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T cell lineage decisions are critical for the development of proper immune responses

to pathogens as well as important for the resolution of inflammatory responses. This

differentiation process relies on a combination of intrinsic and extrinsic factors converging

upon epigenetic regulation of transcriptional networks relevant to specific T cell lineages.

As these biochemical modifications represent therapeutic opportunities in cancer biology

and autoimmunity, implications of writers and readers of epigenetic marks to immune

cell differentiation and function are highly relevant. Given the ready adoption of histone

methyltransferase inhibitors in the clinic, we focus this review on the role of three histone

modifying complexes: PRC-1, PRC-2, and G9A in modulating T cell fate decisions.

Furthermore, we explore the role of long non-coding RNAs in regulating these processes,

and discuss recent advances and challenges of implementing epigenetic therapies into

clinical practice.
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BACKGROUND

The immune system comprises a large number of cell types that have the ability to respond to
external environmental cues and adopt a wide variety of cell fates. These lineage decisions are
critical for the development of proper immune responses to pathogens as well as resolution of
inflammatory responses. As part of the adaptive immune system, T cells have the capacity to
respond to the external environment by modulating the expression of lineage specific factors which
are critical for protecting against a wide variety of pathogens. For the development of distinct T
cell lineages, naive CD4+ T cells must convert the extrinsic instructions provided by encounters
with antigen-presenting cells into cell-intrinsic changes (1). These intrinsic changes are largely
facilitated by transcription factors that directly induce or repress gene networks and drive T cell
differentiation (2). Emerging data demonstrates that lineage specific transcription factors recruit
epigenetic complexes to regulate gene expression over multiple rounds of cell division, and their
roles are indispensable for maintaining T cell homeostasis.

Deregulation of epigenetic pathways is a feature of many cancers, autoimmune diseases, and
neurodegenerative disorders (3–5). The reversible nature of epigenetic modifications makes them
attractive targets for pharmacological intervention, and indeed drugs targeting histone-modifying
complexes, such as Enhancer of Zeste Homolog 2 (EZH2), are currently being evaluated in patients
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for treatment of malignancy (6) and immune-mediated
conditions (7, 8). While recent clinical trials have demonstrated
a favorable safety profile of selective inhibition of EZH2 (6),
a comprehensive understanding of the role that epigenetic
modifying complexes play in the development and function of
different immune cell types is relevant to the development and
safety of epigenetic therapeutics. Here we review the role of
three histone modifying complexes: PRC-1, PRC-2, and G9A
in modulating T cell fate decisions. Furthermore, we explore
the role of long non-coding RNAs in regulating these processes,
and discuss recent advances and challenges associated with
implementing epigenetic therapies in clinical practice.

PRC1, PRC2, G9A, AND LONG
NON-CODING RNAS

PRC1
The Polycomb-Group proteins, Polycomb Repressive Complex 1
(PRC1) and 2 (PRC2), mediate post-translational modifications
(PTMs) of histones required for cell differentiation and
development through the regulation of chromatin structure
and gene expression. PRC1 is a multimeric protein complex
containing the core proteins RING1A/B, and Polycomb-group
ring finger (PCGF) proteins such as Bmi-1 (PCGF4) and Mel-
18 (PCGF2). PRC1 functions to mono-ubiquitinate lysine 119
on histone H2A (H2AKub119), an epigenetic mark that is
associated with transcriptional repression (9). Bmi-1 specifically
is highly enriched in pericentric heterochromatin which is
required for chromatin compaction and silencing (10). Although
Ring1A/B is the catalytic subunit of PRC1, knockdown of Bmi-1
results in a significant loss of H2A ubiquitylation, demonstrating
the important role that it plays in facilitating the enzymatic
function of PRC1 (11). In the canonical or hierarchical model
of Polycomb (PcG)-mediated transcription regulation, PRC1 is
primarily described as the maintenance complex which silences
target genes previously marked by the initiator complex, PRC2.
More recently, a histone-independent role of Bmi-1 in driving
NF-κB signaling has been reported (12). An interesting story is
also evolving related to a PRC2-independent role for PRC1 in the
maintenance of 3D genome structure through association with
super-enhancers (13, 14). No immune cell specific data has yet
emerged related to these exciting areas of investigation.

PRC2
PRC2 modulates chromatin dynamics via the tri-methylation
of lysine 27 on histone 3 (H3K27Me3), which is associated
with transcriptional repression. EZH2, ubiquitously expressed
by many mammalian cell-types, is the enzymatic subunit of
PRC2 which contains other supporting non-catalytic proteins
namely Suppressor of Zeste (SUZ12), embryonic ectoderm
development (EED), Adipocyte Binding Protein 2 (AEBP2)
and Retinoblastoma protein Associated protein 46 and 48
(RpAp46/48) (15). H3K27me3 recruits protein complexes
involved in chromatin compaction and is associated with inactive
genes (16). Histone-independent functions of PRC2 have also
been reported to play important roles in regulating transcription
factor stability and T cell receptor-mediated signaling (17–20).

While EZH2 has a role in normal cellular and tissue function,
studies involving EZH2 overexpression or genetic mutations
show that EZH2 is critical in the development and progression
of a variety of cancers (21–29). EZH2 is most frequently
associated with the silencing of tumor suppressor genes, and
decreased expression of PRC-target genes are associated with
poor prognosis (30, 31). Thus, derepression of these genes
using selective EZH2 enzymatic inhibitors or disruptors of PRC2
stability are likely to improve clinical outcomes, and are currently
being explored in preclinical or clinical studies for cancer therapy
(32–38).

G9a
The histone methyltransferase G9a and the related G9a-like
protein (GLP) form a heterodimeric complex to catalyze mono
and di-methylation of lysine 9 on histone 3 (H3K9me1 &
H3K9me2) at euchromatin in vivo (39). G9a and GLP are
encoded by the EHMT2 and EHMT1 genes, respectively,
both of which contain a SET domain necessary for the
methylation of lysine residues. G9a has been shown to play
a larger role in H3K9me2 methylation in vivo, but levels of
H3K9me1 and H3K9me2 are severely reduced in both G9a
and GLP knockout models (39). Furthermore, G9a has been
shown to promote gene activation through a methyltransferase-
independent fashion in different settings, including type II
cytokine production in helper T cells, possibly by acting as a
scaffold to recruit transcriptional machinery (40, 41). G9a/GLP-
mediated H3K9me2 has been associated with cognition and
adaptive behavior, germ cell development and meiosis, embryo
development, cocaine-induced plasticity, tumor cell growth and
metastasis, and more recently the immune response reviewed
below (39, 42).

Long Non-coding RNAs
Non-coding RNA’s have emerged as an exciting new frontier
of gene regulation in the immune system. It is now known
that 75–90% of the human genome transcriptome is comprised
of non-coding RNAs (43, 44). Long non-coding RNAs are
defined as transcripts with minimal coding potential that are
composed of more than 200 nucleotides; an arbitrary cutoff
that distinguishes them from microRNAs (<200 nucleotides).
Over 15,000 lncRNA genes have been annotated, although
only 159 lncRNAs have known function1,2 (45), highlighting a
critical gap in knowledge in the field. They can be classified
based on their position relative to protein coding genes as
intergenic, intronic and antisense (46). Like mRNAs, long non-
coding RNA’s undergo transcription by RNA polymerase II, are
5′ capped, spliced and polyadenylated. However, distinct from
mRNA, they lack canonical ORFs (and, therefore have minimal
protein-coding potential), tend to be shorter in size, have lower
expression levels, fewer exons and can localize to the nucleosome,
chromatin or cytoplasm. For example, long intergenic non-
coding RNAs localize primarily in the nucleus, in contrast to

1GENCODE, v27 Release. Available online at: https://www.gencodegenes.org/

human/release_27.html
2Long Non-coding RNA Database v2.,0 (lncRNAdb). Available online at: http://

www.lncrnadb.org/
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mRNAs which are primarily localized in the cytoplasm where
they undergo translation (47). Furthermore, lncRNAs function
by interacting with DNA, RNA, or proteins and the majority
modulate transcription in cis (affecting nearby genes), although
they can alsomodulate in trans (targeting distant genes), acting as
scaffolds, molecular decoys and guides for epigenetic modifying
complexes. Interestingly, lncRNAs can both activate and suppress
target genes by a variety of mechanisms and are expressed in
a cell-type and stage-specific manner (48, 49). They have been
shown to play key roles in autoimmunity, cancer and infection
(50–52). A recent comprehensive transcriptomic profiling of T
cells demonstrated unique lncRNA signatures for specific T cell
phenotypes signifying the relevance of lncRNA to cell and stage
specific function (49). Thus, lncRNAs may represent exciting
precise therapeutic targets.

PRC1, PRC2, G9A, AND LNCRNAS IN THE
ADAPTIVE IMMUNE SYSTEM

The development of T cells, an integral component of
the adaptive immune system, occurs in the thymus where
thymocytes mature into distinct T cell lineages defined by
either CD4 or CD8 co-receptor expression. CD4+ T cells and
CD8+ T cells are known to possess conventional alpha beta
(αβ) T cell receptors (TCR), which recognize antigen-derived
peptides bound by major histocompatibility complex (MHC)
class II or I molecules, respectively. Upon antigen recognition
and inflammatory environmental cues, naïve CD4+ T cells
differentiate into distinct effector T helper (Th) subsets by
expressing lineage-specific transcriptional programs. Th1, Th2,
and Th17 cells mediate protective anti-pathogenic responses
against bacteria and viruses via the secretion of distinct IFN-
γ, IL-4, and IL-17 effector cytokines, respectively (53). Post-
infection, Tregs, a regulatory component of the immune system,
are recruited to inhibit effector T cell functions and reestablish
homeostasis. Tregs can be generated from the thymus (natural
Tregs) or induced in the periphery (pTreg) or in vitro (iTreg)
from naïve CD4+ T cells via a FOXP3-driven transcriptome
(54–56). Nonetheless, persistent activation of these effector T cell
subsets has been associated with the pathogenesis of autoimmune
disorders such as inflammatory bowel disease (IBD), rheumatoid
arthritis (RA) and psoriasis (57).

PRC1, PRC2, G9a, and a variety of lncRNAs influence T helper
cell differentiation and maintenance by epigenetically regulating
transcriptional programs associated with different T cell subsets.
Given their significant influence in the pathogenicity of diseases
as stated above, we focus here on the role of these molecules in
the differentiation and maintenance of Th1, Th2, Treg, and Th17
phenotypes (Figure 1, Table 1).

Treg/Th17
Treg and Th17 cells appear to share precursor lineage as
demonstrated by in vitro study and murine lineage tracing
experiments (77, 78). While TGFβ signaling is required for
both effector cell types, IL-6 appears principally responsible for

ultimate derivation of Th17 cells (79–81). Ultimately, lineage-
specific transcription factors (FOXP3 and RORγt) drive the
Treg or Th17 transcriptional program, respectively. FOXP3 and
RORγt are known to reciprocally regulate one another, and the
delicate balance between suppressive Tregs and effector Th17
cells has proven critical for maintaining immune homeostasis
(78). Epigenetic modifying complexes, namely PRC2 and G9a,
play key roles in orchestrating the Treg and Th17 transcriptional
programs, and disruption of these epigenetic networks are
characterized by the development of autoimmunity in murine
models of human disease and human inflammatory bowel disease
(66, 82, 83).

We and others have demonstrated that mice lacking EZH2
in natural FOXP3+ Tregs developed spontaneous multi-organ
inflammation and were more susceptible to experimental models
of autoimmunity (65, 66). In addition to decreased frequency
of EZH2-depleted Tregs observed in certain murine tissues,
DuPage et al. showed that EZH2 was required to promote the
FOXP3-mediated gene repression program upon TCR activation
as a number of FOXP3-bound genes were de-repressed in the
absence of EZH2 (65). In support of the failure of EZH2-deleted
Tregs tomaintain the expression of Treg-specific signature genes,
EZH2-deleted Tregs displayed impaired suppression of effector
T cells in vitro (65, 66). Translating these findings from mice to
human relevance, Crohn’s disease (CD)-lamina propria CD4+
T cells were transcriptionally different from healthy controls
(66). Specifically, normally repressed FOXP3-target genes were
upregulated in CD CD4+ T cells and approximately 50% of
these differentially expressed genes (DEGs) were EZH2 targets.
Moreover, CD4+ T cells displayed a Th1/Th17 effector-like
phenotype in contrast to that of healthy controls. Thus, loss
of EZH2 function and consequently Treg dysfunction may
drive pathophysiological mechanisms of particular autoimmune
disorders.

In G9a deficient CD4+ T cells stimulated under Treg
or Th17 promoting conditions, a significant increase in
FOXP3-expressing and IL-17A-expressing cells is observed. In
undifferentiated T cells, G9a normally functions as a mediator
of H3K9me2 on loci associated with driving Treg and Th17
phenotypes (42). Loss of G9a-mediated H3K9me2 increases
chromatin accessibility to transactivating factors and increases
responsiveness to TGFβ (42). Much more work is required to
define the molecular underpinnings of G9a’s effects on Treg
development, but some consistency is emerging regarding Th17
biology. G9a was shown to be recruited by RelB, a non-
canonical NF-κB family member, to silence the IL17A locus and
prevent Th17-mediated autoimmunity in an in vivo model of
experimental autoimmune encephalomyelitis (EAE) (67). This
work is consistent with effects seen in other T cell subsets,
namely Th2 cells, in which loss of G9a leads to abnormal IL-17
expression (42). How these effects influence the balance between
Treg and Th17 phenotypes is yet to be determined. Thus, G9a
may become a viable target for therapeutic intervention of human
Th17 mediated diseases.

Three lncRNAs (Flicr, Lnc-Smad-3, and LncEGFR) have been
shown to influence Treg function. Flicr is selectively expressed
in both human and mouse T regulatory cells and negatively
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FIGURE 1 | PRC1, PRC2, G9a, and lncRNAs regulate T cell differentiation and function.

regulates FOXP3 in cis leading to decreased Treg function and
heightened autoimmunity (74). Mechanistically, Flicr modifies
chromatin accessibility in the FOXP3 locus, specifically non-
coding sequence 3 (CNS3) and accessible region 5 (AR5), leading
to decreased expression of FOXP3. In vivo, knockdown of Flicr
decreased the incidence of autoimmune diabetes in mice (74).

Lnc-Smad-3 was recently shown to modulate TGFβ-mediated
Treg polarization both in human and murine assays (75).
Mechanistically, lnc-Smad3 prevents the histone deacetylase
HDAC1 to bind to the SMAD3 promoter region, which
renders the chromatin compact and inaccessible to Ash1l, an
H3K4 methyltransferase that promotes SMAD3 activation and
transcription. From a disease relevance standpoint, these results
suggest a potential role for this long non-coding RNA in
the pathogenesis of autoimmune diseases, such as rheumatoid
arthritis (75).

Lnc-EGFR was shown to stimulate Treg differentiation by a
forward-feedback loop (51). Mechanistically, lnc-EGFR binds to
EGFR using its R1 domain, preventing interaction with c-CBL
and ubiquitination. In turn, EGFR activates ERK1/2 and AP-
1, which then leads to increased expression of lnc-EGFR and
FOXP3, perpetuating increased Treg differentiation. The authors
found this to be a critical pathway for hepatocellular carcinoma
(51).

LncRNA-1700040D17Rik was found to be deregulated in
CD4+ cells derived from a mouse model of autoimmune
encephalitis and have been shown to play a role in differentiation
of Th17 cells. In vitro, overexpression of lncRNA-1700040D1Rik

decreased expression of RORγt and IL-17 in Th17 cells, although
the precise mechanism is yet to be known (76). These findings
suggest a potential role for this long non-coding RNA in the
pathogenesis of multiple sclerosis.

Th1/Th2
Studies investigating the impact of G9a on Th1 biology have
shown that the absence of G9a has little effect on Th1 responses
in vitro nor in vivo, however, it is a critical component of the
Th2 regulatory machinery (40). Lehnertz et al. demonstrated G9a
to be necessary for expression of lineage-specific Th2-associated
cytokines such as IL-4, and that loss of G9a in CD4+ T cells
prevents Th2 cell differentiation. Mice with targeted CD4+ T
cell deletions of G9a were susceptible to helminth infection by
Trichuris muris due to the inability to express Th2-associated
cytokines. Consistent with previous work (42), the absence of
G9a in CD4+ T cells also resulted in the upregulation of IL-
17A in vivo. Interestingly, whereas repression of IL-17A appears
to be associated with G9a methyltransferase activity (42), Th2
gene regulation by G9a is independent of enzymatic activity, and
thought to be related to G9a functioning as a scaffolding protein
(40, 41).

The role of PRC1 in regulating T cell lineage fate decisions
is best illustrated by the influence it has on the Th1/Th2 axis
of development. Both Bmi1 (PCGF 4) and Mel-18 (PCGF 2)
have been shown to physically interact with GATA3, a lineage
specific transcription factor for Th2 differentiation, in a Ring
finger dependent manner (59, 60). Mel-18 has been shown to
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TABLE 1 | Roles of PRC1, PRC2, G9a, and annotated lncRNAs in the development and function of Th1, Th2, Treg, and Th17 cells.

Th1 Th2 Treg Th17

PRC1 Absence of Bmi1 impacts Th1

generation and maintenance (58).

Regulates Th2 differentiation and

cytokine expression (59, 60).

Overexpression of Bmi-1 increases

GATA3 expression and stability (59).

Loss of Mel-18 impacts Th2

differentiation in vivo (60).

Maintains Treg signature gene

expression (61).

Inactivation leads to systemic

immune mediated disease (61).

Knockdown of Mel-18 leads to

decreased expression of IL17A,

IL17F, and RORC (62).

PRC2 Inhibits Th1 differentiation and

cytokine production (63, 64).

EZH2 deficiency enhances

production of Th1 cytokines and

increased T-bet expression (63, 64).

Inhibits Th2 differentiation and

cytokine production (63, 64).

EZH2 deficiency enhances

production of Th2 cytokines and

increased GATA3 expression

(63, 64).

EZH2 is required to promote the

FOXP3-mediated gene repression

program following TCR stimulation

(65).

Loss of EZH2 in Tregs in vivo leads

to multi-organ inflammation and

increases susceptibility to

experimental models of

autoimmunity (65, 66).

EZH2-deficient naïve CD4+ T cells

stimulated under Th17 polarizing

conditions displayed enhanced

production of IL-17 (63).

G9a No evidence supports a role for

G9a in Th1 biology.

Required for Th2-specific cytokine

expression (40).

Loss of G9a prevents Th2

differentiation and increases IL-17A

expression (40, 42).

Absence of G9a in CD4+ T cells is

associated with increased FOXP3

expression (42).

G9a expression in CD4+ T cells is

necessary for development of colitis

in mice (42).

Absence of G9a in CD4+ T cells is

associated with increased IL-17A

expression in vivo and in vitro (42).

Recruited by RelB to silence IL17A

locus in mouse model of EAE (67).

LncRNA Linc-MAF-4 promotes Th1

differentiation through silencing of

Th2 transcription factor MAF

(49, 68).

IFNG-AS1 recruits

H3-K4-methyltransferase to Ifng

locus and is upregulated in

response to Th1-polarizing

cytokines (52, 69–71).

Th2-LCR-lncRNA recruits

WDR5-containing complexes to

Th2-specific cytokine loci facilitating

their expression (72).

LincR-CcR2-5′ AS interacts with

GATA-3 to upregulate chemokine

genes necessary for Th2 migration

(73).

Flicr negatively regulates FOXP3

leading to decreased Treg function

(74).

Lnc-Smad-3 regulates TGFβ

mediated Treg differentiation by

interacting with HDAC1 (75).

Lnc-EGFR promotes Treg

differentiation through interactions

with EGFR (51).

Overexpression of

LncRNA-1700040D17Rik was

associated with decreased

expression of RORγt and IL-17 in

Th17 cells (76).

regulate GATA3 transcription, and knockout of mel-18 severely
impacts Th2 differentiation in vivo (60). Bmi-1 regulates Th2 cell
differentiation by acting as an inhibitor of GATA3 degradation
and regulator of its stability. Bmi-1 overexpression in itself
leads to an increase in GATA3 expression and an increase in
Th2 cell differentiation under a Th2 specific cytokine milieu.
Comparatively little data exist regarding the role of PRC1 in Th1
cell development/function; however adoptive transfer of CD4+
T cells from Bmi1−/− mice into nude mice showed impaired
generation andmaintenance of memory Th1 cells through Bmi1-
mediated repression of Noxa, a pro-apoptotic gene (58).

The role of EZH2 in modulating effector T function was
recently illuminated by Yang et al. who showed that EZH2-
deficient naïve CD4+ T cells stimulated under Th1, Th2 or Th17
polarizing conditions displayed enhanced production of IFN-
γ, IL-13 or IL-17 cytokines, respectively (63). Moreover, Tumes
et al. also showed that EZH2 deficiency in naïve CD4+ T cells
led to the upregulation of Th1 and Th2-associated cytokines with
concomitant increase in lineage-specific transcription factors
T-bet and Gata3, respectively (64). However, in vivo studies
have revealed that EZH2 plays a dichotomous role in the
differentiation and senescence of CD4+T cells (63). For example,
in an in vivo model of Listeria monocytogenes infection known
to induce a Th1 response, CD4+ T-specific EZH2 deleted mice

displayed impaired clearance of infection due to decreased
survival of memory Th1 cells (84). Additionally, OVA-specific
EZH2-deficient Th2 cells were pathogenic in a mouse model of
allergic asthma due to an accumulated and exaggerated immune
response from memory Th2 cells (64). Taken together, EZH2
inhibits effector cytokine production in naïve CD4+ T cells,
and loss of EZH2 enhances differentiation to effector Th cells
as well as effector Th cell plasticity. Based on evidence from
in vivo studies in mice in the context of EZH2 deletion in T
cells, effector Th cell dysfunction is consistent across all disease
models, evidently through impaired clearance of pathogens
or aggravated autoimmunity (potentiated tissue destruction).
Additionally, H3K27me3-independent functions of EZH2 have
been reported in T cells expressing conventional αβ-TCRs (17,
18). Vasanthakumar et al. demonstrated that EZH2 prevents
NKT cell expansion through methylation, ubiquitination and
subsequent degradation of the transcription factor promyelocytic
leukemia zinc finger (PLZF) (17). In vivo studies have
demonstrated that an increase in the frequency of NKT cells in
the thymus and spleen occurs as a result of CD4+ T-specific
EZH2 deletion, which may contribute to the perturbed immunity
seen in murine studies previously mentioned (63, 64, 84).

Two lncRNAs, MAF-4, and IFNG-AS1 (also called NeST
or Tmevpg1), have been shown to influence Th1 biology by
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recruiting different epigenetic modifying complexes. Linc-
MAF-4 is selectively expressed in Th1 cells and promotes
Th1 differentiation through epigenetic silencing of the Th2
transcription factor MAF. Downregulation of linc-MAF-
4 in human CD4+ cells skewed differentiation toward a
Th2 phenotype. Mechanistically, linc-MAF-4 promotes a cis
chromatin looping conformation, leading to the recruitment
of chromatin remodelers EZH2 and LSD1 that place repressive
H3K27me3 marks on the promoter region of MAF-4 silencing its
expression (49). Recently, linc-MAF-4 was shown to be involved
in the pathogenesis of multiple sclerosis by promoting Th1 cell
differentiation (68). Thus, far, linc-MAF-4 has not been studied
in vivo.

IFNG-AS1 is expressed in CD4+ Th1, CD8+, and natural
killer cells (52, 69). It is upregulated in CD4+ cells in response
to Th1-differentiating cytokine stimuli and plays a critical role in
transcription of Ifng. This has been demonstrated both in vitro
and in vivo. Mechanistically, it has been shown to recruit the
H3K4-methyltranferase complex to the Ifng locus, leading to
placement of activating marks at the promoter region. It has
been associated with the pathogenesis of Hashimoto’s thyroiditis
(70), ulcerative colitis (71), and the immune response to viral
infections in vivo (52).

Two lncRNAs, Th2-LCR-lncRNA and lincR-CcR2-5′AS, have
been shown to influence the development and function of Th2
cells. Th2-LCR-lncRNA is selectively expressed in human Th2
cells and is transcribed in the RAD50 locus and epigenetically
regulates expression of IL-4, IL-5 and IL-13 (72). Mechanistically,
Th2-LCR-lncRNA recruits WDR5-containing complexes to
targeted cytokine loci, enhancing transcription. Knockdown of
human Th2-LCR-lncRNA in vitro causes major loss of expression
of IL-4, IL-5 and IL-13 in Th2 cells through loss of H3K4me3
activating marks (72). Unfortunately, Th2-LCR-lncRNA is not
conserved in mice, complicating in vivo studies.

LincR-CcR2-5′AS is selectively expressed in mouse Th2 cells
and upregulates CCR1, CCR2, CCR3 and CCR5 chemokine genes
in a GATA3-dependent fashion (73). Interestingly, knockdown
of this lincRNA not only affected neighboring genes CCR2 and
CCR3, but also affected nearly 1,200 genes some of which were
located in distant loci, suggesting it can act in both cis and trans.
Although the precise mechanism is yet to be fully understood,
in vitro knock down of lincR-CcR2-5′AS did not result in
chromatin accessibility or modification of H3K4me3, suggesting
that it does not act through recruitment of histone-modifying
enzymes or chromatin structure modifications.

FUTURE PERSPECTIVES: EPIGENETIC
MODULATION OF T CELLS IN CLINICAL
PRACTICE

Epigenetic mechanisms of disease are in theory inducible and
reversible through environmental manipulation, however,
some epigenetic features have been shown to be maintained
after cellular division as a result of self-enforcing feedback
mechanisms (85). The heritable, yet reversible nature
of epigenetic therapy makes this a promising option for

treatment. Persistence of epigenetic maintenance of engineered
modifications has been shown to be stable up to 40 days post
modification induction in vivo (86). Most epigenetic drugs
currently in use inhibit DNA methyltransferase and histone
deacetylase activity, and have been shown to reverse immune
suppression and thus sensitize the host immune system in
combination with anti-cancer therapies. Several anti-cancer
mechanisms have been reported, such as enhancing antigen
processing and presenting machinery pathways, inhibiting
immune checkpoints, and enhancing chemokine production.
For patients, there are three treatment options available:
therapies reported to affect DNA methylation, inhibitors of
histone post-translational modifications, and compounds
interfering with non-coding RNA regulation (87). Repurposing
drugs and screening for new compounds that display converse
effects to treatment autoimmune disease is an exciting new
option for autoimmune illnesses.

Distinct DNA methylation profiles have been demonstrated
in CD8+ and CD4+ T cells isolated from patients experiencing
autoimmune diseases (88–90). Epigenetic based therapeutics
currently being employed for the clinic for non-inflammatory
conditions, such as arrhythmias (procainamide), hypertension
(hydralazine), and neoplasia (5-azacytidine), have been shown
to induce auto-reactive pathology (7, 8). However, the 5-
azacytidine derivative 5-aza-2’deoxycytidine, which is also
a DNA methyltransferase inhibitor used in hematological
malignancies, has been shown to have a positive outcome
when administered in animal models of diabetes (91),
colitis (92), multiple sclerosis (93), and graft-versus-host-
disease (GvHD) (94). We need a better understanding of
the implications of DNA methylation, the pharmokinetics of
available compounds, and synergistic effects of combination
therapy with immunomodulatory drugs already in practice for
autoimmune diseases to allow us to develop and implement
novel therapies. As of now, we are lacking a therapeutic arsenal
to target global hypomethylation, which is most often associated
with lymphocytes recovered from patients experiencing some of
the most common autoimmune diseases.

The ubiquitous expression of EZH2 and the opposing role it
plays in different cell-types makes EZH2 a delicate therapeutic
target. Recent identification of PRC2- and H3K27me3-
independent EZH2 functions in oncogenesis indicates that
a complete suppression of all oncogenic functions of EZH2
is required to combat cancer. Anti-EZH2 therapy inhibits
methylation at key repression/silencing associated histone
marks, and these compounds have emerged as a promising
therapy for cancer treatment, especially for B cell non-Hodgkin’s
lymphoma. However, we have observed that systemic anti-
EZH2 therapy leads to mucosal hypersensitivity in mice. One
complicating factor is that EZH2 is also utilized by PRC1 in
the nucleus, therefore more study needs to be undertaken to
dissect the specific roles these complexes play in inflammation
before on can determine whether histone methyltransferase
inhibitors can be co-opted for anti-inflammatory therapy. Of
note, cytosolic forms of PRC2 have been shown in murine
models to be necessary for TCR-mediated activation of signaling
pathways that drive T cell proliferation and autoimmunity. Thus,
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pharmacologic targeting of cytosolic PRC2 may represent a
more precise therapeutic approach to suppressing autoimmunity
caused by excessive T cell activation (19, 20).

From a translational standpoint, several studies have
demonstrated that long non-coding RNAs can be used as
biomarkers in malignancy and autoimmune diseases (95–97).
Potential lncRNA-targeted therapeutic approaches include
silencing by antisense base pairing (e.g., targeting lncUBE3ATS,
which silences paternal UBE3A in Angelman’s syndrome)
or by targeting molecules that are necessary for lncRNA
transcription, such as transcription factors (98, 99). The cell type
specific expression of lncRNAs makes them excellent targets
for therapeutic intervention, as off-target effects are minimized.
One option being pursued in cancer therapies is to directly
target HOTAIR; a primarily trans-acting long-non coding RNA
that promotes gene silencing through recruitment of PRC2
and LSD1 complexes, resulting in trimethylation of H3K27 and
demethylation of H3K4, respectively (100–102). Knocking down
HOTAIR provides compelling evidence for therapeutic targeting
in cancer. Arresting glioblastoma multiform cell migration and
invasion through this approach is a case in point (103). To
overcome the limitation of genetic targeting, peptide nucleic
acids have been developed which disrupt complex function. This
approach has had positive results in inhibiting NF-κB activity in
addition to decreasing ovarian and breast cancer properties such
as reduced tumor formation and survival (104). The potential for
this approach in inflammatory diseases is still to be determined.

Precision medicine has brought about the advent of using
CRISPR/Cas9 to target this gene editing tool to target epigenetic
modifying enzymes to precise locus specific locations on the
genome instead of the DNA endonucleases the technology
originally utilized (105). This technique can be exploited to
recruit enzymes that impact the methylation of the DNA,
enzymes that post-translationally modify the histones, and
proteins which interfere with non-coding RNA regulation.
Further, it has been recently reported CRISPR/Cas9 technology
can be rapidly delivered via a non-viral delivery technique
capable of integrating large DNA sequences (106). These new
developments will allow us flexible and precise epigenetic
manipulation toward creating therapeutically epi-engineered
primary human immune cells without the off-target effects
associated with systemic epigenetic therapies.
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