).  

𝑌"# = 	𝛼 + 	𝛽𝑋*+,-. + 	𝛽𝑋/0	12 + 	𝛽𝑋345067 + 	𝛽𝑋8769 + 	𝛽𝑋:,75;9 + 	𝛽𝑋<0,7=> + 	𝛽𝑋:?: +
	𝛽𝑋@A8 + 	𝛽𝑋8769B + 	𝜀     (1) 

Fourth, because a scatterplot for the relationship between Lyme disease incidence and 
temperatures exhibited a curvilinear relationship, further analysis regarding the aforementioned 
relationship was conducted. Specifically, June 2013 temperatures were recoded into three categories: 
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(a) low, 40.0000𝐹 −	59.9990𝐹, (b) medium, 60.0000𝐹 −	69.999L𝐹, and (c) high, 70.0000𝐹 −
89.9990𝐹. Then, a one-way ANOVA (59) was carried out with post-hoc comparisons in accordance
with the Tukey Honestly Significant Difference (HSD) procedure (60) in order to determine the
temperature range most hospitable to the development of Lyme disease. Each pairwise comparison
was conducted with a bootstrapping procedure (1,000 resamples) in order to improve the accuracy of
inference regarding mean differences in the population (61).

Results 
As indicated in Figure 1, Lyme disease was particularly prevalent and concentrated in the 

upper midwestern and northeastern regions of the U.S. in 2015. The average incidence rate for 
counties in the northeastern region of the U.S. was 115.602 per 100,000, which was followed by an 
average incidence rate in the Midwest region of 12.596 per 100,000 (Table 1). Middlesex county, 
Massachusetts had the greatest number of reported Lyme disease cases in 2015 with 704 (incidence 
rate of 53.548 per 100,000). Significant variation in social and environmental conditions was evident 
within and between the four regions of the U.S. In the northeastern region, where Lyme disease was 
most prevalent, forested area was relatively abundant, June temperatures in 2013 were in the mid 
60’s, precipitation in 2013 was higher than other regions of the U.S., household income was higher 
than other regions of the U.S., and the percent of residents with less than a high school education 
was relatively low. Veteran population composition was highest in the western region, followed by 
the Midwestern, northeastern, and southern regions.  

Figure 1. Geographic distribution of county-level Lyme disease incidence rates in the U.S. in 2015. 

Table 1. –Regional differences in Lyme disease, social circumstances, environmental characteristics, and veteran 
population composition 

Northeast Region 
(Valid n = 191) 

Midwest Region 
(Valid n = 789) 

South Region 
(Valid n = 995) 

West Region 
(Valid n = 370) 

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 
LD Incidencea 115.602 114.398 12.596 38.896 4.731 20.666 0.597 3.748 
Ruralb 3.341 2.310 5.579 2.668 4.708 2.652 5.435 2.686 

No HSc 10.778 3.470 11.032 4.417 18.558 6.313 12.083 6.169 

Household Incomed 57.155 13.943 50.688 9.370 44.688 12.399 51.963 13.310 
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June Temperaturee 66.525 3.3176 69.212 4.404 77.332 4.455 63.157 10.755 
June Precipitationf 8.625 2.429 4.054 2.272 4.525 2.424 0.956 1.045 
Forested Areag 55.705 21.564 21.468 23.290 52.608 23.582 36.920 26.415 
Percent Veteran 9.418 2.895 9.860 2.455 9.400 3.069 10.445 4.197 
Total County 
Populationh

212.785 327.102 53.271 181.143 70.708 198.631 143.437 537.647 

a Rate per 100,000 
b Measured on a scale from 1 to 9, where a score of 1 was indicative of an extreme urban environment and a score of 9 
was indicative of an extreme rural environment 
c Measured as the percent of residents without a high school education 
d Measured as the median household income (USD x 1000) 
e Average temperature in June 2013 
f Total precipitation in June 2013 
g Percent of forested land  
h Population averages are reported in thousands 

Results of the two-block, hierarchical regression analysis are shown in Table 2. Model 1, 
where Lyme disease incidence rates were regressed on rurality, educational attainment, household 
income, temperature, precipitation, forestation, the total county population, and the proportion of the 
county population that had served in the U.S. Armed Forces, demonstrated overall statistical 
significance, F(8, 2337) = 147.192, p < 0.001, 𝑅B = 0.335. Results indicated that Lyme disease was 
more prevalent in rural counties with higher educational attainment and higher household incomes, 
relatively high June 2013 precipitation levels, and widespread forestation. Given that the 2013 
temperature variable was tested for a quadratic relationship with Lyme disease incidence in Model 2, 
the interpretation of the June temperature independent variable was suspended until the results of 
Model 2 were generated.  

Model 2, where Lyme disease incidence rates were regressed on each of the independent 
variables included in Model 1 as well as June 2013 temperatures squared, was statistically 
significant, F(9, 2336) = 132.157, p < 0.001, 𝑅B = 0.337. Results of the F-test for a change in the 
coefficient of determination in Model 2 was also statistically significant, F(1, 2336) = 8.234, p = 0.004, 
indicating that the quadratic temperature term increased the accuracy of the model. Therefore, the 
following interpretation of the relationship between Lyme disease incidence rates and temperatures 
(t–2) is tenable: Lyme disease cases are less prevalent in counties with extreme June temperatures, 
neither extremely cold nor extremely warm. Furthermore, in Model 2, results showed that Lyme 
disease incidence rates were higher in counties with greater veteran populations.  

Table 2. –Social and environmental predictors of Lyme disease in 2015 
Model 1a Model 2a 

b SE 95% CIb B SE 95% CIb 

Constant 2.019 * 0.024 1.967, 2.062 1.660 * 0.097 1.471, 2.062 
Rural 0.002 * 0.001 0.001, 0.004 0.002 * 0.001 0.001, 0.004 
No HS -0.001 * < 0.001 -0.002, -0.001 -0.001 * < 0.001 -0.002, > -0.001
Household 
Income 

0.001 * < 0.001 < 0.001, 0.002 0.001 * < 0.001 < 0.001, 0.002

June 
Temperature 

-0.002 * < 0.001 -0.003, -0.001 0.008 * 0.003 0.003, 0.014 

June 
Precipitation 

0.018 * 0.001 0.016, 0.020 0.017 * 0.001 0.015, 0.019 

Forested Area 0.063 * 0.008 0.047, 0.077 0.067 * 0.008 0.052, 0.083 
County 
Population 

-0.001 < 0.001 -0.002, 0.001 0.001 < 0.001 -0.001, 0.002
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Percent 
Veteran 

0.135 0.070 -0.002, 0.279 0.160 * 0.069 0.029, 0.301 

June 
Temperature 
Squared 

-0.001 * < 0.001 -0.002, > -0.001

a Regression model estimates were obtained via bootstrapping with 1,000 resamples 
b Confidence intervals were bias corrected 
* Statistically significant based on a 95% BCa CI

In order to further explore the relationship between June temperatures (t–2) and Lyme 
disease incidence rates, a one-way ANOVA was calculated with June temperatures recoded into 
three categories: low (L), medium (M), and high (H). Results of the omnibus one-way ANOVA 
showed that group differences were evident, F(2, 2547) = 199.252, p < 0.001. Post-hoc tests calculated 
according to the Tukey HSD procedure were carried out in order to determine pairwise differences. 
The following results were obtained: (a) L vs. M, mean difference = -42.335, bias corrected (BCa) 
bootstrapped 95% confidence interval (CI) = -48.548, -36.600; (b) M vs. H, mean difference = 
40.210, BCa bootstrapped 95% CI = 34.414, 46.415; (c) L vs. H, mean difference = -2.125, BCa 
bootstrapped 95% CI = -9.665, 5.414. The results of the previously described tests indicated that 
Lyme disease incidence rates in 2015 were highest in counties with June 2013 temperatures between 
60.0000𝐹	and 69.9990𝐹. In summary, the analyses in the present paper indicated that Lyme disease 
in 2015 was most prevalent in rural counties, with relatively high socioeconomic status, abundant 
forestation, wet conditions (t–2), and mid-range temperatures (t–2).   

Discussion 
When county level data were analyzed in this current study, the highest number of cases 

occurred in the Northeast. This finding was expected since Lyme disease is hyper-endemic in this 
region. One reason for the higher number of cases of Lyme borreliosis in this area is the discontinuity 
of forests, which has resulted from local human population growth. When large forests become 
fragmented into smaller segments, the number of small vertebrates, such as the white-footed mouse 
(the primary reservoir for Borrellia species), increases; therefore, more hosts are available for larval 
tick feeding. As a result, there is a greater chance that these ticks will become carriers of B. burdorferii 
(62). For military personnel stationed or retired in this location, the risk of exposure to infected ticks 
is high since routine training drills, other occupational duties, or leisure and recreation often occur in 
forested areas or short grass prairies (32,34). 

In this study, Lyme disease incidence rates were higher in counties with greater military 
veteran population compositions. Given the usual outdoor pastimes and hobbies of typical retired 
veterans and their families, such as hunting, fishing, camping, or exercising outdoors, increased 
exposure to TBDs–such as Lyme disease–comes as no surprise. The relatively recent increase in 
TBD case numbers among military personnel illustrates this observation (32). This finding also 
coincides with other conjectures in the literature (35). Lyme disease cases being less prevalent in 
counties with extreme June temperatures could coincide with veterans and others enjoying the 
outdoors more when temperatures are 60-70 degrees Fahrenheit, further exposing themselves to the 
tick vector.   

A strength of this study stems from the fact that historically validated predictors of Lyme 
disease were considered (i.e., weather factors and social factors) as controls, allowing the researchers 
to examine the unique effect of veteran population composition on Lyme disease incidence rates in 
the U.S. While some studies have evaluated Lyme disease in European military-connected 
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populations, little empirical evidence for risk of Lyme disease among American military-connected 
populations exists (31, 34, 35). Future research is needed in order to validate the findings of this 
study and other exploratory studies; however, this study provides a first step–beyond anecdotal 
evidence–towards establishing increased risk for Lyme disease among American military-connected 
persons, especially veterans.  

Limitations 
Some limitations accompanied the collection and analysis of data in the present study. First, 

this study was cross-sectional in nature; therefore, causal relationships were not examined. Second, 
the Lyme disease case data were for the general population–not military personnel specifically. The 
primary goal of the study, then, was to determine whether military veterans live in areas where Lyme 
disease is hyper-endemic. While the results of our study showed that a positive association existed in 
2015 between veteran population composition and Lyme disease incidence rates, further research is 
needed in order to validate this place-based risk.  

Conclusion 
Military veterans who have had previous exposure in Lyme-endemic areas are at increased 

risk of developing various manifestations of Lyme disease (31). In this current study, Lyme disease 
incidence rates were higher in counties with greater veteran populations in the U.S. in 2015, even 
after adjusting for the historically validated predictors of Lyme disease in the literature. While it has 
been speculated in the past that a possible relationship existed (due to occupational, rehabilitation, or 
perhaps outdoor leisure activities of veterans), this study has statistically reinforced the notion that 
veterans are at increased risk for Lyme disease owing to their choice of geographic residence. Not 
only does this research further expose the growing national health concern of vector borne diseases, 
particularly those spread by various species of ticks, but it also increases awareness that our nation’s 
veterans are vulnerable to a myriad of negative health consequences.   

Expanding the focus of the effects of Lyme disease is imperative for clinical and scientific 
professionals. We must increase our understanding of just how far-reaching and impacting its 
consequences are. Lyme disease by itself has been associated with numerous varied health sequelae, 
including but not limited to, arthritis, specific and non-specific neurological manifestations in both 
the central and peripheral nervous system, acute and chronic skin changes, and even cardiac 
manifestations (63, 64). Suicidal ideation has even been reported as part of the constellation of 
possible eventual symptoms, an outcome that is compounded by the high incidence of PTSD in the 
military veteran population (65). Since its initial discovery in Lyme, Connecticut in 1976, medical 
and scientific research has continued to pursue numerous aspects of the disease including 
microbiology, association with the environment, and clinical manifestations. While our overall 
understanding has increased tremendously over the last several decades, areas for future research 
and exploration continue to remain open. One such area includes Lyme disease’s incidence, clinical 
manifestations, and overall impact on specific vulnerable populations, such as U.S. military veterans 
and their families.   
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