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The connectome is regarded as the key to brain function in health and disease.
Structural and functional neuroimaging enables us to measure brain connectivity in
the living human brain. The field of connectomics describes the connectome as a
mathematical graph with its connection strengths being represented by connectivity
matrices. Graph theory algorithms are used to assess the integrity of the graph as a
whole and to reveal brain network biomarkers for brain diseases; however, the faulty
wiring of single connections or subnetworks as the structural correlate for neurological
or mental diseases remains elusive. We describe a novel approach to represent the
knowledge of human brain connectivity by a semantic network – a formalism frequently
used in knowledge management to describe the semantic relations between objects. In
our novel approach, objects are brain areas and connectivity is modeled as semantic
relations among them. The semantic network turns the graph of the connectome into
an explicit knowledge base about which brain areas are interconnected. Moreover, this
approach can semantically enrich the measured connectivity of an individual subject by
the semantic context from ontologies, brain atlases and molecular biological databases.
Integrating all measurements and facts into one unified feature space enables cross-
modal comparisons and analyses. We used a query mechanism for semantic networks
to extract functional, structural and transcriptome networks. We found that in general
higher structural and functional connectivity go along with a lower differential gene
expression among connected brain areas; however, subcortical motor areas and
limbic structures turned out to have a localized high differential gene expression while
being strongly connected. In an additional explorative use case, we could show a
localized high availability of fkbp5, gmeb1, and gmeb2 genes at a connection hub
of temporo-limbic brain networks. Fkbp5 is known for having a role in stress-related
psychiatric disorders, while gmeb1 and gmeb2 encode for modulator proteins of
the glucocorticoid receptor, a key receptor in the hormonal stress system. Semantic
networks tremendously ease working with multimodal neuroimaging and neurogenetics
data and may reveal relevant coincidences between transcriptome and connectome
networks.

Keywords: fMRI, DTI, gene expression, fkbp5, gmeb1, gmeb2, Human Connectome Project, Allen Human Brain
Atlas
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INTRODUCTION

The connectome – the entity of neural connections in the
brain – is regarded as the key to understanding the human
brain in normal functioning and disease (Seung, 2012; Shen
et al., 2017; van Ooyen and Butz-Ostendorf, 2017). From the
connectome, it can be inferred how intelligent someone is
(Finn et al., 2015), how vulnerable the brain is to traumatic
stress or neurodegeneration (Bigler, 2013; Crossley et al., 2014;
McColgan et al., 2015; Contreras et al., 2015), or how well
the brain will recover from damage (Kuceyeski et al., 2016).
Connectomics is the modern approach to assess the connectome
quantitatively (Sporns et al., 2005); the connectome is described
as a mathematical graph (Power et al., 2011) with the nodes
being the gray matter brain structures and the links of the
graph being the white matter tracts connecting them. The weight
of the link indicates the structural or functional connectivity
between two brain structures. Graph theoretical measures – so-
called complex network measures (Rubinov and Sporns, 2010) –
quantify the integrity of the graph as a whole and can be used
as biomarkers for neurological and psychiatric diseases (Smith,
2012; Drysdale et al., 2016; Woo et al., 2017). In addition to
these global brain network parameters, diseases often can be
attributed to pathological alterations in individual connections
or specific sub-networks (Bartolomeo et al., 2007); this would
require a more fine-grained description to understand their
etiology.

The macroscopic functional and structural connectome –
the connectivity between brain areas – can be measured non-
invasively in human subjects. Different imaging techniques exist
to measure functional brain connectivity, e.g., by functional
magnetic resonance imaging (fMRI) (Kwong et al., 1992; Ogawa
et al., 1992), by magnet encephalography (MEG) (Cohen, 1972)
or even computed from standard electroencephalography (EEG)
(Sakkalis, 2011). Functional brain connectivity is given in
terms of correlation values between traces of electrical activity
measured in different brain areas over time (Fox et al., 2005).
Structural connectivity in terms of the thickness of anatomical
fiber connections between brain areas can be measured by
diffusion tensor imaging (DTI) in the living human brain
(Basser et al., 1994). Additionally, structural connectivity can be
measured by (immune-histochemical) fiber tracing (Oh et al.,
2014 – in mice) or at high resolution by 3D polarized light
imaging of post mortem brains (Axer et al., 2011, 2016). The
relation between structural and functional connectivity, however,
is highly complex (Hermundstad et al., 2013). Therefore,
connectivity measurements need to be integrated from different
modalities to obtain a most complete picture of the macroscopic
connectome.

Standardizing processing workflows is a big issue in recent
neuroimaging efforts to increase comparability of the results and
interoperability among neuroimaging centers. Semantic networks
are a formal approach, which is frequently used in neuroimaging
to depict processing workflows. Essentially, a semantic network
is a directed graph, which models the semantic relations between
objects of a certain domain (Sowa, 1991). They have an important
role in web technologies and especially for organizing Big Data

in the life sciences (Losko and Heumann, 2017). For example,
K-Surfer is a special extension of KNIME R© Analytics Platform1

for the management and analysis of MRI data (Sarica et al.,
2014). Semantic networks can also be used to standardize
and homogenize workflows by connecting them to established
ontology terms and concepts, so-called provenance modeling.
The NeuroImaging Data Model (NIDM) (Maumet et al., 2016)
is an extension of the W3C PROV standard for the domain
of human brain mapping. Semantic networks have also been
used to enrich large clinical study data sets by semantic statistic
vocabularies (Leroux and Lefort, 2015) and to achieve semantic
interoperability of clinical research studies with an imaging
component by the HL7 Fast Healthcare Interoperable Resource
(FHIR) standard (Leroux and Raniga, 2017).

In the present study, we postulate a novel approach to
semantically represent brain connectivity. Instead of describing
the connectome as a collection of weights in a connectivity
matrix, our approach uses a semantic network to describe
each brain structure as an individual semantic object and
the connections as the semantic relations among them. The
novelty of this approach is that the semantic network creates a
unified feature space in which all imaging modalities reporting
connectivity can be compared and cross-modal analyses become
possible. Moreover, by using semantic networks, connectivity can
be put in a semantic context given by ontologies from structural
or functional neuroanatomy (Brown et al., 2012) or pathology
(Schriml et al., 2012). Furthermore, brain structures assessed
by neuroimaging can be semantically enriched by available
molecular biological data such as neural receptor densities
(Zilles and Amunts, 2010) or gene expression in this brain
area (Hawrylycz et al., 2012). Pathologic changes are very often
specific indicators of brain diseases (Howes et al., 2015; Roy et al.,
2016). Gene expression measurements of genes encoding for
neural receptors in post-mortem brain tissue can be an additional
indicator of the general availability of certain receptors in a
particular brain area (Hawrylycz et al., 2012).

Individual receptor densities across the brain can be measured,
e.g., with positron emission tomography (PET) (Wagner
et al., 1983) or single photon emission photography (SPECT)
(Eckelman et al., 1984) in vivo. Although they show characteristic
patterns in healthy brains – so-called neural receptor finger prints
(Zilles and Amunts, 2010), changes in receptor densities are
reversible and are mostly a rather volatile marker of brain diseases
(Volkow et al., 2011). Alterations in structural connectivity are
much slower and much longer-lasting than molecular changes in
receptor densities and functional connectivity, and are therefore
often a much better predictor of the actual disease state
(Contreras et al., 2015). Due to activity-dependent structural
plasticity (Butz et al., 2009; Butz-Ostendorf and van Ooyen,
2017) there is a complex reciprocal interaction between neural
transmitter receptors, functional connectivity, and structural
connectivity rewiring. Longitudinal neuroimaging of receptor
densities together with functional and structural connectivity in
the individual patient is therefore essential for a complete picture
of the disease development and the effect of treatment.

1http://www.knime.com
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In this work, we give a detailed introduction to the creation of
a semantic network model of the connectome. We describe how
to query functional and structural connectivity from the USC
Multimodal Connectivity Database (Brown et al., 2012; Brown
and van Horn, 2016) contributing to the Human Connectome
Project (Bardin, 2012) and gene expression data from the Allen
Human Brain Atlas (Hawrylycz et al., 2012) to create joined
structural, functional connectivity and transcription networks
from healthy human brains. We also queried the spatial gene
expression distribution of individual genes and co-localized them
with functional brain networks. Furthermore, we show how
to use anatomical and functional brain ontologies such as the
“neuroanatomical domain of the foundational model of anatomy
ontology” (FMA) (Nichols et al., 2014) or the ontologies provided
by the Brede database for functional imaging (Nielsen, 2003) to
annotate the human connectome with neuroanatomical meta-
information.

METHODS

The Brain Science Knowledge Model at a
Glance
While the aforementioned applications of semantic networks
in neuroimaging focus on procedural aspects of neuroimaging,
we here propose a novel declarative approach to explicitly
represent knowledge contained in multi-modal brain data
by deploying semantic networks. Semantic networks in our
approach describe the semantic relations of data items from
very heterogeneous database sources. The nodes of the semantic
network graph, the semantic objects, represent available data
and knowledge from the field of neuroscience. To accommodate
different kinds of data, there are several semantic objects kinds.
These are static template objects, from which new dynamic
object types can be dynamically derived. These static object
kinds are “element,” “context,” “experiment,” “ontology,” and
“annotation.” For example, the semantic object type “patient”
could be dynamically derived from the static semantic object kind
“element,” while “fMRI,” which holds the values of a functional
connectivity matrix (Brown and van Horn, 2016) would be
derived from “experiment,” or “FMA” (The Foundational Model
of Anatomy, cf. Rosse and Mejino, 2003; Nichols et al., 2014)
would be an object of kind “ontology.” Once the semantic
network is set up, instances of those semantic objects are created
by importing individual data sets. Data import is described in the
section “The underlying technology.”

The directed links of the graph are semantic relations that are
defined by a feed-forward definition and a backward definition.
For example, a patient “is assessed by” an fMRI, and an fMRI
“assesses” a patient. For each patient assessed by fMRI, an
instance of this semantic relation is created upon data import.
Furthermore, annotations can be added to any semantic object or
relation to add meta-information. In particular, annotations are
needed to store patient data or to maintain the versioned protocol
of an fMRI measurement, for example.

The entity of all semantic objects and relations constitute
the knowledge model of a domain – here the field of brain

science (Figure 1). The knowledge model comprises semantic
objects for all available clinical data, neuroimaging data sets,
molecular biological databases as well as brain atlases and brain
ontologies. It is not fixed, but can be dynamically extended by
new semantic objects. Very much like putting LegoTM bricks onto
each other, new semantic relations can be created with existing
objects independently of the underlying database specifications.

Knowledge is made explicit by querying the knowledge model.
One would query the knowledge model by using the natural
language terms defined by the semantic object type names and
by the relation definitions. A simple query would be as follows:
The object to find is an element “patient” which “is assessed
by” an experiment “fMRI.” The result would be an availability
table containing all patients who underwent any fMRI routine.
The knowledge model can be very specific as resting state fMRI
can be separately represented from any particular task-dependent
fMRI protocol giving a precise overview of which assessments
were performed for which patient. A second query could, for
example, report all brain structures which strongly express a
certain gene and which are involved in a certain brain disease.
Queries can ask for any combination of directly or remotely
related semantic objects by following a path through the semantic
network (Figure 2).

The Underlying Technology
The semantic networks of the knowledge model were set up
in the BioXMTM Knowledge Management Environment version
6.1 by Biomax Informatics AG, Planegg, Germany. The BioXM
platform mediates the database access for every semantic object
(Losko et al., 2006; Losko and Heumann, 2009; Maier et al., 2011;
Losko and Heumann, 2009). Every instance of a semantic object
corresponds to a database entry. Once a knowledge model is
defined, data can be uploaded to the underlying databases. Import
operations use the same semantics as defined by the knowledge
model so that the actual database routines for data import are
encapsulated by the platform. With every newly imported data
item, a new instance of the respective semantic object is created.
In this way, the knowledge model becomes enriched by data.
The built-in query language can be used to query any data that
matches the query criteria. The data retrieval from the database is
again organized by the platform. The platform technology creates
a unified data space irrespective of the different data sources
and the underlying database technology and enables working
on a highly abstract level using the semantic relations in the
knowledge model.

The BioXM platform is based on JavaTM client-server
architecture (Losko and Heumann, 2017). The server supports
MySQL R© or Oracle R© relational database management systems
(RDBMS). Data can be imported directly through a Java-based
BioXM client application, web portal, command-line interface
or any other application accessing the BioXM application
programming interfaces (APIs). The BioXM platform technology
consists of three tiers (Figure 3), a client tier, a server tier and a
database tier. The BioXM platform implements the functionality
to operate across the different tiers in modules. A module, e.g.,
for a semantic object or a relation provides generic graphical
user interface (GUI) components for working with objects and
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FIGURE 1 | A simplified brain-data knowledge model. The knowledge model can be subdivided in at least five sub-domains: clinical, neuroimaging, molecular
biological data, brain atlas, and brain ontology. Rectangles indicate semantic object types or groups of corresponding semantic object types indicated by the gray
triangle in the top right corner. Darker background colors of rectangles indicate key objects of the subdomains. Semantic object types are derived from a static set of
object kinds indicated by a small icon preceding the object name. The puzzle tile icon indicates the most basic object kind the “element.” The folder icon indicates
the object kind “context,” the glass flask icon the object kind “experiment” and the tree diagram icon the object kind “ontology.” The different “brain atlases” can be
derived either from kind element or ontology. The arrows indicate the semantic relations between the different objects or even between the same object types (e.g.,
“measured brain connectivity”). Classes of semantic relations can connect different multiple source and target objects with each other. For example, the relation
class “brain imaging” relates the patient with data from the different imaging modalities. “Experiment subject” is a special relation belonging to the semantic object
kind experiment. Every experiment has got exactly one semantic object type as its subject. It identifies the individual data entries of this experiment (cf. main text).

relations at client-tier level, server communication routines at
server-tier level, and the required database schemes at database-
tier level to store and retrieve instances of the semantic objects
and relations in and from the database. Moreover, the module
contains a framework for audit object properties and the XML
export of object lists. The use of the BioXM platform technology
eases working with semantic networks tremendously; however,
the concept of annotating connectome data sets by semantic
networks is not at all limited to the usage of the BioXM platform.

Any other tools for creating semantic networks and managing the
database access can be used as well.

Detailed Description of the Brain Science
Knowledge Model
The knowledge model can be subdivided into at least five different
sub-domains: clinical, neuroimaging, molecular biological data,
brain atlases, and brain ontologies. In addition, the knowledge
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FIGURE 2 | Knowledge model and query language. (A) We zoomed in to the clinical data and the neuroimaging sub-domains. The Relation Class “brain imaging,”
indicated by the gray arrows from “patient” to the different imaging experiments, is defined by “is examined by” and “examines” in forward and backward directions,
respectively. The “patient” participates in the context “study.” (B) The query language uses the object names and the definitions of the relations. Red bullet points
indicate semantic objects, purple bullet points labels and identifiers, and blue bullet points logical operators. (C) The result of the query shown in (B) is a list of
patients that fulfill the required conditions that they are part of the NKI Rockland study (Nooner et al., 2012) and have rs-fMRI and DTI experiments available.

model can contain sub-networks that describe processing
workflows for every neuroimaging or molecular biological
method. Sub-domains and sub-networks are not disjunctive but
to a certain degree overlapping and interlinked concepts. They
help structure the whole knowledge model. Every sub-domain
has central semantic objects to which newly added objects can be
easily linked. The semantic relations between the central objects
of the subdomains form the backbone of the knowledge model.

A Patient-Centric Knowledge Model
The ultimate goal of the present approach is to integrate all
data of the individual patient with the available knowledge in
the scientific field. The element “patient” is therefore the central
semantic object of the clinical sub-domain. The patient object
is annotated with all required patient information containing a
unique patient ID, patient address and health security status, etc.
All processed neuroimaging data are linked to the patient via
the semantic relation “brain imaging.” The relation is defined
by “is assessed by” and “assesses” in forward and backward
directions, respectively. Further, the patient is an item in the
context “study.” The object kind “context” is used to group
semantic objects. Instances of the semantic object “patient,” the

individual patients, can be dynamically added to a context “study”
to organize existing or plan future studies. The patient is also
subject of the experiment “laboratory” (Figure 4A) and relates
to all neuroimaging experiments. Experiments are used to store
and organize large sets of (e.g., numeric) data. Experiments are
defined by their method, their format and their subject. The
experiment method “laboratory” contains all experiments with
measured lab values of patients. One experimental data entry
of that experiment has a subject, which, in this case, is one
instance of the semantic object patient and contains exactly one
measurement of the specified method and format of this patient
(Figure 4).

Combining Declarative and Procedural
Aspects in the Knowledge Model
For reproducibility and interoperability of neuroimaging, it is
crucial that the documentation of the used processing workflows
is stored with the obtained results. Approaches to define
workflows, e.g., KNIME R© workflows1, so far do not offer the
possibility to organize the results together with the workflows.
The knowledge model, which we are introducing here, combines
declarative knowledge with procedural knowlegde; it contains
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FIGURE 3 | Modules architecture. The BioXM platform consists of three tiers: client, server, and database. The database tier contains all the database schemes. The
user does not directly access databases, but works through a Java R© client that enables setting up the knowledge model, import data and to query the knowledge
model. The server tier mediates between the user and the database tier. There is a module which defines the functionality for each object kind from user input to
database access. There are interfaces between modules on the client and the server tiers (solid lines). Modules are cross-referenced on the database tier and
between different tiers (dashed lines) enabling cross-referencing and querying multiple data bases.

semantic objects that represent data as well as those that represent
processing, analysis or assessment tools. The knowledge model
contains, e.g., specialized contexts and elements for raw data
types such as “Nifti Image” and for each processing task such as
“BET” (brain extraction tool of the FSL tools library2), “FLIRT” or

2https://www.fmrib.ox.ac.uk/fsl

“DEFACE T1” to name a few. Outputs of these processing steps
are again represented by respective elements, for example, the
“T1_brain” or “T1_brain_mask” and many more. The different
objects are connected via semantic relations according to the
chosen workflow. All semantic objects and relations can be
annotated by the relevant meta-information of the processing
task. For example, the element BET has an associated annotation
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FIGURE 4 | Laboratory and neuroimaging experiments. Every experiment is defined by its name, method, subject, and format. Every format can contain different
attributes to accommodate the data. (A) In the clinical subdomain, the experiment method “laboratory” contains all measurements of the patient such as blood
values. The patient is the subject of each experiment method laboratory. The main differences between laboratory experiments and neuroimaging experiments is that
the latter do not have the patient as the experiment subject. (B) Neuroimaging experiments that measure, for example, glucose metabolism at a particular location in
the brain, such as the experiment method “PET,” have the element “brain structure coordinates” as the subject. (C) Experiments that measure connectivity between
“brain structure coordinates” (e.g., by experiment method “rs-fMRI”) have the semantic relation “measured brain connectivity” as the subject.

“BET parameters” that contains the chosen parameters and their
ranges and default values as an example configuration, i.e.,
fractional intensity threshold (0–>1); default = 0.5; <g> vertical
gradient in fractional intensity threshold (−1– >1); default = 0;
<r> head radius (mm not voxels), initial surface sphere is set to
half of this; <c> <x y z> center-of-gravity (voxels not mm) of
initial mesh surface; and <t> applied thresholding to segmented
brain image and mask (see FSL documentation for detailed
explanation of the parameters3). An example configuration of the
T1 processing pipeline in accordance to Alfaro-Almagro et al.
(2018) is shown in Supplementary Figure S1.

The semantic subnetwork representing a processing workflow
is connected to the element patient. At the moment we start a
neuroimaging workflow, we instantiate the knowledge model by
creating an instance of the context Nifti image and a semantic
relation from element patient to Nifti image. With each state

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide

transition in this processs, we create a further related object
and parameter annotations representing the performed task.
By doing so, we automatically document the full processing
workflow. Moreover, as part of the knowledge model, the entire
documentation is searchable by the built-in query mechanism.
We can, for example, ask for all patients who were assessed by a
certain workflow and particular parameter settings. Comparisons
between results of patients with parameter settings A and
parameter settings B become easily possible.

Representing the Connectome in the
Knowledge Model
To accommodate any processed neuroimaging data (brain
connectivity, receptor density values, brain volume and cortical
thickness, etc.), we introduced an element “measured brain
coordinates.” The intention was that every coordinate in an
individual or ideally in a standardized brain at which a
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measurement was taken becomes an individual semantic object to
which other semantic objects can relate. Mapping all coordinates
of an individual patient to a standardized brain like the MNI-152
(Mazziotta et al., 1995) poses the great advantage that knowledge
of all patients can be accumulated in the knowledge model.
The element measured brain coordinates is the key object that
turns the graph of a (macroscopic) connectome network into a
semantic network as we can now introduce any type of functional
or structural connection as a semantic relation between two
measured brain coordinates objects (Figures 4B,C).

Whenever a structural or functional connection between
two 3D locations in the brain is measured an instance of
the semantic relation between the corresponding measured
brain coordinates objects is created (Figure 4C). The relation
is defined as “connects to” and “is connected from” for
the forward and the backward definitions, respectively.
Because semantic relations are always directed, it is possible
to accommodate directed connectome information even
though neuroimaging data sets are often undirected. It
must be ensured that relations are only created between
coordinates belonging to the same coordinate frame of an
individual or a standardized brain. The more neuroimaging
data sets reporting connectivity of individual brains are
imported to the semantic network, the more measured brain
connectivity relations are created. Ultimately, the semantic
network accumulates the knowledge of brain connectivity
that becomes transcendent over the single neuroimaging
measurements.

Integrating Functional and Structural
Brain Connectivity
Functional and structural brain connectivity measured, e.g., by
resting state fMRI (rs-fMRI) or DTI, respectively, is usually
stored in nxn matrices, so-called connectivity matrices, with n
being the number of individual brain areas. The approach works
accordingly for every fMRI paradigm reporting connectivity.
The values at each matrix entry range from −1 to 1 for
functional connectivity indicating activity correlations over time,
and are positive integer or float values for structural connectivity
indicating fiber densities or probabilities, respectively. We
integrated connectivity matrices into semantic networks by using
the semantic object kind experiment and created an experiment
method “rs-fMRI” and a method “DTI.” Further experiment
methods, e.g., EEG and MEG can be added easily as needed.
One experiment contains all connectivity values of an individual
patient; however, the subject of this experiment is not the
semantic object patient as for laboratory experiments, but the
semantic relation measured brain connectivity (Figure 4C).
One particular experimental data entry therefore contains the
strength of a certain functional or structural connection in
one neuroimaging assessment of an individual patient. The
experiment format to capture connection strengths chosen is
“absolute correlation value” and “normalized correlation value”
for “fMRI,” and “absolute fiber density,” and “normalized fiber
density” for deterministic DTI, and “probability” for probabilistic
fiber tracking in a DTI data set.

Representing Localized Brain Data Such
as Cortical Thickness and Receptor
Densities
In addition to brain connectivity data, we can integrate
measurements at a certain 3D image location like cortical volume,
glucose metabolism or receptor densities. For this, we defined
experiment methods “cortical volume” and “PET” with the
measured brain coordinates object as the subject (Figure 4B).
Each experiment method PET can contain all measurements
from a PET scanner. [18F]fluoro-deoxyglucose ([18F]FDG) is a
radiopharmaceutical to monitor changes in glucose metabolism
and, hence, brain activity. Cortical volume together with glucose
metabolism of individual brain regions such as hippocampus,
amygdala, and entorhinal cortex may indicate different forms of
dementia (Del Sole et al., 2016). Further radioligands that bind
to individual neurotransmitter receptors exist (Eckelman et al.,
1984; Steiniger et al., 2008; Roy et al., 2016). The experiment
method “PET” therefore contains different experiment formats
such as “18FDG” or “receptor density” for measuring glucose
metabolism and receptor density measurements, respectively.
Each experiment “PET” contains all PET measurements of
one individual patient. Each experimental data entry of this
experiment in turn contains all values measured at a specific 3D
location in the patient’s brain.

The Knowledge Model Enables the
Parallel Use of Multiple Brain Atlases
The brain area or structure to which a voxel at a certain 3D
localization in a brain image data set belongs depends on the
brain atlas chosen to parcellate the brain image. The same
3D coordinates can, at the same time, belong to a large brain
structure like “brain stem” or, if a high-resolution atlas was used,
to a smaller structure like “midbrain” or even “substantia nigra.”
Therefore, we kept the representation of 3D localizations separate
from the representation of brain structures in the semantic
network. To link between the two, we introduced a semantic
relation “image parcellation” (Figure 5), which we defined by
the forward definition “belongs to” and the backward definition
“parcellates.” The source of the relation is the object measured
brain coordinates and target is a brain atlas entry. The brain atlas
is either an element or an ontology depending on whether the
brain structure listing comes as a flat listing or as a hierarchically
organized ontology. Such brain structure listings are, for instance,
the Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer
et al., 2002), Talairach atlas (Talairach and Tournoux, 1988),
Craddock200 (Craddock et al., 2012), PowerNeuron264 (Power
et al., 2011), FreeSurfer (Reuter et al., 20124) and many
more. We created elements “AAL,” “Taliarach,” “Craddock200,”
“PowerNeuron264,” and an ontology “FreeSurfer.” The list of
brain atlases for image parcellation is constantly growing. Further
semantic objects for new brain atlases can be added at any time.
Brain atlases for imaging parcellation provide tables that relate
a set of measured 3D coordinates referring to a standardized
brain, e.g., the MNI-152 brain (Mazziotta et al., 1995) to a

4http://surfer.nmr.mgh.harvard.edu/
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FIGURE 5 | Brain mappings. (A) Brain atlases are used to parcellate the brain image into volumes that correspond to a certain brain area. The relation between
volumes and brain areas are defined by the brain atlas. The tree diagram icon and the puzzle icon indicate whether the brain atlas is an ontology or an element.
Entries of the different brain atlases are mapped to a unified repository of brain structures – the context “brain structure.” The semantic object kind “context” provides
the possibility of grouping semantic objects that are of relevance for this brain structure, e.g., literature references (not shown). (B) The semantic relation “image
parcellation” that relates the element “brain structure coordinates” to a brain atlas, e.g., “FreeSurfer” is defined by “belongs to” and “parcellates” in forward and
backward directions. Likewise, the relation “brain mapping” is defined by “maps to” and “is mapped by.”

specified and labeled brain structure. Based on these tables, we
created instances of the semantic relation image parcellation
from measured brain coordinates to, e.g., AAL, Craddock200 and
FreeSurfer to name a few.

Mappings Between Brain Atlases in the
Knowledge Model
One challenge of the co-existence of multiple brain atlases is
the heterogeneity of terms used to label corresponding brain
structures across different atlases. The great variety of different
terms used for the same brain structure is a big hurdle for
semantic data integration. Moreover, looking from a 3D image
perspective, the parcellated volume that is referred to by any
two corresponding brain structure labels of different atlases is
not necessarily identical. Meaning that the terms of different
atlases cannot be safely treated as synonyms, but require manual
evaluation in each case. The intention of semantic integration of
brain data for knowledge management is to condense dispersed
information into unified semantic objects. What we can achieve
for multimodal brain imaging and neuroanatomical data is to
join information about, similarly, defined brain structures. To
accumulate this information we created a semantic object “brain
structure” that relates to all brain atlases and ontologies, but
is, per se, an independent repository of representative brain
structures (Figure 5). The relation class “brain mapping” contains

all semantic relations which connect related brain structures in
different brain atlases. It is defined by the forward definition
“maps to” and the backward definition “is mapped by.” A relation
class contains all semantic relations with identical definitions but
with multiple sources and targets. Due to the aforementioned
concern, the mapping will never be perfect, but must be
understood as a “best match” (Supplementary Table S1).

A Generalized Knowledge Base for Brain
Structures
The knowledge model brings together data from an individual
patient with generalizable knowledge about the brain. In order
to avoid replicating general knowledge for every patient, we
introduced the context “brain structure.” It acts as a hub
in the semantic network as it relates to all measured brain
coordinates from the individual patients as well as to all
ontologies storing meta-information about brain structures.
Available information about a certain brain structure from
functional and structural neuroanatomy, molecular biology and
neuroimaging of individual patients is directly or indirectly
linked to the matching brain structure object. We used the
Allen Human Brain Atlas ontology (Hawrylycz et al., 2012)
as the naming convention for our brain structure repository.
This enabled us to directly link every brain structure object
to its corresponding entry in the “Allen Human Brain Atlas”
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FIGURE 6 | Brain ontologies. Brain ontologies form a further sub-domain of the brain data knowledge model. The “brain structure” object that contains a repository
of known brain structures is matched to structural and functional brain ontologies. The example shows a representation of the Brede database (Nielsen, 2003). The
database consists of an ontology of brain structures (WOROI), an ontology of external components (WOEXT), and a list of cognitive experiments (WOEXP) that are
further related to a list of literature references (WOBIB). Annotation objects indicated by the clipboard icon hold additional information such as the name of the
cognitive tests (WOEXP annotation) or the PubMed ID of the cited paper and other meta-information (WOBIB annotation). Ontologies are indicated by the tree
diagram icon while flat lists stored by the semantic object kind “element” are indicated by the puzzle icon.

ontology. As a result, each brain structure becomes automatically
categorized anatomically by this atlas ontology. By relating the
brain structure object also to the neuroanatomical domain of the
Foundational Model of Anatomy ontology (FMA) (Nichols et al.,
2014), additional anatomical information is provided. In addition
to the usual “is a” relation, the FMA ontology provides anatomical
and topological relations such as “is adjacent to,” “provides input
to,” “receives input from” and many more. By relating every
brain structure to the corresponding entries in the FMA ontology,
this anatomical knowledge becomes integrated in the knowledge
model and globally available, e.g., for annotating the connectome
of the individual patient. Moreover, each brain structure is related
to functional anatomical knowledge. We mapped the Brede
WOROI ontology (Nielsen, 2003) to the matching brain structure
object. Brede WOROI contains a hierarchically organized list
of brain structures, which are, in turn, related to an ontology
of cognitive functions called Brede WOEXT. Finally, mappings
between Brede WOEXT and Brede WOEXP, a further Brede
ontology containing cognition experiments, exist. We integrated
these three ontologies, included the provided mappings between

them and integrated them into the knowledge model (Figure 6).
Thereby, it becomes possible to query all brain structures that are
related to a certain cognitive function or were tested in a cognitive
experiment.

Semantic Enrichment of Brain Data With
Molecular Biological Data
As an example for molecular biological data localized in the
brain, the Allen Brain Institute provides a comprehensive multi-
array gene expression data set of six human post-mortem brains
(Hawrylycz et al., 2012). The expression of every human gene
was measured by applying at least two probes per gene. All
measurements are labeled by the MNI 152 coordinates (Mazziotta
et al., 1995) from which they were taken and mapped to the
Allen Human Brain Atlas. A semantic object experiment method
“Allen Human Brain Atlas gene expression” integrates expression
levels into the knowledge model (Figure 7). Every experiment
of this method is identified by an identifier of the donor and
the location at which the gene expression was measured. Each
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FIGURE 7 | Gene expression experiments. (A) Experiments of method “gene
expression” have the expression level format. They contain the actual value
and a validity signal provided by the Allen Human Brain Atlas (Hawrylycz et al.,
2012). Each experiment contains the gene expression values measured by all
probes and relates to the respective “brain structure” element by the semantic
relation “gene expression in brain structure.” The probe is the subject of each
gene expression experiment. (B) Subject and experiment name expand a
table with the subjects being the row labels and the experiment names being
the column labels. In this example, the probes label the rows and the brain
areas the columns. This table holds all data that is stored by the experiment
method gene expression – in this case, 946 × 58692 experimental data
entries taken from one post-mortem brain (Hawrylycz et al., 2012).

experiment contains the expression values measured by about 60
thousand probes. One experimental data entry of the experiment
is identified via the experiment’s subject, which is the element
“probe.” The element probe is semantically related to the context
“DNA” via the relation “DNA to probe,” which is defined as
follows: a DNA “is detected by” a probe and a probe “binds to”
a DNA. Via the intermediate semantic object probe, the gene
expression value becomes related to a particular gene for which
functional classification is available through the Gene Ontology
(Ashburner et al., 2000; The Gene Ontology Consortium, 2017).

EXPLORATORY USE CASES

Working With Functional Brain Networks
Now that the knowledge model for brain data is set up and
enriched with data, we can use the BioXM query language (Losko
and Heumann, 2017) to work with the knowledge model and
assemble data from any desired integrated source. For example,
we can use the knowledge model to create templates of functional
brain networks (FBNs) assisted by the knowledge from brain
atlases and ontologies. The FBN template can be used to filter
an individual connectome data set or differences between data
sets. The so-filtered connectome data set enables the clinician to
observe the status-quo or changes in the brain of the patient.
For example, patients with a “dysconnection” syndrome are
known to have a faulty wiring of limbic connections associated
with hallucination, delusions or neglect (Bartolomeo et al.,
2007). Schizophrenia is considered to resemble a dysconnection
syndrome (Weinberger and Lipska, 1995; Bagorda et al., 2006).
It now becomes possible to easily relate behavior to quantitative
changes in, for example, this particular brain connectivity.

The query to filter a connectome by a FBN template could look
like the following: “Find all measured brain coordinates which
‘belong to’ a Craddock200 which ‘maps to’ a brain structure
which ‘maps to’ an Allen Human Brain Atlas ontology entry
which ‘is inferred from’ an Allen Human Brain Atlas ontology
entry which ‘is the’ 4219 limbic lobe.” The query makes use of
the ontology relation ‘is a’. It returns a table of the origin and
the target brain structure with the corresponding measured brain
coordinates, the fiber density and the activity correlation values.
These results can be used to create a lattice graph in the MNI
coordinate frame (Figure 8). Line thickness indicates structural
connectivity and line color functional connectivity. We used
connectome data sets from the NKI Rockland study (Nooner
et al., 2012) available through the USC Multimodal Connectivity
Database (Brown et al., 2012, 2016), part of the Human
Connectome Project (Bardin, 2012). Each data set contained
connectivity matrices for functional and structural connectivity
derived from fMRI and DTI raw data images, respectively. The
Craddock200 brain atlas (Craddock et al., 2012) was used for
this study to parcellate brains into 188 different 3D coordinates
belonging to 126 different anatomical areas. Applying the FBN
limbic lobe template to an averaged DTI connectivity data set
“nki_dti_avg” and an averaged rs-fMRI connectivity data set
“nki_fc_avg” from the NKI Rockland study (Nooner et al., 2012)
revealed 110 pairs of structural and functional connections of the
limbic lobe (Figure 8 and Supplementary Table S2). It has been
averaged over 196 individuals ranging fom age 6 to 89. The two
data sets were obtained from the USC Multimodal Connectivity
database (Brown et al., 2012).

Combining Connectome With Molecular
Biological Data
The knowledge model enables us to query the data from any
perspective. In the aforementioned example, we queried the
data from the neuroimaging perspective and obtained measured
connection strengths indicating structural and functional
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FIGURE 8 | Functional brain networks and gene expression. 3D lattice graphs in all three panels show connectome information on structural (line strength) and
functional connectivity (line color) of the limbic lobe. Red lines indicate strong functional connectivity and blue lines weak functional connectivity. Strong functional
connectivity means that activity of connected brain areas is correlated in time. Weak functional connectivity means that brain areas’ activities are anti-correlated. The
black arrow head indicates the location of the hippocampal formation — a connection hub of the limbic lobe sub-network. Data were taken from rs-fMRI and DTI
connectivity matrices from the NKI Rockland study (Nooner et al., 2012) through the USC Multimodal Connectivity database (Brown and van Horn, 2016). Legend
on directions in the plot: anterior, “A”; posterior, “P”; left, “L”; right, “R”; dorsal, “D”; ventral, “V.” (A) Gene expression values for the gene “gmeb1” encode for the
“glucocorticoid modulatory element-binding protein 1.” We see ubiquitously high gene expression with a particular accumulation of high values in the vicinity of the
hippocampal connection hub region indicated by the black arrow. (B) Gene Expression for the gene “gmeb2” encoding for the “glucocorticoid modulatory
element-binding protein 2” shows accumulation of high gene expression in the hippocampal formation, too. (C) Gene expression of gene “fkbp5” involved in
receptor binding regulation of the glucocorticoid receptor shows highly localized increased values in the hippocampal formation, too. (See the main text for
explanation.) Different gene expression values of multiple probes binding at the same location were plotted with 50% transparency to display the results of all probes.
Gene expression values were taken from the Allen Human Brain Atlas (Hawrylycz et al., 2012).
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FIGURE 9 | Knowledge model and instances of semantic objects and relations. (A) The query to relate gene expression networks with brain connectivity makes use
of the depicted semantic objects and relations. A query describes a defined path through the semantic network. (B) The picture depicts the instantiation of the
knowledge model described in (A). The query returns experimental data entries in a differential expression of genes (DEG) experiment, which are indirectly related to
experimental data entries in DTI and rs-fMRI experiments.
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connectivity of an individual subject. In the next example, we
approach the data from a molecular biology perspective. The
query could ask for brain structures which relate to an Allen
Human Brain gene expression experiment for donor9861 that
has an experiment subject, which is a probe which binds to a
DNA which is fkbp5. FK506 binding protein 51, or short fkbp5,
is involved in the regulation of glucocorticoid receptor sensitivity
and is part of the stress hormone regulation system (Binder,
2009). Polymorphisms in the gene encoding for fkbp5, which
can lead to a dysregulated stress response, might be a risk factor
for stress-related psychiatric disorders. The query returned 211
combinations of probes, which bind to fkbp5, and MNI 152
coordinates in the donor brain 9861 with gene expression
values greater than 8 and with a signal significantly greater than
background noise (PACall value equal to 1) (Supplementary
Table S3). The strongest gene expression for fkbp5 was seen in
the hippocampal formation (Figure 8).

In a second query, we searched for the two genes “gmeb1”
and “gmeb2” for the glucocorticoid modulatory element binding
proteins 1 and 2, respectively. The query returned 79 localized
probes in the brain, which bind to gmeb1 (Supplementary Table
S4), and 11 probes (Supplementary Table S5), which bind to
gmeb2, with gene expression values greater than 8 and with a
signal significantly greater than background noise (PACall value
equal to 1). We wanted to know whether those modulatory
elements of the glutamate receptor are co-localized with fkbp5,
which may suggest that polymorphisms of these genes have a
putative role in mental stress tolerance, too. We found that these
three genes are highly expressed together in the CA4 region of the
hippocampal formation (Figure 8 and Supplementary Table S6).

Glucocorticoids can influence glutamatergic
neurotransmissions at all relevant points, at the presynaptic
transmitter release, at the postsynaptic receptor trafficking
and function, and at transporter-mediated uptake and
recycling of glutamate (Popoli et al., 2011). Therefore, we
were interested in brain connectivity of circuits involved in
emotional processing; we considered the FBN of the limbic
circuit described above and co-localized it with the gene
expression profiles of fkbp5, gmeb1, and gmeb2. High gene
expression occurred in close vicinity to the hippocampal
connectivity hub of the limbic lobe network (Figure 8).
Distortions by gene polymorphisms active at a hub region
may influence the integrity of the whole functional brain
network.

Connectome and Gene Expression
Networks
Beyond the exploration of individual genes and connections,
we used the knowledge model to reveal networks of brain
structures with similar gene expression, structural and functional
connectivity. We queried locations in the brain which were
semantically related by a measured brain connectivity relation
and a differential expression of genes relation. While the
measured brain connectivity relation carries structural and
functional connection strengths measured by DTI and rs-
fMRI, respectively, the differential expression of genes relation

is annotated by the number of differentially expressed genes
between the related brain structures.

We used the average data sets from DTI “nki_dti_avg”
and from rs-fMRI “nki_fc_avg” from the NKI Rockland study
(Nooner et al., 2012) from the USC Multimodal Connectivity
database (Brown et al., 2012) again. Differential expression of
genes was computed based on the Allen Human Brain Atlas
microarray gene expression data set. Values and brain regions
were imported from supplementary material from the study
Hawrylycz et al. (2012).

Several difficulties arose with this approach. Brain
connectivity was calculated between MNI coordinates in
the brain, differential expression of genes between brain
structures. The NKI Rockland study used the Craddock200 atlas
(Craddock et al., 2012) for parcellating the MNI 152 brain while
the microarray gene expression data set used the Allen Human
Brain Atlas ontology. We solved these issues by relating all MNI
coordinates to their corresponding entries in the Craddock200
atlas in the knowledge model and, in turn, by manually mapping
Craddock200 entries to corresponding entries in the Allen
Human Brain Atlas ontology. We used the knowledge model
to query all measured brain connectivity relations that had an
origin and a target (in MNI coordinates) that ultimately relate to
a context brain structure (which is mapped to the Allen Human
Brain Atlas) that are origins and targets of a differential gene
expression relation; however, this query returned no results.

Gene expression experiments were related to finer brain
structures than the gross-scale connectivity measurements. We
therefore had to extend the query to find all contained sub-
regions of associated areas in the Allen Human Brain Atlas.
For this, we made use of the “is a” ontology relation and
alternatively queried for all brain structures that are inferred
from the related origin and target brain structures of the
Measured Brain Connectivity relation in the Allen Human Brain
Atlas. This query in fact returned 9571 hits (Supplementary
Table S7). The part of the knowledge model which is used
by this query is depicted in Figure 9. We filtered the results
for all connections with a normalized structural connectivity
of 0.1 and plotted normalized structural connectivity against
functional connectivity and against differential gene expression.
Additionally, we plotted a 3D-lattice graph of the obtained 607
structural, functional and gene expression connections (subset of
Supplementary Table S7).

Structural Connectivity Goes Along With
Functional Connectivity and
Homogeneous Gene Expression
For weak structural connections in terms of normalized
fiber density, we found functional connections with positive
correlation values in neuronal activity of the connected brain
areas, others with no correlation as well as some with
negative correlation values (Figure 10A). For a normalized
structural connectivity greater than 0.4, we only obtained positive
correlations in neuronal activity and there seems to be a
trend toward higher functional connectivity for higher structural
connectivity. Connections with high and low structural and
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FIGURE 10 | Connectivity vs. differential gene expression. (A) Normalized
structural connectivity in terms of normalized fiber density from tractography
(diffusion tensor imaging) is plotted against functional connectivity. Functional
connectivity indicates the correlation in neural activity over time in the
connected brain areas. Only those functional connections that also have a
normalized structural connection strength of at least 0.1 were considered.
(B) Structural and functional connectivity is depicted in a 3D-lattice graph.
Structural connectivity is indicated by line thickness and functional connectivity
by line color with red representing correlated neural activity (>=0.5), purple not
correlated (<0.5) and blue negatively correlated neural activity (<0.0).
(C) Normalized structural connectivity plotted against the number of
differentially expressed genes (DEG). (D) Connections with an associated high
differential expression of genes are surprisingly localized; all of them originate
from the left and right putamen. Structural connectivity is indicated by line
thickness and differential expression of genes by line color with red indicating
high and blue low numbers of differentially expressed genes. (E) Functional
connectivity is plotted against differential expression of genes (DEG). We only
considered connections with a correlation value of neural activity of 0.5 or
higher. (F) 3D-lattice graph of functional connectivity and differential gene
expression. Line thickness indicates functional connectivity between values of
0.5 and 1.0 and line color indicates number of differential expression of genes
with red high and blue low values. Those few connections with high differential
gene expression (>200) and with functional connectivity (>=0.5) originate
from occipital fusiform, lingual, parahippocampal, and Heschl’s gyrus.

functional connectivity were ubiquitously distributed over the
entire brain (Figure 10B).

Interestingly, high numbers of differentially expressed genes,
i.e., more than 100, appear for low normalized structural
connectivity values only (Figure 10C). For normalized structural
connectivity values greater than 0.4, the vast majority of
associated brain structures had only a very low number of
differentially expressed genes. There is a prominent spatial

pattern of connections with highly differentially expressed
genes though; we see highly differentially expressed genes for
connections with a structural connectivity greater than 0.1
originating from the putamen and targeting in the forebrain
and temporal lobe of both hemispheres excluding contralateral
connections (Figure 10D and Table 1).

Functional Connectivity Goes Along With
More Homogeneous Gene Expression
Plotting all 9571 correlation values for neural activity against
the number of differentially expressed genes revealed that most
of the highly differentially expressed genes were measured
for pairs of brain structures with weak or no correlation
(Figure 10E). With increasing activity correlation values,
numbers of differentially expressed genes decreased. The same
trend is found for strong negative correlation values. Two
brain areas can be considered functionality connected if their
activity correlation over time is greater than 0.5. We found 362
relations between brain structures that have associated functional
connectivity and differential gene expression measurements
and visualized those connections by a 3D lattice model.
Functional connections with homogeneous gene expression
occur ubiquitously in the entire brain; however, a few functional
connections with highly differentially expressed genes were
localized to the occipital and temporal lobe (Figure 10F and
Table 2).

We could identify nine pairs of brain structures which are
structurally (>=0.5) and functionally connected (>=0.5) and
have a low number of differentially expressed genes (<=10)
(Table 3). There were no long-range connections among these.

DISCUSSION

We described a novel computational approach to transform
a connectivity matrix into a semantic network. We used this
approach to create a unified feature space for multimodal brain
connectivity and gene expression data in which we created
functional and structural connectivity and differential gene
expression networks. We saw for all modalities that an increase
in connectivity goes along with a more homogeneous gene
expression pattern of the connected brain areas in the entire
brain.

A recent study by Wang et al. (2015) describes a
correspondence between resting-state activity and gene
expression in cortical areas. This study further reported
that specific genes are correlated with activity in the default
mode network. A further link between cortical structure and
gene expression was found by Romero-Garcia et al. (2018). They
constructed structural covariance networks from MRI measures
of cortical thickness and correlated those with gene expression
measures from the Allen Human Brain Atlas (Hawrylycz
et al., 2012) and affirmed the hypothesis that transcriptional
networks and structural MRI connectomes are coupled. Both
studies are in line with our observation that higher structural
as well as functional networks go along with homogeneous
gene expression. A further recent study found evidence for
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TABLE 1 | Highly differentially expressed genes (DEG) between the putamen and structurally connected brain areas.

Origin Target Normalized Structural Connectivity Functional Connectivity DEG Average

left putamen left parahippocampal posterior 0.163502106 0.020203011 687.5

left putamen left planum temporale 0.18985185 −0.01262453 625

left frontal pole left putamen 0.28089338 0.15076964 927

left frontal pole left putamen 0.268176361 0.13167174 927

left frontal medial left putamen 0.110934828 0.094022519 790

left frontal pole left putamen 0.478702548 0.21312926 927

left frontal pole left putamen 0.10229685 0.11504351 927

left frontal orbital left putamen 0.355902746 0.32012312 726

left frontal pole left putamen 0.200164537 0.1399255 927

left frontal orbital left putamen 0.23406272 0.19123371 726

left frontal pole left putamen 0.187038633 0.17440578 927

right putamen right heschl’s 0.251257875 0.049333889 695

right putamen right parahippocampal posterior 0.240377155 0.027959258 687.5

right putamen right planum polare 0.361161921 0.1971855 655

right frontal pole right putamen 0.135257294 0.2283248 927

right frontal pole right putamen 0.342326336 0.16207665 927

left frontal medial right putamen 0.103986254 0.14005883 790

right frontal pole right putamen 0.174086567 0.13810447 927

right frontal orbital right putamen 0.275009861 0.24960994 726

right frontal pole right putamen 0.289418731 0.11346083 927

right temporal pole right putamen 0.290537649 0.24174925 806.5

right frontal pole right putamen 0.145893171 0.13850855 927

right frontal pole right putamen 0.61517917 0.27000022 927

right frontal pole right putamen 0.175577644 0.10383046 927

right temporal pole right putamen 0.117579801 0.083963864 806.5

Only connections with a normalized structural connectivity greater than 0.1 were considered. The table summarizes structural and functional connectivity and number of
DEG averaged over all DEG values (Hawrylycz et al., 2012) between the connected brain areas.

TABLE 2 | Strong connectivity and highly differentially expressed genes (DEG).

Origin Target Normalized structural connectivity Functional connectivity DEG average

right lingual left occipital fusiform 0.264136489 0.73615919 271.6666667

left lingual left occipital fusiform 0.22772869 0.60275624 271.6666667

right lingual left parahippocampal posterior 0.143716534 0.50098513 251.5

left lingual left parahippocampal posterior 0.30761773 0.55396672 251.5

right lingual right occipital fusiform 0.177391911 0.51224682 271.6666667

right lingual right occipital fusiform 0.235064117 0.68679426 271.6666667

left lingual right occipital fusiform 0.02712589 0.61838067 271.6666667

right lingual right parahippocampal posterior 0.33430536 0.51577434 251.5

High DEG between the lingual gyrus and the occipital and temporal lobes. We found that these connections have a high functional connectivity (>0.5) and high DEG.

dissociable molecular signatures of limbic and somato/motor
pathways in striatum (Anderson et al., 2018), which strengthens
our observation that structural connections originating from
the putamen show associated patterns of highly differentially
expressed genes.

In an additional exploratory use case, we saw that the
availability of modulators of the glucocorticoid receptors and
of fkbp5, involved in stress hormone system regulation, are
localized at a connection hub of the limbic lobe functional
brain network. Fkbp5 was further discussed to have a role in
schizophrenia (Binder, 2009). Schizophrenia is characterized as
a dysconnection syndrome of fronto-temporo-limbic projections

(Weinberger and Lipska, 1995). This circumstance points to
the need to associate changes in brain connectivity in
schizophrenia (Butz and Teuchert-Noodt, 2006; Bagorda et al.,
2006) with genetic markers. Integrating connectome and genetic
information in a semantic network can generate hypotheses that
hold as a starting point for deeper analyses and assessments.
Ideally one would co-localize gene expression data of fkbp5
with direct measurements of radiolabeled glucocorticoid receptor
densities, for example, from PET imaging (Steiniger et al., 2008).
Technically, the knowledge model would deal with receptor
density data from PET in an analogous way as gene expression
data measured in post-mortem brains.
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TABLE 3 | Strong connectivity and high similarity in gene expression.

Origin Target Normalized structural connectivity Functional connectivity DEG average

left superior parietal lobule left superior parietal lobule 0.558669936 0.71112541 3

left superior parietal lobule left superior parietal lobule 0.558669936 0.71112541 3

right cingulate anterior right cingulate anterior 0.605500596 0.53997424 0

right juxtapositional lobule right cingulate anterior 0.596213811 0.71527726 7.75

right cingulate anterior right cingulate anterior 0.605500596 0.53997424 0

right juxtapositional lobule right cingulate posterior 0.521552114 0.55794716 0.5

right cingulate anterior right cingulate posterior 0.631735262 0.58602299 1.5

right superior parietal lobule right superior parietal lobule 0.695758645 0.68872082 3

right superior parietal lobule right superior parietal lobule 0.695758645 0.68872082 3

Normalized structural connectivity (>=0.5) and functional connectivity (>=0.5) is high between areas of the parietal and cingulate cortex; these connections have, at the
same time, a low DEG (<=10).

Individual tools exist that link different sources of
neuroscientific information, e.g., neuroimaging with gene
expression data (Zaldivar and Krichmar, 2014; Rizzo et al., 2016);
however, they are hard-coded to solve one particular aspect of
neuroscience data integration. As soon as a new neuroscientific
data source or brain ontology or atlas becomes available, software
development is required to integrate them.

Semantic networks pose an ideal approach to integrate
a highly multimodal and fast changing data space. They
create a unified feature space in which facts being contained
in high-dimensional and multi-modal brain data sets are
explicitly represented and put into the permanently growing
semantic context of neuroscience; with every new data source
added, the contained knowledge in the knowledge model
increases. The use of semantic networks solves two major
problems. First, they homogenize data sets. Irrespective of
their source and format, data sets become accessible to the
query mechanism. Queries can combine any aspect of multiple
modalities and report any desired combination of features, like
structural and functional connectivity with gene expression.
Secondly, the semantic network explicitly represents facts (e.g.,
which brain structures are connected), which are implicitly
contained in tractography images or connectivity matrices
(Rubinov and Sporns, 2010). Connected brain areas can then
automatically be annotated by anatomical and functional meta-
information from brain atlases and ontologies. Via the query
mechanism, all this integrated knowledge becomes directly
accessible to a user or can be exported in a machine-readable
format for further processing (e.g., by novel connectomics
algorithms combining connectivity and transcriptomic networks
or by machine learning algorithms for automatized patient
stratification).

Moreover, importing neuroimaging data into a semantic
network ensures that imported data strictly adhere to
a predefined standard. Storing methodological meta-
information right from the planning stage of a study
ensures reproducibility and comparability of data sets with
future data sets and eases the exchange of data between
different imaging centers. We extended the knowledge
model by processing workflows in accordance to Alfaro-
Almagro et al. (2018). A future task will be to extend the
knowledge model toward common standards for planning

and documenting brain imaging experiments such as the
NeuroImaging Data Model (NIDM) (Keator et al., 2013;
Maumet et al., 2016) for provenance modeling in human
brain mapping. Integrating procedural information about
processing workflows into the knowledge model creates a
joined declarative representation of methods and data that
can be queried from any desired perspective. The results are
availability tables of fully documented patient assessments, which
enable better comparison of neuroimaging results and increased
interoperability.

Especially in a clinical setting, knowledge is of utmost
importance for meeting the right treatment decision. All clinical
fields dealing with the brain, however, face the tremendous
challenge of managing an enormous amount of data for the
individual patient and at the same time a rapidly changing
scientific domain. For the individual clinician, keeping track
of all new publications, tools, and knowledge bases, such as
brain atlases, ontologies and web portals in neuroscience is
nearly impossible. With the approach described here, it becomes
possible to integrate knowledge about the connectome of the
individual patient with the shared knowledge of the entire
neuroscientific community. Ultimately, a unified knowledge
model of brain data will enable a deeper understanding of
brain diseases and more individualized treatment decisions in
neurological and psychiatric therapy.

CONCLUSION

Using semantic networks to create a neuroscientific knowledge
base and applying it to connectome and neural receptor data
enables the clinician to perform thorough patient stratification
to compare the individual patient to all other patients seen
before in an easily interpretable way. Further, it becomes possible
to explore and assess neuroimaging data easily and straight-
forward way and to relate the behavior of the patient to his brain
pathology. By combining receptor and neuroimaging data, a
better understanding of the disease state is achieved and planning
individualized treatment becomes possible. Comparison of
longitudinal brain scans quickly reveal whether the chosen
treatment generates the desired effect in “repairing” the
connectome of the individual patient.
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FIGURE S1 | Semantic network of MRI T1 image processing workflow. We used a
semantic network to represent the MRI T1 image processing as an example in the
knowledge model. The element “Nifti image” is connected to the element patient

and thereby connects the workflow to the patient data. FSL processing tools are
indicated by rectangular objects with rounded corners; a rhombus indicates a
linear transformation while a flag shape indicates a non-linear transformation.
Colors are used to group different objects. Reddish colors indicate objects that
hold image data in original coordinate space, while yellow indicates objects in
MNI 152 coordinate space. Bluish colors were used for FSL calls and gray for
transformations. Colors and shapes following Alfaro-Almagro et al. (2018).

TABLE S1 | Mappings between different brain atlases. We manually created
mappings for the 127 brain areas of the Craddock200 to other brain atlases and
ontologies including PowerNeuron264, Human Allen Brain Atlas, FMA, FreeSurfer
and Brede WOROI ontology.

TABLE S2 | Functional brain network (FBN) of the limbic lobe. A query revealed
110 connections between brain areas that belong to the limbic lobe according to
Allen Human Brain Atlas ontology classification which have associated DTI and
resting state fMRI measurements from the NKI Rockland study.

TABLE S3 | High gene expression of fkbp5. 211 measurements indicate the
localized binding of probes to the fkbp5 gene in the brain. Only expression values
greater than 8 and signals significantly greater than background noise (PACall
value equal to 1) are listed.

TABLE S4 | High gene expression of gmeb1. 79 measurements indicate the
localized binding of probes to the gmeb1 gene in the brain. Only expression
values greater than 8 and signals significantly greater than background noise
(PACall value equal to 1) are listed.

TABLE S5 | High gene expression of gmeb2. 11 measurements indicate the
localized binding of probes to the gmeb2 gene in the brain. Only expression
values greater than 8 and signals significantly greater than background noise
(PACall value equal to 1) are listed.

TABLE S6 | Brain area with high gene expression for fkbp5, gmeb1, gmeb2. The
hippocampal CA4 region is the only area in which fkbp5, gmeb1 and gmeb2 is
significantly highly expressed (expression value >= 8).

TABLE S7 | Brain connectivity and transcription networks. A query revealed 9751
combinations of brain areas in which measurements of structural (DTI), functional
connectivity (fMRI) and differential expression of genes (DEG) are available.
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