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Ticks are blood-sucking arthropods that can transmit various pathogenic organisms to
host animals and humans, causing serious infectious diseases including Lyme disease.
Tick feeding induces innate and acquired immune responses in host animals, depending
on the combination of different species of animals and ticks. Acquired tick resistance
(ATR) can diminish the chance of pathogen transmission from infected ticks to the
host. Hence, the elucidation of cellular and molecular mechanism underlying ATR is
important for the development of efficient anti-tick vaccines. In this review article,
we briefly overview the history of studies on ATR and summarize recent findings,
particularly focusing on the role for basophils in the manifestation of ATR. In several
animal species, including cattle, guinea pigs, rabbits and mice, basophil accumulation
is observed at the tick re-infestation site, even though the frequency of basophils
among cellular infiltrates varies in different animal species, ranging from approximately
3% in mice to 70% in guinea pigs. Skin-resident, memory CD4+ T cells contribute to
the recruitment of basophils to the tick re-infestation site through production of IL-3
in mice. Depletion of basophils before the tick re-infestation abolishes ATR in guinea
pigs infested with Amblyomma americanum and mice infested with Haemaphysalis
longicornis, demonstrating the crucial role of basophils in the manifestation of ATR.
The activation of basophils via IgE and its receptor FcεRI is essential for ATR in mice.
Histamine released from activated basophils functions as an important effector molecule
in murine ATR, probably through promotion of epidermal hyperplasia which interferes
with tick attachment or blood feeding in the skin. Accumulating evidence suggests
the following scenario. The 1st tick infestation triggers the production of IgE against
tick saliva antigens in the host, and blood-circulating basophils bind such IgE on the
cell surface via FcεRI. In the 2nd infestation, IgE-armed basophils are recruited to tick-
feeding sites and stimulated by tick saliva antigens to release histamine that promotes
epidermal hyperplasia, contributing to ATR. Further studies are needed to clarify whether
this scenario in mice can be applied to ATR in other animal species and humans.
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INTRODUCTION

Ticks, particularly ixodid family members, are blood-sucking
ectoparasites of vertebrates and can transmit various pathogens
to animals and humans during blood feeding for days, causing
serious infectious diseases, including Lyme disease, babesiosis,
Rocky Mountain spotted fever, human monocytic ehrlichiosis
and severe fever with thrombocytopenia syndrome (Gratz, 1999;
Parola and Raoult, 2001; de la Fuente et al., 2008; Embers and
Narasimhan, 2013; Wikel, 2013; Yamaji et al., 2018). Besides tick-
borne infectious diseases, some people with the experience of tick
bites show recurrent episodes of anaphylaxis, a life-threatening
systemic allergic reaction, after eating red meat or treating with
anticancer monoclonal antibodies (Platts-Mills and Commins,
2013; Steinke et al., 2015). Thus, tick infestation is of medical and
veterinary public health importance.

Host defense mechanism is a threat to successful blood
feeding by ticks and hence must be counteracted. To this
end, ticks inject saliva containing various bioactive substances
into the host during tick infestation, including vasodilator
and antihemostatic, antiinflammatory and immunosuppressive
reagents (Wikel, 2013). On the other hand, some animals, such
as mice, guinea pigs, rabbits and cattle, have been shown to
develop the resistance to tick feeding after single or multiple
tick infestations, depending on the combination of animal
species/strains and tick species (Trager, 1939; Wikel, 1996). This
acquired tick resistance (ATR) is commonly assessed by several
parameters, including the reduction in the number and/or body
weight of engorged ticks or tick death when sensitized animals are
re-infested with ticks. ATR was first described in 1938 by Trager
who found that after infestation with Dermacentor variabilis,
guinea pigs develop resistance to subsequent tick infestations
(Trager, 1939). Since then, ATR has been further characterized
by using cattle and laboratory animals including guinea pigs
(Wikel, 1996). ATR is not restricted to the skin lesion of previous
tick bites and can be observed in un-infested skin of sensitized
animals, indicating the contribution of systemic responses rather
than a localized response at the previously infested skin lesion.
Moreover, ATR can be transferred to naive animals with sera
or cells isolated from previously infested animals (Wikel and
Allen, 1976; Brown and Askenase, 1981; Askenase et al., 1982),
suggesting that ATR is a type of immune reaction. Importantly,
ATR can diminish the chance of pathogen transmission from
infected ticks to host animals and humans (Bell et al., 1979; Wikel
et al., 1997; Nazario et al., 1998; Burke et al., 2005; Dai et al., 2009).
Therefore, the elucidation of cellular and molecular mechanisms
underlying ATR is important for developing efficient anti-
tick vaccines that can minimize the transmission of pathogens
causing serious infectious diseases.

Basophils are the least abundant granulocytes and account
for less than 1% of peripheral blood leukocytes (Galli, 2000).
They are named after basophilic granules in the cytoplasm
that stain with basic dye, as first documented by Paul Ehrlich
in 1879. In addition to basophilic granules, blood-circulating
basophils share some phenotypic properties with tissue-resident
mast cells, such as the surface expression of the high-affinity
IgE receptor FcεRI and the release of allergy-inducing chemical

mediators, including histamine, in response to various stimuli
(Galli, 2000; Stone et al., 2010). Therefore, basophils have often
been erroneously considered as minor and redundant relatives
or blood-circulating precursors of tissue-resident mast cells
(Falcone et al., 2000). It is now accepted well that basophils and
mast cells are distinct cell lineages, and that basophils play crucial
and non-redundant roles distinct from those played by mast cells
(Voehringer, 2017; Karasuyama et al., 2018; Varricchi et al., 2018).
Basophils contribute to protective immunity, particularly to
parasitic infections while they are involved in the pathogenesis of
various disorders, including allergic and autoimmune disorders.

In this review article, we summarize recent advances in
our understanding of the cellular and molecular mechanisms
underlying ATR, particularly focusing on the role of basophils
identified mainly in mouse models of tick infestation.

BASOPHILS ARE KEY EFFECTOR CELLS
IN THE MANIFESTATION OF ATR

In Guinea Pigs
An early study described that cutaneous reactions at tick-
feeding sites in tick-resistant guinea pigs were characterized
by granulocytic inflammatory infiltrates, edema, and epidermal
hyperplasia whereas the 1st tick-feeding site in previously
uninfested guinea pigs showed minimal skin reactivity (Trager,
1939). Accumulation of numerous basophils and eosinophils,
with basophils comprising up to 70% of cellular infiltrates, was
detected at tick-feeding sites of guinea pigs that manifested ATR
(Allen, 1973). Such basophil-rich cutaneous reaction was referred
as cutaneous basophil hypersensitivity (CBH) and extensively
studied in 1970s and early 1980s (Katz, 1978). Basophil depletion
in A. americanum-infested guinea pigs by using antiserum
raised against basophils abolished ATR (Brown et al., 1982),
demonstrating the important role for basophils in ATR. Basophil
infiltration at the site of tick re-infestation was also observed in
cattle and rabbits (Allen et al., 1977; Brossard and Fivaz, 1982),
even though the frequency of basophils among cellular infiltrates
varied, and the functional role of basophils in these animals has
not yet been determined to our knowledge. Thus, it remained
elusive whether the important finding on basophils in guinea pig
ATR can be generalized to other animal species and humans.

In Mice
A previous study reported that basophil infiltration was hardly
detected at the tick-feeding site of WBB6F1-+/+ mice during
re-infestation with H. longicornis, in spite of the fact that the
mice showed ATR (Matsuda et al., 1990). Mast cell-deficient
WBB6F1-W/Wv mice failed to manifest ATR, and adoptive
transfer of mast cells conferred ATR on these mice (Matsuda
et al., 1985, 1987, 1990), suggesting that mast cells in place of
basophils contributed to ATR in mice, unlike in guinea pigs.
On the contrary, other studies reported that the same mast cell-
deficient strain of mice showed ATR to another tick species
Dermacentor variabilis (denHollander and Allen, 1985; Steeves
and Allen, 1991). Murine basophils had been notoriously difficult
to identify owing to their fewer basophilic granules compared
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to those in other animals and humans, and therefore, electron
microscopic examination was needed to identify them in tissue
sections (Urbina et al., 1981; Dvorak et al., 1982; Dvorak, 2000).
Notably, the infiltration of basophils, along with eosinophils and
neutrophils, was detected by electron microscopy at the tick-
feeding site in the 3rd infestation with D. variabilis in both mast
cell-sufficient and -deficient mice (Steeves and Allen, 1991). Thus,
the mechanism underlying ATR in mice, including the distinct
roles played by basophils and mast cells, and the influence of
different genetic background of both mice and ticks remained to
be clarified.

Recent characterization of cell surface markers on murine
basophils (Min et al., 2004; Voehringer et al., 2004) and the
identification of murine basophil-specific serine protease, mouse
mast cell protease-8 (mMCP-8) (Poorafshar et al., 2000; Ugajin
et al., 2009) have enabled us to identify and isolate murine
basophils much more easily. Taking the advantage of a mMCP-
8-specific mAb TUG8 (Ugajin et al., 2009), we demonstrated that
mMCP-8-expressing basophils are recruited to the tick-feeding
site and make a cluster around the tick mouthpart during the
2nd but rarely the 1st infestation with H. longicornis in C57BL/6
mice (Wada et al., 2010). Intravital fluorescence microscopic
analysis, using Mcpt8GFP (green basophil) mice in that only
basophils express green fluorescent protein (GFP), confirmed the
basophil accumulation at the 2nd but not 1st tick-feeding site
(Ohta et al., 2017; Figure 1). Basophils represented less than 5%
of leukocytes at the 2nd tick-feeding site in mice, much fewer
than in guinea pigs, while monocytes/macrophages, neutrophils
and eosinophils were abundant. Importantly, we found that
basophil depletion by treating mice with basophil-depleting
mAbs, either anti-FcεRIα (MAR-1) or anti-CD200R3 (Ba103),
just before the 2nd tick infestation completely abolished ATR with
no apparent effect on the number of other types of cells, including
monocytes/macrophages, neutrophils and eosinophils (Wada
et al., 2010). The essential role of basophils in ATR was further
demonstrated by diphtheria toxin-mediated ablation of basophils
in genetically engineered Mcpt8DTR mice in that only basophils

expressed diphtheria toxin receptors (Wada et al., 2010). Of
note, we also demonstrated that mast cell-deficient KitW−sh/W−sh
C57BL/6 mice failed to manifest ATR, confirming the importance
of mast cells in ATR reported previously (Matsuda et al., 1985,
1987, 1990). Thus, mast cells, in addition to basophils, appear to
contribute to ATR in C57BL/6 mice infested with H. longicornis,
in contrast to ATR in D. variabilis-infested WBB6F1-+/+ mice
in that mast cells are dispensable (denHollander and Allen, 1985;
Steeves and Allen, 1991).

In Humans
Basophil infiltration was detected in humans at the tick-feeding
sites and in the skin lesions of scabies (Ito et al., 2011; Nakahigashi
et al., 2013; Kimura et al., 2017). Of note, a patient lacking
basophils and eosinophils reportedly suffered from widespread
scabies (Juhlin and Michaelsson, 1977). These observations
suggest the possible involvement of basophils in protective
immunity to ectoparasites, including ticks.

BASOPHIL ACTIVATION THROUGH IgE
AND ITS RECEPTOR FcεRI IS
ESSENTIAL FOR ATR

It was shown in guinea pigs that transfer of serum from
previously infested animals conferred ATR on naive animals
(Wikel and Allen, 1976; Brown and Askenase, 1981; Askenase
et al., 1982). Similarly, in mice, transfer of serum from tick-
infested but not un-infested mice conferred ATR on naive mice
(Matsuda et al., 1990), suggesting the involvement of tick-specific
antibodies in ATR. Of note, the heat treatment of the serum
at 56◦C for 2 h abolished the ATR transfer activity (Matsuda
et al., 1990), indicating that antibodies of IgE isotype contribute
to the manifestation of ATR. Consistent with this observation,
we demonstrated that both antibody-deficient µMT mice and
Fcer1g−/− mice, that lack the expression of high affinity IgE
receptor FcεRI, failed to show ATR (Wada et al., 2010). This

FIGURE 1 | Basophils accumulate at the tick-feeding site during the 2nd but not 1st tick infestation. Mcpt8GFP (green basophil) mice were infested with ticks one or
twice and subjected to intravital fluorescence imaging analysis of green basophils at tick-feeding sites on day 2 of the 1st or 2nd infestation.
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FIGURE 2 | Schematic view of the proposed mechanism underlying ATR. In the 1st tick infestation (left panel), dendritic cells in the skin take up tick saliva antigens
and move to the draining lymph node where they present tick antigens to naive CD4+ T cells, leading to the generation of IL-4-producing T cells. T cell-derived IL-4
stimulates B cells to produce tick antigen-specific IgE that in turn circulates in the peripheral blood and bind to the surface of blood-circulating basophils via FcεRI.
Some of tick antigen-specific CD4+ T cells generated in the lymph node migrate into the skin throughout the body and are retained as skin-resident, memory CD4+

T cells. In the 2nd tick infestation (right panel), such skin-resident, memory CD4+ T cells are stimulated with tick antigens to produce IL-3 that in turn promotes the
recruitment of IgE-armed basophils from the peripheral blood to the tick-feeding site. IgE-armed basophils are activated with tick antigens to release histamine that
acts on keratinocyte, resulting in epidermal hyperplasia that may interfere with tick attachment or blood feeding in the skin, and hence contribute to ATR. The role of
skin mast cells in ATR remains elusive.

suggested the following scenario (Figure 2). The 1st infestation
triggers the production of IgE against tick saliva antigens, and
basophils and mast cells bind IgE on the cell surface via FcεRI.
In the 2nd infestation, tick saliva antigens delivered into the tick-
feeding site bind to IgE on these cells, leading to the cross-linking
of FcεRI and hence activation of these cells that may contribute
to ATR.

Intriguingly, mast cell-deficient KitW−sh/W−sh C57BL/6 mice
reconstituted with mast cells derived from Fcer1g−/− mice could
manifest ATR as did mice reconstituted with wild-type mast
cells (Wada et al., 2010), indicating that FcεRI on mast cells is
dispensable for IgE-mediated ATR. In contrast, adoptive transfer
of basophils isolated from previously infested wild-type, but not
Fcer1g−/−, mice conferred ATR on naive mice (Wada et al.,
2010). These results suggested that basophils rather than mast
cells play a critical role in IgE-dependent ATR through FcεRI-
mediated activation, even though both types of cells contribute to
ATR.

Ticks inject a plethora of substances, including proteins, into
the host during feeding (Wikel, 2013). However, it remains

ill-defined which components among tick saliva injected are
the major targets of IgE that is involved in ATR, even though
a series of tick saliva antigens recognized by sera from tick-
infested animals and humans have been identified (Brown et al.,
1984; Brown, 1988; Mayoral et al., 2004). It was demonstrated
that infestation with A. americanum can induce a strong IgE
response to tick saliva antigens including the carbohydrate α-gal,
which is also present in red meats such as beef and pork. The
production of such anti-α-gal IgE in tick-infested people can
lead to anaphylaxis after ingestion of red meats (Platts-Mills and
Commins, 2013; Steinke et al., 2015). It remains to be investigated
whether anti-α-gal IgE is involved in ATR.

Molecular characterization of tick salivary components has
demonstrated that different members among the same multi-
gene family are expressed at distinct time points during tick
feeding (Karim and Ribeiro, 2015). For example, two cystatin
genes from Ixodes scapularis change their expression reciprocally
during feeding (Kotsyfakis et al., 2007; Karim and Ribeiro, 2015).
Such antigenic variation or sialome switch during tick feeding is
considered as a possible mechanism by which ticks avoid host
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immune responses. It remains to be determined whether such
variation can affect the production of anti-tick IgE and hence
IgE-mediated ATR, and whether IgE raised against one family
member is cross-reactive to other members of the same family.

Host-derived IgG molecules containing blood meal pass
through the midgut barrier of Rhipicephalus appendiculatus into
the hemolymph and are excreted via the saliva back into the
host during feeding. IgG binding proteins detected in the tick
hemolymph and salivary glands are thought to contribute to
this excretion of IgG, as a strategy by which ticks evade the
damage caused by host antibodies (Wang and Nuttall, 1999).
IGBP-MA, a member of IgG binding proteins has been shown to
bind to IgE (Wang and Nuttall, 2013). Further studies are needed
to examine whether such IgG binding proteins can interfere
with IgE-mediated ATR in the host and whether the host raises
antibodies against them to neutralize their activity.

BASOPHIL-DERIVED HISTAMINE IS AN
IMPORTANT EFFECTOR MOLECULE IN
ATR

Biologically active molecules, such as histamine and proteases,
stored in the secretary granules in basophils and mast cells
have been implicated as effectors of ATR. It was reported in
cattle that the tick resistance is correlated with hypersensitivity
to tick antigens and the amount of histamine at the tick-
feeding site (Willadsen et al., 1979). Moreover, administration of
antihistamine in cattle resulted in higher tick numbers (Tatchell
and Bennett, 1969) whereas the injection of histamine into
the cattle skin promoted tick detachment (Kemp and Bourne,
1980). Similar observations were reported in guinea pigs (Wikel,
1982), suggesting the possible involvement of histamine to
ATR. However, the cellular source of histamine responsible for
ATR and the mechanism underlying histamine-mediated ATR
remained ill-defined.

We have recently addressed these questions by analyzing
C57BL/6 mice infested with H. longicornis, in that both basophils
and mast cells contribute to ATR (Wada et al., 2010). Treatment
of mice with histamine H1 antagonist during the 2nd infestation
abolished ATR (Tabakawa et al., 2018). Consistent with this, mice
deficient for histamine production due to the lack of histidine
decarboxylase (HDC) failed to show ATR (Tabakawa et al.,
2018). Moreover, repeated injection of histamine or histamine
H1 receptor agonist beneath the tick-infested site during the 1st

infestation inhibited the tick feeding in wild-type mice (Tabakawa
et al., 2018). These observations illustrated the important role of
the histamine-histamine H1 receptor axis in the manifestation of
ATR in mice, consistent with previous studies in guinea pigs and
cattle (Tatchell and Bennett, 1969; Willadsen et al., 1979; Wikel,
1982).

Both basophils and mast cells are well-known producers
of histamine, and therefore supposed to contribute to ATR
through histamine release. Unexpectedly, however, adoptive
transfer of histamine-deficient mast cells reconstituted ATR in
mast cell-deficient KitW−sh/W−sh C57BL/6 mice as did that of
wild-type mast cells (Tabakawa et al., 2018), indicating that

mast cell-derived histamine is dispensable for ATR. In contrast,
adoptive transfer of wild-type but not histamine-deficient
basophils conferred ATR on basophil-depleted Mcpt8DTR mice
(Tabakawa et al., 2018), demonstrating the crucial role of
basophil-derived histamine in the manifestation of ATR.

Intravital imaging analysis of cells at the 2nd tick feeding site
demonstrated that basophils make a cluster within the epidermis
and surround a tick mouthpart. In contrast, mast cells are mostly
scattered in the dermis rather than epidermis and localized more
distantly from the tick mouthpart (Tabakawa et al., 2018). It
is well known that histamine has a short half-life. Therefore,
basophil-derived histamine may be much more effective than
mast cell-derived in the manifestation of ATR, considering the
fact that higher numbers of basophils are localized closer to a tick
mouthpart, compared to mast cells.

Previous studies reported that histamine promotes itching and
grooming response in the skin, resulting in removal of ticks in
host animals (Koudstaal et al., 1978). In the mouse mode of tick
infestation, ticks are placed inside of a small tube attached to the
skin. Therefore, the effect of host grooming on tick feeding is
minimized, implying other mechanisms underlying histamine-
mediated ATR. Mice deficient for histamine H1 receptor failed
to manifest ATR (Tabakawa et al., 2018), indicating that
histamine acts on host cells rather than ticks. We detected
the thickening of the epidermis and the formation of basophil
cluster within the thickened epidermis at the 2nd but not 1st

tick-feeding site in mice (Tabakawa et al., 2018) as reported
previously in guinea pigs (Trager, 1939; Allen, 1973). This
epidermal hyperplasia was absent in histamine-deficient or
basophil-deficient mice (Tabakawa et al., 2018), suggesting that
basophil-derived histamine is involved in epidermal hyperplasia.
Considering that keratinocytes express functional H1 receptor
(Ohsawa and Hirasawa, 2014) and that histamine promotes the
proliferation of keratinocytes (Maurer et al., 1997; Albrecht and
Dittrich, 2015), histamine released from basophil localized in the
epidermis perhaps induces the thickening of the epidermis that
may interfere with tick attachment or blood-sucking in the skin
during the 2nd infestation (Figure 2).

Histamine-binding proteins (HBPs) have been identified in
tick saliva (Paesen et al., 1999; Sangamnatdej et al., 2002; Mans
et al., 2008). They show high-affinity binding to histamine and
can efficiently compete for histamine with its native receptor.
Thus, they may interfere with histamine-induced host responses
at tick feeding sits, including itching and grooming. However,
it remains to be determined whether tick HBPs can give any
impact on histamine-mediated ATR in the host and whether the
host raises antibodies against them to neutralize their activity.
Mast cells and basophils are the major source of histamine at tick
feeding sites. Basophils accumulate at tick feeding sites during the
1st but not 2nd infestation while mast cells always reside there.
Given that higher numbers of basophils are localized closer to a
tick mouthpart, compared to mast cells, during the 2nd infestation
(Tabakawa et al., 2018), the concentration of histamine near tick
mouthparts should be much higher during the 2nd infestation
compared to the 1st infestation. Therefore, one may assume that
HBPs might be less effective in sequestering histamine at the 2nd

tick-feeding site in which ATR is executed. The influence of HBPs
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on histamine-mediated ATR could be explored by generating
HBP-deficient ticks in future studies.

It has been reported that H. longicornis, Dermacentor
andersoni, and Boophilus microplus larval ticks are highly
reactive to histamine in the induction of tick resistance while
A. americanum and Ixodes holocyclus ticks are less responsive to
histamine (Bagnall, 1975; Kemp and Bourne, 1980; Wikel, 1982;
Brown and Askenase, 1985). The former tick species have shorter
mouthparts than the latter (Suppan et al., 2017), suggesting the
possibility that histamine-induced thickening of the epidermis
prevents the former’s but not the latter’s mouthparts from
penetrating into the dermis in order to form blood pools. This
may explain the differential responsiveness to histamine among
tick species in terms of ATR induction. Alternatively, but not
mutually exclusively, it is possible that the presence or absence
(or differential amounts) of HBPs in different tick species is
correlated in part with differential reactivity to histamine in the
induction of tick resistance.

SKIN-RESIDENT MEMORY CD4+ T
CELLS ARE RESPONSIBLE FOR
BASOPHIL RECRUITMENT TO THE 2nd

TICK-FEEDING SITE

Basophils circulate in the peripheral blood under homeostatic
conditions, and they infiltrate the skin at the tick-feeding
site during the 2nd but not 1st infestation. Importantly, the
recruitment of basophils can be observed in previously uninfested
skin, far from the 1st infestation site, of sensitized animals,
implicating that the 1st tick infestation may induce systemic
alteration in the skin throughout the body, so that basophils
can readily infiltrate the tick re-infestation site anywhere in
the body. We have recently demonstrated in mice that skin
CD4+ memory T cells play an important role in basophil
recruitment to the 2nd tick-feeding site, leading to ATR (Ohta
et al., 2017). Tick antigen-specific CD4+ effector T cells are
generated during the 1st tick infestation and distributed to
the skin all over the body, and some of them are retained
as skin-resident memory T cells (Figure 2). In the 2nd tick
infestation, tick saliva antigens delivered into the skin stimulate
these memory T cells present in the skin to produce IL-3 that
is required for basophil recruitment to the 2nd tick-feeding site
(Ohta et al., 2017). Even though the exact mechanism underlying
IL-3-mediated basophil recruitment remains to be clarified, IL-
3 might promote basophil adhesion to endothelium (Bochner
et al., 1990; Korpelainen et al., 1996; Lim et al., 2006), leading to
transendothelial migration of basophils and their accumulation
in the skin.

AN UNSOLVED ISSUE: THE ROLE OF
MAST CELLS IN ATR

As described above, mast cells contribute to ATR in mice infested
with H. longicornis (Matsuda et al., 1985, 1987, 1990) whereas
they are dispensable for ATR in D. variabilis-infested mice

(denHollander and Allen, 1985; Steeves and Allen, 1991). As
far as we are aware, the involvement of mast cells to ATR has
not yet been documented in other animal species. In the case
of mice infested with H. longicornis, histamine derived from
basophils but not mast cells is essential for the manifestation of
ATR (Tabakawa et al., 2018), even though both basophils and
mast cells are involved in ATR (Wada et al., 2010). The deficiency
of either basophils or mast cells almost completely abolishes ATR
(Wada et al., 2010), suggesting that the role of these cells may
not be additive. Of note, the number of basophils accumulating
at the 2nd tick-feeding site is comparable between mast cell-
sufficient and -deficient mice (Wada et al., 2010), indicating
that mast cells are not prerequisite for basophil recruitment.
Nevertheless, closer examination with intravital imaging revealed
that basophils accumulating at the 2nd tick-feeding site are
more motile and less-clustered around a tick mouthpart in mast
cell-deficient mice than in mast cell-sufficient mice (Tabakawa
et al., 2018). Therefore, one may assume that mast cells may
contribute to ATR by directly or indirectly regulating basophil
behavior. Further studies are needed for elucidating how mast
cells contribute to the manifestation of ATR.

CONCLUSION

Recent development of a series of analytical tools in laboratory
animals has advanced our understanding of the cellular and
molecular mechanism underlying ATR. In several animal species,
basophil accumulation is observed at the tick re-infestation site
(Figure 1), and basophil depletion abolishes ATR in guinea
pigs and mice, demonstrating the crucial role of basophils
in the manifestation of ATR. The 1st tick infestation triggers
the production of IgE against tick saliva antigens. In the
2nd infestation, IgE-armed basophils are recruited to the tick-
feeding site and stimulated by tick saliva antigens to release
histamine that functions as a key effector in ATR, probably
through promotion of the epidermal hyperplasia that in
turn interferes with tick attachment or blood feeding in the
skin (Figure 2). Further studies on the detailed mechanism
underlying ATR, including the role of mast cells, may help
develop the strategy to prevent tick infestation and tick-borne
diseases.
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