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Abstract
Background/Aims: The sesquiterpene lactone Costunolide is effective against various disorders 
including inflammation and malignancy. The substance is effective in part by triggering 
suicidal death or apoptosis of tumor cells. Mechanisms involved include altered function of 
transcription factors and mitochondria. Erythrocytes lack nuclei and mitochondria but are – in 
analogy to apoptosis of nucleated cells – able to enter suicidal erythrocyte death or eryptosis, 
characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine 
translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic 
Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether 
Costunolide induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: 
Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell 
volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) 
formation from 2’,7’-dichlorodihydrofluorescein (DCF)-dependent fluorescence, and ceramide 
abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes 
to Costunolide (15 µg/ml) significantly enhanced the percentage of annexin-V-binding cells, 
significantly decreased forward scatter and significantly increased Fluo3-fluorescence, DCF-
fluorescence, and ceramide abundance. The effect of Costunolide on annexin-V-binding was 
significantly blunted by removal of extracellular Ca2+. Conclusion: Costunolide triggers cell 
shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in 
part due to Ca2+ entry and paralleled by oxidative stress and ceramide formation.
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Introduction

Costunolide, a sesquiterpene lactone isolated from Inula helenium (Compositae) [1, 2], 
has previously been shown to counteract inflammation [3-5], gastric ulcer [6], tumor growth 
[3, 7-11], metastasis [12, 13], angiogenesis [3], osteoclast differentiation [14], and fibrosis 
[3]. Costunolide is in part effective by decreasing vascular endothelial growth factor (VEGF) 
[3], interleukin (IL)-1β, IL-6, IL-17 [3], tumor necrosis factor (TNF)-α [3] and transforming 
growth factor (TGF-β) [3]. Costunolide induces oxidative stress [2, 11, 15-18] and fosters 
apoptosis of tumor cells [1, 2, 11, 16-24]. On the other hand costunolide protects against 
oxidative stress [25]. Signaling involved in the effects of Costulonide includes stimulation of 
mitogen-activated kinases [20, 26] as well as inhibition of the transcription factor NFκB [10, 
13, 15] and the Wnt/β-Catenin Pathway [9]. The stimulation of apoptosis further involves 
mitochondria [19, 27].

Erythrocytes lack nuclei and mitochondria, key elements in the execution of apoptosis. 
but are nevertheless able to enter suicidal death of erythrocytes or eryptosis [28-30]. 
Hallmarks of eryptosis are cell shrinkage [31] and cell membrane scrambling with 
phosphatidylserine translocation to the cell surface [1]. Cellular mechanisms involved in the 
triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i) [1], ceramide [32], 
caspases [28, 33, 34], G-protein Galphai2 [35], casein kinase 1α [1], Janus-activated kinase 
JAK3 [1], protein kinase C [1], and p38 kinase [1]. Eryptosis is suppressed by AMP activated 
kinase AMPK [1], cGMP-dependent protein kinase [1], mitogen and stress activated kinase 
MSK1/2 [36], and PAK2 kinase [1]. Stimulators of eryptosis include hyperosmotic shock [1], 
oxidative stress [1], energy depletion [1], radiation [37, 38], or exposure to a wide variety 
of substances [28, 36, 39-82]. Eryptosis could be inhibited by several small molecules [83-
86]. Enhanced eryptosis is observed in a wide variety of clinical conditions including iron 
deficiency [1], dehydration [1], hyperphosphatemia [1], vitamin D excess [87], chronic kidney 
disease (CKD) [88-93], hemolytic-uremic syndrome [94], autoimmune hemolytic anemia [2], 
diabetes [96], hypertension and dyslipidemia [3], hepatic failure [98], malignancy [99-101], 
arteritis [102], systemic lupus erythematosus [103], sepsis [104, 105], malaria [28, 106, 
107], sickle-cell disease [1], beta-thalassemia [1], Hb-C and G6PD-deficiency [1], Wilsons 
disease [108], as well as advanced age [4]. Eryptosis further increases following storage for 
transfusion [37, 38, 53, 109] and is enhanced in erythrocytes from newborns exposed to 
oxidative stress [28, 110].

The present study explored, whether Costunolide stimulates eryptosis. To this end human 
erythrocytes from healthy volunteers were exposed to Costunolide and phosphatidylserine 
surface abundance, cell volume, [Ca2+]i, ROS formation, and ceramide abundance determined 
by flow cytometry.

Materials and Methods

Erythrocytes, solutions and chemicals
Fresh Li-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the University 

of Tübingen. The study was approved by the ethics committee of the University of Tübingen (184/2003 V). The 
blood was centrifuged at 120 g for 20 min at 21 °C and the platelets and leukocytes-containing supernatant 
was disposed. Erythrocytes were incubated in vitro at a hematocrit of 0.4% in Ringer solution containing (in 
mM) 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES; pH 7.4), 5 
glucose, 1 CaCl2, at 37°C for 48 hours. Where indicated, erythrocytes were exposed for 48 hours to Costunolide 
(Sigma Aldrich, Hamburg, Germany). The incubation time was chosen in order to avoid failure to detect slow 
mechanisms triggering eryptosis.
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Annexin-V-binding and forward scatter
After incubation under the respective experimental condition, a 100 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. The annexin-V-
abundance at the erythrocyte surface was subsequently determined on a FACS Calibur (BD, Heidelberg, 
Germany). Annexin-V-binding was measured with an excitation wavelength of 488 nm and an emission 
wavelength of 530 nm. A marker (M1) was placed to set an arbitrary threshold between annexin-V-binding 
cells and control cells. The same threshold was used for untreated and Costunolide treated erythrocytes. 
A dot plot of forward scatter (FSC) vs. side scatter (SSC) was set to linear scale for both parameters. The 
threshold of forward scatter was set at the default value of “52” [111].

Intracellular Ca2+

After incubation, erythrocytes were washed in Ringer solution and loaded with Fluo-3/AM (Biotium, 
Hayward, USA) in Ringer solution containing 5 µM Fluo-3/AM. The cells were incubated at 37°C for 30 
min. Ca2+-dependent fluorescence intensity was measured with an excitation wavelength of 488 nm and an 
emission wavelength of 530 nm on a FACS Calibur.

Reactive oxidant species (ROS)
Oxidative stress was determined utilizing 2’,7’-dichlorodihydrofluorescein (DCF) diacetate. After 

incubation, a 100 µl suspension of erythrocytes was washed in Ringer solution and stained with DCFDA 
(Sigma, Schnelldorf, Germany) in Ringer solution containing DCF diacetate at a final concentration of 10 µM. 
Erythrocytes were incubated at 37°C for 30 min in the dark and washed two times in Ringer solution. The 
DCFDA-loaded erythrocytes were resuspended in 200 µl Ringer solution and ROS-dependent fluorescence 
intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a 
FACS Calibur (BD).

Ceramide abundance
For the determination of ceramide, a monoclonal antibody-based assay was used. To this end, cells were 

stained for 1 hour at 37°C with 1 µM anti ceramide antibody (clone MID 15B4, Alexis, Grünberg, Germany) 
in PBS containing 0.1% bovine serum albumin (BSA) at a dilution of 1:10. The samples were washed twice 
with PBS-BSA. The cells were stained for 30 minutes with polyclonal fluorescein isothiocyanate (FITC) 
conjugated goat anti-mouse IgG and IgM specific antibody (Pharmingen, Hamburg, Germany) diluted 1:50 in 
PBS-BSA. Unbound secondary antibody was removed by repeated washing with PBS-BSA. The samples were 
analyzed by flow cytometric analysis with an excitation wavelength of 488 nm and an emission wavelength 
of 530 nm. As a control, secondary antibody alone was used.

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis was 

made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of different 
erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments are 
differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control and 
experimental conditions.

Results

The present study addressed the potential effect of Costunolide on eryptosis, the suicidal 
erythrocyte death characterized by cell membrane scrambling with phosphatidylserine 
translocation to the cell surface.

Phosphatidylserine exposing erythrocytes were identified utilizing detection of annexin-
V-binding by flow cytometry. Prior to measurements, the erythrocytes were incubated for 
48 hours in Ringer solution without or with Costunolide (5 – 15 µg/ml). As illustrated in 
Fig. 1, a 48 hours exposure to Costunolide increased the percentage of phosphatidylserine 
exposing erythrocytes, an effect reaching statistical significance at 10 µg/ml Costunolide 
concentration.
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Fig. 3. Effect of Costunolide 
on cytosolic Ca2+ . A. 
Original histogram of 
F l u o 3 - f l u o r e s c e n c e 
reflecting cytosolic Ca2+ 

activity of erythrocytes 
following exposure for 48 
hours to Ringer solution 
without (grey area) and 
with (black line) presence 
of 15 µg/ml Costunolide. B. 
Arithmetic means ± SEM (n 
= 13) of Fluo3-fluorescence 
reflecting cytosolic Ca2+ 

activity of erythrocytes 
following incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Costunolide 
(5, 10, 15 µg/ml). For comparison, the effect of the solvent DMSO (grey bar). **(p<0.01) indicates significant 
difference from the absence of Costunolide (ANOVA).
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Fig. 1. Effect of Costunolide 
on phosphatidylserine 
exposure. A. Original 
histogram of annexin-V-
binding of erythrocytes 
following exposure for 48 
hours to Ringer solution 
without (grey area) and 
with (black line) presence 
of 15 µg/ml Costunolide. 
B. Arithmetic means ± SEM 
(n = 17) of erythrocyte 
a n n e x i n - V - b i n d i n g 
following incubation for 
48 hours to Ringer solution 
without (white bar) or with 
(black bars) Costunolide (5, 
10, 15 µg/ml). For comparison, the effect of the solvent DMSO (grey bar). ***(p<0.001) indicates significant 
difference from the absence of Costunolide (ANOVA).
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Fig. 2. Effect of Costunolide 
on erythrocyte forward 
scatter. A. Original 
histogram of forward 
scatter of erythrocytes 
following exposure for 48 
hours to Ringer solution 
without (grey area) and 
with (black line) presence 
of 15 µg/ml Costunolide. 
B. Arithmetic means ± SEM 
(n = 17) of the erythrocyte 
forward scatter (FSC) 
following incubation for 48 hours to Ringer solution without (white bar) or with (black bars) Costunolide 
(5, 10, 15 µg/ml). ***(p<0.001) indicates significant difference from the absence of Costunolide (ANOVA).
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Eryptosis is frequently paralleled by cell shrinkage. Thus erythrocyte volume was 
estimated from forward scatter determined with flow cytometry. Prior to measurements, 
the erythrocytes were incubated for 48 hours in Ringer solution without or with Costunolide 
(5 – 15 µg/ml). As illustrated in Fig. 2, Costunolide (15 µg/ml) significantly decreased the 
average erythrocytes forward scatter. Moreover, Costunolide treatment was followed by an 
increase of the percentage of shrunken (<200) erythrocytes, an effect reaching statistical 
significance at 15 µg/ml Costunolide concentration. Again, erythrocyte treatment with 
costunolide also statistically increased the percentage of the swollen erythrocytes at 15 µg/
ml concentration.

Fluo3-fluorescence was taken as a measure of cytosolic Ca2+ activity ([Ca2+]i). As 
illustrated in Fig. 3, 48 hours incubation with 15 µg/ml Costunolide significantly increased 
the Fluo3-fluorescence.

In order to test whether the Costunolide-induced translocation of phosphatidylserine 
required entry of extracellular Ca2+, erythrocytes were incubated for 48 hours in the absence 
or presence of 15 µg/ml Costunolide in the presence or nominal absence of extracellular 
Ca2+. As illustrated in Fig. 4, removal of extracellular Ca2+ significantly blunted the effect 
of costunolide on annexin-V-binding. However, even in the absence of extracellular Ca2+, 
Costunolide significantly increased the percentage of annexin-V-binding erythrocytes (Fig. 
4). Thus, Costunolide-induced cell membrane scrambling was in part triggered by entry of 
extracellular Ca2+.

Eryptosis is further stimulated by oxidative stress. Reactive oxygen species (ROS) were 
thus quantified utilizing 2′,7′-dichlorodihydrofluorescein (DCF) diacetate. As a result, a 48 
hours incubation with 15 µg/ml Costunolide significantly increased the DCF-dependent 
fluorescence (Fig. 5).

A further stimulator of eryptosis is ceramide. Ceramide abundance at the erythrocyte 
surface was thus quantified utilizing specific antibodies. As illustrated in Fig. 6, a 48 hours 
exposure to 15 µg/ml Costunolide significantly increased the ceramide abundance.

Fig. 4. Ca2+ 
sensitivity of 
Costunolide -induced 
phosphatidylserine 
exposure. A,B. 
Original histograms 
of annexin-V-binding 
of erythrocytes 
following exposure 
for 48 hours to 
Ringer solution 
without (grey areas) 
and with (black lines) 
Costunolide (15 µg/
ml) in the presence 
(A) and absence (B) 
of extracellular Ca2+. 
C. Arithmetic means 
± SEM (n = 10) of 
annexin-V-binding 
of erythrocytes 
after a 48 hours treatment with Ringer solution without (white bars) or with Costunolide (15 µg/ml) in 
the presence (left bars, + Ca2+) and absence (right bars, - Ca2+) of Ca2+. ***(p<0.001) indicates significant 
difference from the absence of Costunolide, ###(p<0.001) indicates significant difference from the presence 
of Ca2+ (ANOVA).
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Discussion

The present observations reveal that Costunolide triggers eryptosis, the suicidal erythrocyte 
death. Treatment of erythrocytes with Costunolide was followed by cell membrane scrambling 
with phosphatidylserine translocation to the erythrocyte surface. The concentration required 
for this effect was similar to those inducing apoptosis of nucleated cells, such as tumor cells [24]. 
The present observations were performed in erythrocytes drawn from healthy individuals. The 
sensitivity to Costunolide may be enhanced in clinical conditions with accelerated eryptosis.

The effect of Costunolide on cell membrane scrambling was paralleled by a significant 
increase of Fluo3-fluorescence reflecting cytosolic Ca2+ activity and was in large part dependent 
on Ca2+ entry from the extracellular space. Removal of extracellular Ca2+ significantly blunted 
the Costunolide induced eryptosis. Nevertheless, Costunolide triggered cell membrane 
scrambling even in the absence of extracellular Ca2+, an observation pointing to the involvement 
of additional mechanisms.

Fig. 5. Effect of Costunolide 
on oxidative stress. A. 
Original histogram of 
DCFDA fluorescence 
reflecting oxidative stress 
in erythrocytes following 
exposure for 48 hours to 
Ringer solution without 
(grey area) and with 
(black line) presence of 
Costunolide (15 µg/ml). B. 
Arithmetic means ± SEM (n 
= 10) of DCFDA fluorescence 
reflecting oxidative stress 
in erythrocytes following 
incubation for 24 hours to Ringer solution without (white bar) or with (black bars) presence of Costunolide 
(15 µg/ml). ***(p<0.001) indicates significant difference from the absence of Costunolide (ANOVA).
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Fig. 6. Effect of Costunolide 
on ceramide abundance. 
A. Original histogram of 
ceramide abundance in 
erythrocytes following 
exposure for 48 hours to 
Ringer solution with solvent 
DMSO (grey area) and with 
presence of Costunolide 
(15 µg/ml) (black line). B. 
Arithmetic means ± SEM (n 
= 5) of ceramide abundance 
in erythrocytes following 
incubation for 24 hours to 
Ringer solution without 
(white bar) or with (black bars) presence of Costunolide (15 µg/ml). ***(p<0.001) indicates significant 
difference from the absence of Costunolide (ANOVA).
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Costunolide-induced cell membrane scrambling was paralleled by oxidative stress, a well 
known trigger of eryptosis [28]. Moreover, Costunolide increased the abundance of ceramide 
which is known to sensitize erythrocytes for the scrambling effect of Ca2+ [28].

Costunolide significantly decreased average forward scatter. Moreover, Costunolide 
significantly enhanced the percentage of shrunken erythrocytes. Costunolide-induced cell 
shrinkage could result from Ca2+ entry, activation of Ca2+ sensitive K+ channels, K+ exit, cell 
membrane hyperpolarization, Cl- exit and thus cellular loss of KCl with water [28]. The purpose 
of cell shrinkage is the avoidance of hemolysis leading to release of hemoglobin, which passes 
the renal glomerular filter and precipitates in the acidic lumen of renal tubules thus occluding 
the affected nephrons with subsequent renal failure [112]. Hemoglobin could further affect 
microcirculation [113].

Hemolysis and hemoglobin release could partially be prevented by eryptosis, since eryptotic 
erythrocytes are rapidly cleared from circulating blood and the timely triggering of eryptosis 
could lead to removal of defective erythrocytes prior to swelling and hemolysis of those cells 
[28]. Triggering of eryptosis may further lead to elimination of erythrocytes infected with 
the malaria pathogen Plasmodium, thus counteracting development of parasitemia [28].

On the other hand, the rapid clearance of phosphatidylserine exposing erythrocytes 
from circulating blood following stimulation of eryptosis may lead to anemia as soon as 
the loss of erythrocytes surpasses the formation of new erythrocytes by erythropoiesis 
[28]. Phosphatidylserine exposing erythrocytes may further adhere to endothelial cells of 
the vascular wall [114], stimulate blood clotting and trigger thrombosis [115-117], thus 
impairing microcirculation [32, 115, 118-121].

Conclusion

In conclusion, Costunolide triggers eryptosis with cell membrane scrambling, an effect 
paralleled by Ca2+ entry, oxidative stress and formation of ceramide.
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