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Quantum yield of photosynthesis (φ) expresses the efficiency of phytoplankton carbon

fixation given certain amount of absorbed light. This photophysiological parameter is key

to obtaining reliable estimates of primary production (PPsat) in the ocean based on remote

sensing information. Several works have shown that φ changes temporally, vertically, and

horizontally in the ocean. One of the primary factors ruling its variability is light intensity

and thereby, it can be modeled as a function of Photosynthetically Available Radiation

(PAR). We estimated φ utilizing long time-series collected in the North Subtropical

Oligotrophic Gyres, at HOT and BATS stations (Pacific and Atlantic oceans, respectively).

Subsequently the maximum quantum yield (φm) and Kφ (PAR value at half φm) were

calculated. Median φm values were ∼0.040 and 0.063mol C mol photons−1 at HOT

and BATS, respectively, with higher values in winter. Kφ values were ∼8.0 and 10.8mol

photons m−2 d−1 for HOT and BATS, respectively. Seasonal variability in Kφ showed

its peak in summer. Dynamical parameterizations for both regions are indicated by their

temporal behaviors, where φm is related to temperature at BATS while Kφ to PAR, in both

stations. At HOT, φm was weakly related to temperature and its median annual value was

used for the whole data series. Differences in the study areas, even though both belong to

Subtropical Gyres, reinforced the demand for regional parameterizations in PPsat models.

Such parameterizations were finally included in a PPsat model based on phytoplankton

absorption (PPsat−aphy−based), where results showed that the PPsat−aphy−based model

coupled with dynamical parameterization improved PPsat estimates. Compared with

PPsat estimates from the widely used VGPM, amodel based on chlorophyll concentration

(PPsat−chl−based), PPsat−aphy−based reduced model-measurement differences from

∼62.8 to ∼8.3% at HOT, along with well-matched seasonal cycle of PP (R2 =

0.76). There is not significant reduction in model-measurement differences between

PPsat−chl−based and PPsat−aphy−based PP at BATS though (37.8 vs. 36.4%), but much
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better agreement in seasonal cycles with PPsat−aphy−based (R2 increased from 0.34 to

0.71). Our results point to improved estimation of PPsat by parameterized quantum yield

along with phytoplankton absorption coefficient at the core.

Keywords: ocean color, quantum yield of photosynthesis, phytoplankton primary production, marine seasonal

variability, in situ measurements, dynamical parameterization

INTRODUCTION

Comprising a vast and highly dynamic area, the oceans are
considered responsible for approximately half of global primary
production (Field et al., 1998; Behrenfeld et al., 2001).
Ocean color remote sensing provides multiple environmental
parameters on a daily basis for the world oceans that have
been widely used to model marine primary production (PP).
However, no algorithms have shown a high performance in every
oceanic region to retrieve PP based on satellite measurements.
There are significant differences in estimated primary production
from these models, which, broadly speaking, are based either on
biological or optical information. Instead, regional adjustments
of those algorithms seem to be key to obtain more accurate
results, for example, based on marine biogeochemical provinces
(Platt et al., 1991). Field campaigns are still needed for such
regional calibration and validation.

Different approaches have been proposed to estimate marine
primary production based on data from ocean color remote
sensing (PPsat) (Platt and Sathyendranath, 1988; Longhurst
et al., 1995; Lee et al., 1996; Behrenfeld and Falkowski, 1997a;
Campbell et al., 2002; Behrenfeld et al., 2005; Carr et al.,
2006; Saba et al., 2010 many others). All the models consider
information of the light availability at the surface or at depth,
phytoplankton concentration, and a metabolic parameter related
to phytoplankton photosynthesis. While the first two inputs
can be routinely estimated from satellite data, the metabolic
parameter can be only derived from laboratory and/or field
measurements.

The most important difference among the models relies in
the input that refers to the phytoplankton abundance or carbon
stock (e.g., Longhurst et al., 1995; Westberry et al., 2008; Lee
et al., 2011, 2015). Behrenfeld et al. (2005) and Lee et al.
(1996) grouped those algorithms according to the main input:
chlorophyll-a concentration (Chl) or phytoplankton carbon (C).
The first type of algorithm proposed to estimate PPsat uses
Chl because of the primordial role that this pigment takes in
the photosynthesis process (Platt and Sathyendranath, 1988;
Longhurst et al., 1995; Behrenfeld and Falkowski, 1997b). The
second group incorporates some information about C using the
backscattering coefficient of particles (bbp) (Behrenfeld et al.,
2005).

A different basis is the third approach, based on
phytoplankton absorption coefficient (aphy, PPsat−aphy−based)
(Marra et al., 1993; Lee et al., 1996; Hirawake et al., 2011; Ma
et al., 2014). Instead of biological information, this approach
uses optical information. For this reason, this is the only one that
uses explicitly and directly the light absorbed by phytoplankton
for photosynthesis estimation, which provides not only a more

intuitive understanding of C fixation through photosynthesis,
but also better accuracy in estimating PPsat (Lee et al., 1996,
2011; Hirawake et al., 2011). The mathematical formulation of
PPsat−aphy−based model at depth z can be expressed as:

PPsat−aphy−based(z) =

∫

φ (z) · aphy (z, λ) · E(z, λ)λ (1)

where φ (mol C mol photons-1) is the quantum yield of
photosynthesis, E corresponds to irradiance (measured in mol
photons) for wavelength λ (nm), at depth z (m).

This φ is a physiological parameter that expresses the
efficiency by which phytoplankton convert harvested light into
oxygen released or carbon assimilated during the photosynthesis
process. Then, this parameter connects light absorbed by
phytoplankton to be used for photosynthesis with the rate of
C fixed during photosynthesis. It links optical properties with
biological information and is a key parameter for estimating PPsat
(Marra et al., 1993; Lee et al., 1996, 2015; Kovač et al., 2017).
Presently, aphy spectrum and the vertical profile of E can be well
estimated from ocean color remote sensing (e.g., Lee et al., 2002,
2005b), but how φ changes spatially and temporally remains
unknown.

Mathematically, φ can be described as the ratio between PP
and absorbed photons (AP):

φ(z) =
PP(z)

AP(z)
(2)

Inside the cell, photosynthesis takes place in the chloroplasts,
and two photosystems are involved in this process. The
light reactions in both photosystems place physiological limits
on photosynthesis efficiency that confers φ to a maximum
theoretical value of 0.125mol C mol photons−1 (Iluz and
Dubinsky, 2013). Actually, in nature, phytoplankton species
are observed to work under much lower efficiency than this
expected maximum (Morel, 1978; Marra et al., 1993; Carder
et al., 1995; Sorensen and Siegel, 2001; among many others).
Not only that, φ has been found to be subject to temporal,
regional and vertical variability within the water column (Babin
et al., 1996; Finenko et al., 2002; Ostrowska et al., 2012). The
highest variability for different depths and different regions
was reported in Ostrowska et al. (2012). In the upper water
column, φ is ruled mainly by light levels, presenting low values
at surface because of photoinhibition and higher proportion
of photoprotective pigments, while higher values are found at
greater depths with lower light levels, where φ may reach its
theoretical maximum (Iluz and Dubinsky, 2013). Marra et al.
(2000) quantified the effect of photoprotective pigments in φ.
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They found that those pigments are able to reduce φ between
30% and 4-fold. Nutrient availability is another important factor
determining φ value. Higher nutrient concentrations imply a
higher number of active reaction centers in the photosynthetic
apparatus, leading to higher photosynthetic efficiency (Kolber
et al., 1998). Also, Marra et al. (2000) found that a low load
of nutrients can have a secondary effect in phytoplankton cells,
increasing non-photosynthetic pigment production and reducing
φ even more. For example, clear oligotrophic waters can show
lower φ than eutrophic areas (Morel, 1978). On seasonal time
scales, however, its variation seems to be much smaller. At the
global scale, and ignoring polar winter Ostrowska et al. (2012)
reported a seasonal variation up to∼1.5 times.

However, all these trends on φ variability depend on the
physiological requirements of phytoplankton species composing
the biological community and there is not an “only” factor
involved in the determination of φ, but an interaction of all
the environmental conditions (Sorensen and Siegel, 2001). This
makes it extremely complicated to model φ accurately as a
function exclusively of environmental factors without any a
priori knowledge of the real photosynthetic efficiency at certain
region. Like many other physiologically dependent parameters
used in remote sensing models for PP (e.g., PBopt) (Behrenfeld
and Falkowski, 1997b), the appropriate way at present to observe
and model φ still relies on biological and optical data in different
regions.

Kiefer and Mitchell (1983) found, based on laboratory
measurements of daily primary production, that φ can be
well modeled as a function of daily Photosynthetic Available
Radiation (PARday),

φ(z) = φm ·
Kφ

Kφ + PARday(z)
(3)

where φm is the maximum quantum yield of photosynthesis, and
Kφ is a model parameter that represents the irradiance when φ

corresponds to a half of φm. Hereafter, we will refer to φ as the
instantaneous quantum yield of photosynthesis, which is then
a function of light availability and a maximum parameter φm.
Therefore, PPsat−aphy−based already takes into account the vertical
variation of φ caused by differences in PAR at depth when using
Equation 3. However, so far no application of the PPsat−aphy−based
model considers regional and seasonal variability in φ caused by
factors other than light, where as indicated in Iluz and Dubinsky
(2013) temporal and regional varying φ instead of a universal
factor should be employed.

To test and evaluate this strategy, we derive φ values in
two long, in situ time-series, collected at fixed stations within
the two North Subtropical Gyres. These stations are Hawaii
Ocean Time-Series (HOT) and Bermuda Atlantic Time-series
Study (BATS) and were selected because of the availability of
long term and consistent pool of optical and biological data.
Different from other methods that estimate the quantum yield
in laboratory experiments in monospecific cultures, the approach
used in this work provides the φ for the entire phytoplankton
community subjected to natural conditions (e.g., light levels,
phytoplankton community composition, nutrient concentration,

pigment content, and water temperature). Because it is derived
from in vivo conditions, its variability on time and depth
takes into account photoadaptation, acclimation processes,
and changes in the phytoplankton community composition
as responses to changes in environmental factors. Hourly
variability in φ is not possible since PP was measured on
a daily time scale. Therefore, the derived φ represents mean
daily photon-conversion efficiency. We are interested mainly
in seasonal/regional variability in φ that can be directly
incorporated into remote sensing applications.

Sorensen and Siegel (2001) applied a similar approach to the
present study, deriving φ from in situ measurements using a few
years of data at BATS. Here, however, we go beyond their findings
by considering a more sophisticated approach to estimate light at
depth, extending the length of the time-series, including another
study area in our calculations, and utilizing remote sensing data
to evaluate effectively the impact of such in situ φ in the PPsat
products.

Our objectives include then: (i) an observation and
understanding of φ for both study areas, (ii) their
parameterizations via taking into account its seasonal variability,
and (iii) its application to a time-series of remote sensing data to
obtain dynamic PPsat of the two regions.

MATERIALS AND METHODS

Study Area
The datasets used in this work are public and come from
the HOT (available at http://hahana.soest.hawaii.edu/hot/) and
BATS (available at http://www.bios.edu/research/projects/bats/).
HOT is located in the North Pacific Ocean, close to Hawaii.
Data were collected in this region centered at 22◦45′ N, 158◦00′

W and within a radius of 6 nautical miles, at the isobaths of
∼4,000m. The BATS station was located in the North Atlantic
Ocean, centered at 31◦40′ N, 64◦10′ W (Figure 1).

Both stations are located in waters with a nutrient-limited
euphotic zone. On an annual scale, nutrients are higher at surface
when vertical mixing is higher, breaking the thermocline, and
allowing nutrients to mix into surface waters when a shallower
nitracline is observed (Bates et al., 1996; Karl et al., 1996). At
HOT, these conditions are found during winter, while at BATS
this period occurs in winter and extended to early spring.

The autotrophic community in both regions is dominated
by small prokaryotic picoplankton, represented mainly by
prochlorophyte and cyanobacteria (e.g., Platt et al., 1983; Siegel
et al., 1990; Letelier et al., 1993; Sorensen and Siegel, 2001; Karl
and Church, 2017).

In spite of all the environmental similarities between both
stations, the primary production cycle from in situmeasurement
(PPin situ) is different. Nutrients at BATS are rapidly assimilated
by phytoplankton and it promotes a short spring phytoplankton
bloom between January and March, when PPin situ is maximal
(Menzel and Ryther, 1960; Bates et al., 1996; Sorensen and Siegel,
2001). However, this typical seasonal cycle frequently suffers
inter-annual changes because of variability in winter mixed
layers and surface stratification (Steinberg et al., 2001). Also,
other factors such as nutrient injection via mesoscale eddies,
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FIGURE 1 | Location of the two stations used in this work: HOT and BATS over a global map representing the annual average of Chl in a color scale.

or N2-fixers, had been reported as responsible for seasonally
anomalous phytoplankton blooms, that is, in late spring or
summer (Steinberg et al., 2001). However, at BATS, such blooms
are not strong enough to alter the annual carbon cycle. On
the contrary, at HOT the highest PPin situ is generally found
during late summer and early fall (Karl and Church, 2017), which
pointed to blooms of N2-fixers as responsible for this alteration
in the PPin situ cycle and leading to a maximum in PPin situ in
summer.

In situ Datasets
Data at HOT comprised in situ measurements collected
concurrently from cruises during the periodMar/1998-Oct/2015.
A total of 127 cruises at HOT were used in this work. However,
only 47 cruises were found applicable for BATS for the period
between Jul/1994 and Mar/2008. For both time series, sampling
was conducted at monthly resolution. The protocols applied
to data collection and processing are rigorously followed to
guarantee consistence in the measurements over time (Sorensen
and Siegel, 2001). Additional details of those protocols and
collection methods can be found in their respective websites
(http://hahana.soest.hawaii.edu/hot/ and http://bats.bios.edu/).

Biogeochemical Measurements
Photosynthetic production of organic matter at different discrete
depths (PPin situ, in mg C m−3 d−1) was measured by the trace-
metal clean 14C uptake method with incubations performed in
situ along one daylight period (dawn-to-dusk) (Fitzwater et al.,
1982). In the case of HOT, the depths were 5, 25, 45, 75, 100,
and 125m; while at BATS, the depths were 1, 20, 40, 60, 80,
100, and 120m. Light- and dark-bottles were incubated in situ

following the same procedure and PPin situ was obtained via
subtracting dark uptake from light-bottle assimilation. In the case
of HOT, dark-bottle incubations were available only in the period
Mar/1998-Aug/2000. These values were averaged at depth and
subtracted from the light experiments after Oct/2000.

Pigment concentrations (in ng kg−1) from High Performance
Liquid Chromatography (HPLC) were measured the same day
and at the same depths were PPin situ was estimated.

Optical Measurements
The HOT time-series performed radiometric measurements in
water using two different radiometers: Profiler Reflectance
Radiometer (PRR600/610, Biospherical Inc.) between
March/1998 and August/2009 and Hyperpro free-falling
optical profiler, from May/2009. The PRR has 6 spectral bands
at 412, 443, 490, 510, 555, and 665 nm, while the Hyperpro is
a hyperspectral radiometer, whose sensors measure upwelling
radiance and downwelling irradiance (Lu and Ed), respectively,
in the visible domain with a spectral resolution of ∼10 nm. In
the case of BATS, the radiometric profiles were performed using
a multispectral radiometer: Multiwavelength Environmental
Radiometers (Biospherical Inc., MER-2040, San Diego, CA)
up to 1999 and SeaWiFS Profiling Multichannel Radiometer
and SeaWiFS Multichannel Surface Radiometer (SPMR/SMSR,
Satlantic) after 1999. Those radiometers had 8 and 10 spectral
bands, respectively (410, 441, 465, 488, 520, 565, 589, and 665 nm
in the case of 8-bands, and additionally at 625 and 683 nm for
the 10-bands radiometer). In all the cases, at the same time
that the in-water measurements were registered, a radiometer
installed above-surface took measurements of solar irradiance
(ES), which were used to correct Ed(z) from cloud effects. The
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Ed measurements were taken the same day or within one day of
difference respect the PPin situ experiment.

Measurements of solar PARin situ (in µmol photons m−2

s−1) above surface were registered dawn-to-dusk during
the day of PPin situ experiments using a LI-COR LI-1000
integrator/datalogger that registers flux of photons between 400
and 700 nm.

Phytoplankton absorption coefficient (aphy,in situ(λ)) at BATS
was estimated during the whole time series following the NASA
protocols (NASA, 2003). Seawater was filtered using Whatman
GF/F glass fiber filter pads, which were kept frozen in liquid
nitrogen until readings (Morrison and Nelson, 2004). Absorption
of the filter pad wasmeasured before and after pigment extraction
with methanol (Kishino et al., 1985). aphy,in situ(λ) was estimated
as a difference between total absorption (before bleaching) and
detritus absorption (after bleaching). At HOT, aphy,in situ(λ)
was reconstructed by the pigment concentration measured by
HPLC (Bidigare et al., 1990; Marra et al., 2000). In this case,
it used the unpackaged specific absorption spectra derived
from Gaussian approximations and applied the package effect
correction available in Wozniak et al. (1999).

Satellite Datasets
Data collected by the MODIS-Aqua sensor between Jul/2002-
Dec/2014 were used. The data was downloaded in Level-3
Standard Mapped Image Products, 8-Day composite, in 4-
km spatial resolution (https://oceancolor.gsfc.nasa.gov/). Also
acquired were the following standard products: Sea Surface
Temperature (SSTsat, in ◦C); Daily Photosynthetically Available
Radiation (PARday,sat, in mol photons m−2 d−1) (Frouin et al.,
1989); absorption coefficients due to phytoplankton and due
to gelbstoff and detrital material at 443 nm [aphy,sat(443) and
adg,sat(443), respectively, in m−1]; particulate backscattering at
443 nm [bbp,sat(443), in m−1]. All the acquired Inherent Optical
Properties [aphy,sat(443), adg,sat(443) and bbp,sat(443)] were
estimated through the Generalized Inherent Optical Property
(GIOP) model (Werdell et al., 2013). The spectral parameters
(Sadg,sat, in nm−1, and Sbb,sat, respectively) required for the
derivation of these absorption and backscattering coefficients
were processed as in the Quasi-Analytical Algorithm (QAA, Lee
et al., 2002). These products were extracted within a 3 × 3 pixel
window centered at the geographical coordinates of HOT and
BATS stations, average of this window is further estimated for
each product to comprise satellite time series between 2002 and
2014.

Data Processing
In situ Data Processing: PPin situ
At HOT, PPin situ was obtained from in situ experiments from
Mar/1989 to Oct/2015, while at BATS it was from Jul/1989 to
Dec/2016. The integration in the euphotic zone was performed
through the trapezoid method (Saba et al., 2010) and included
the depths detailed in section Biogeochemical Measurements for
both regions.

In situ Data Processing: PARday (λ)
The processing to obtain PARday,in situ(z, λ, expressed in mol
photons m−2 s−1 nm−1) is summarized in the flow-chart in
Figure 2.

1) Simulations in Hydrolight (Mobley and Sundman, 2008) were
run to estimate ES(λ) in different conditions that affect solar
irradiance at the surface, such as solar zenith angle (0, 30, and
60◦), atmospheric visibility (15 and 40 km), cloud percentage
(10, 20, 50, 80, and 100%), atmospheric humidity (20, 80,
and 100), and atmospheric ozone content (200 and 400). We
integrated ES(λ) (W m−2) in the visible domain [ES(PAR), W
m−2] and calculated the normalized spectra ES (λ) as ES (λ) =
ES(λ)

ES(PAR)
. ES (λ) showed a shape well preserved along all the

atmospheric conditions tested, with only small differences
<8%, toward the blue and red regions. Then we used ES (λ)

to spectrally resolve PARin situ recorded by LI-COR, by simple
multiplication between each LI-CORmeasurement and ES (λ)

[see ES (λ) in the Appendix]. In this way, we obtained light
variability above surface, and spectrally resolved PPin situ over
a day [PARin situ(0+,λ,t)].

2) PARin situ (0+,λ,t) was integrated spectrally and along the day
to obtain PARday,in situ (0+) which was used further in section
Dynamic temporal parameterization of φm and Kφ.

3) To estimate PARin situ(λ) at depth, information about light
attenuation is needed. Considering that both stations are
located in oligotrophic areas, where water dominates light
attenuation for wavelengths >560 nm, and that Ed profiles
in wavelengths longer than 560 nm were very noisy, we took
the diffuse attenuation coefficient in the range of 561–700 nm
[Kd,in situ(561–700), m−1] equal to the Kd for pure seawater
(Kd,pure water). For the wavelengths between 400 and 560 nm,
two different processing routines were applied to obtain Kd,in

situ(λ), according to the type of radiometer used in each cruise
(multi- or hyper-spectral).

4) In the case of hyper-spectral data, Kd(400–560) was obtained
from Êd,in situ(z, λ) profiles (Zoffoli et al., 2017), where
Êd,in situ(z, λ) represents measured downwelling spectral
irradiance.

5) In the case of multispectral information, the following
pertain:

a. The above-water remote sensing reflectance [Rrsin situ(0+,
λ), in sr−1] was obtained from the profiling measurements
following NASA protocol (NASA, 2003) and corrected
from Raman effects (Lee et al., 2013).

b. Raman-corrected Rrsin situ(0+, λ) was used as input for the
QAA v6 algorithm (Lee et al., 2002; Lee, 2014) to obtain
aphy(443), adg(443), and bbp(555). Along with the spectral
parameters Sadg and Sbb, these properties were used to
generate hyperspectral aphy, adg , and bbp as in HOPE (Lee
et al., 1999).

c. Spectra of total absorption and backscattering coefficients
were thus calculated as sum of these components, and then
Kd(400–560) was estimated following Lee et al. (2005a), Lee
et al. (2013). Being an Apparent Optical Property (AOP),
Kd changes with light field. In the above estimation, the
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FIGURE 2 | Flow-chart to obtain daily PAR (PARday,in situ) from in situ data.

change of solar zenith angle (θs) was also incorporated,
where θs was determined based on information of location,
day of the year and time of the day.

6) PARin situ(0−,λ,t) together with the Kd(λ,t) allowed the
estimation of the irradiance at different depths, every
10min, for the visible domain [PARin situ(z,λ, t)] as
PARin situ (z, λ, t) = PARin situ(0−, λ, t) · e−Kd(λ,t)z

7) Finally, PARday,in situ(z,λ) was estimated by integration
of PARin situ(z,λ,t) between initial and final time of the
incubation (sunrise and sunset, respectively).

In situ Data Processing: φ

For each region, cruise, and depth, instantaneousφwas estimated
from PPin situ(z) and PARday,in situ(z,λ) following:

φ(z) =
PPin situ(z)

∫ 700
400 aphy(λ, z) · PARday, in situ(z, λ)λ

(4)

In this approach, aphy(λ,z) was considered constant over the
whole day.

φm and Kφ were further calculated for every cruise/station
using the coefficients from a linear fitting of the semi-
log graph ln[φ(z)] vs. PARday,in situ(z), where the offset
corresponded to ln(φm). Then, for each cruise, Kφ

was estimated as value of PARday,in situ for φ equals
φm/2.

Dynamic Temporal Parameterization of φm and Kφ

From the values derived above, monthly φm and Kφ were
calculated and smoothed for HOT and BATS. φm was described

as a linear function of the ratio between sea surface temperature
(SST) and 20 (SST/20). The value of 20 was chosen as the
optimum temperature for carbon fixation and as explained in
the discussion. Kφ was modeled as a linear function of PARin

situ(0+). The results of such parameterization are presented
in section Quantum yield of photosynthesis and dynamic
parameterizations of φm and Kφ. After incorporating monthly
SST or PAR data obtained from satellite, empirical relationships
were developed that well describe the variation of φm

and Kφ.

Satellite Data Processing
PPsat in this work was estimated via two different approaches,
with one using the conventional Chl-based scheme
(PPsat−chl−based), while the other using the aphy-based
scheme. For both HOT and BATS, the waters were considered
homogeneous in the distribution of water constituents. In the
case of PPsat−chl−based, the VGPM system (Behrenfeld and
Falkowski, 1997b) was used to estimate primary production. In
this case, PPsat is estimated as the integral in the euphotic zone
according to Equation 5:

PPsat−chl−based = 0.66125 · PBopt ·
PARsat(0+)

(PARsat(0+)+ 4.1)
·zeu · Chlsat · D (5)

where PBopt is the maximum carbon fixation rate within the water

column (mg C mg Chl−1 h−l), D is day length (in hour) and
Chlsat is the chlorophyll concentration obtained from satellite
data. Following Behrenfeld and Falkowski (1997b), PBopt was
modeled based on SST. We acquired PPsat−chl−based from the
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Ocean Productivity Home Page (Oregon University) for 8-Day
composites in 9 km of spatial resolution between 2002 and 2014.
A 1 × 1 pixel window was extracted centered in each station
coordinates.

The model proposed by Kiefer and Mitchell (1983) was used
to obtain the variation of φ caused by light intensities (Equation
3). Here we estimated the integral of PPsat (Equation 6) for the
euphotic zone to be comparable with PPsat−chl−based values. We

considered zeu as 125m for HOT and 120m for BATS.

PPsat−aphy−based =

∫ zeu

0

∫ 700

400
φ (z) · aphy,sat (λ)

·PARday,sat (z, λ) dλdz (6)

As in section in situ data processing: PPin situ for processing
multispectral data, aphy ,sat(λ) was calculated as a function of

FIGURE 3 | Quantum yield of photosynthesis (φ, in mol C mol photons −1) estimated from in situ measurements at HOT station, represented in a colorimetric scale

(exhibited on the right). The vertical axis shows the depth in meters (from 0 on the top to deeper values on the bottom). The horizontal axis represents time and every

point in the graph corresponds to a monthly cruise.

A B

FIGURE 4 | (A) Annual average of the quantum yield of photosynthesis (φ, in mol C mol photons −1) in a vertical scale. The abscissa axis represents φ exhibited in

log-scale (mol C mol photons−1) and the ordinate axis shows depth (in m). (B) PPin situ (mg C m−3 d−1) along the water column. In both graphs, yellow dots

represent HOT and red dots, BATS.
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aphy ,sat(443) following the HOPE model (Lee et al., 1999).
Starting from PARday,sat, we obtained a PARday,sat(λ) by simple

multiplication of PARsat and the normalized spectrum ES (λ).
Kd,sat for the average daily zenith angle of each 8-Day
composite was used to estimate the PARday,sat at depth, where

PARday,sat(z, λ) = PARday,sat(0
−, λ) · e−Kd(λ)·z . Again, following

Lee et al. (2005a, 2013), Kd,sat was calculated from the derived
total absorption and backscattering coefficients. The values of φm

and Kφ were derived previously in section Dynamic temporal
parameterization ofφmandKφ, andφ(z) at depth was calculated
as Equation 3.

Method to Evaluate Performance
The satellite and in situ datasets cover different time spans. About
26 years of data comprise the PPin situ data while ∼12 years were

collected by satellites. Also, the data sampling was performed at
different time intervals. In situ experiments lasted one day in
∼monthly intervals, while here we used satellite products on an
8-Day composite basis. Not only temporal sampling is different,
but also spatial resolution is significantly different. While in situ
data came from experiments performed at one location, satellite
data came from an integrated area of 9 × 9 km2 in the case
of PPsat−chl−based and 4 × 4 km2 for PPsat−aphy−based. For these
reasons, rather than a match-up exercise, we wanted to evaluate
whether PPsat is able to reproduce the overall magnitude and
seasonal variations observed in PPin situ. Therefore, differences
between monthly median in situ PP (P̂Pin situ) and monthly
PPsat (P̂Psat) were measured using Unbiased Absolute Percent
Difference (UAPD) (Equation 7):

UAPD (%) = 2 · |(P̂Pin situ − P̂Psat)|
/

(P̂Pin situ + P̂Psat) · 100 (7)

A B

C D

E F

FIGURE 5 | Monthly median of in situ maximum quantum yield of photosynthesis (φm, in mol C mol photons −1) in red and in situ monthly median of sea surface

temperature (SST, in ◦C) in blue: (A) at HOT and (B) at BATS. Error bars represent standard deviation. Monthly median of in situ Kφ (in mol photons m−2 d−1) in

yellow and in situ monthly median of PARday,in situ (in mol photons m−2 d−1) in green: (C) at HOT and (D) at BATS. Error bars represent standard deviation. (E) In situ

monthly median φm as a function of monthly SST at BATS and (F) in situ monthly median Kφ as a function of PARday,in situ (0+). In graph and (F) results of both

stations are displayed together, where HOT is represented by blue circles and BATS as green squares.
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RESULTS

Quantum Yield of Photosynthesis and
Dynamic Parameterizations of φm and Kφ
The derived instantaneous φ showed a large range of variability
at both stations along the time series and within the water
column (Figure 3). Within the period used at BATS (14 years),
we had many gaps with incomplete cruise datasets. For this
reason, we do not show the timeline for this station. At HOT,
minimum and maximum values were ∼0.001 and 0.126mol
C mol photons−1, respectively, and corresponded to more
than 120-fold of variability. However, more than 95% of the
cases were lower than 0.07mol C mol photons−1, which
reduced the variability to 69-fold. A slightly lower range was
presented at BATS (∼0.002–0.121mol C mol photons−1), which
corresponded to 50-fold of variability. Restricting instantaneous
φ to 95% of the occurrences, it varies in a range of
∼0.002–0.1mol C mol photons−1, reducing its variability to
45-fold.

As expected, the highest variability in the φ was observed
vertically, with the lowest values at the surface and the highest
at depth (Figure 4A). This pattern was opposite to the vertical
distribution of PPin situ (Figure 4B). While PPin situ is ruled
mainly by light availability, the highest efficiencies are found
at deeper depths. The maximum values of the instantaneous
φ in both stations almost attained the maximum theoretical
value and they were observed at great depths with very low
light levels. On some cruises, the φ obtained at the greatest
depths surpassed the theoretical maximum of 0.125mol C mol
photons−1. At those depths, both PPin situ and light levels are
very low, thus potentially creating very high uncertainties in the
estimated φ due to difficulties in obtaining accurate PPin situ and
light intensity at such low values. Therefore, any φ values higher
than 0.125mol C mol photons−1 were omitted and we have
ignored depths >80m to avoid estimations subjected to high
uncertainties.

We observed a consistent seasonal variability in the
instantaneous φ in both stations during the whole time series.
Also, in situ φm and Kφ showed temporal variabilities. At HOT,
higher φm values were found during winter (Jan–Feb), but
the range of variability is quite narrow (monthly median is
0.038–0.045mol C mol photons−1 except January) (Figure 5A).
Instead, at BATS, the highest φm was observed for a longer
season, from Fall to Winter (Oct–Mar), with a higher seasonal
variability (monthly median 0.050–0.096mol C mol photons−1)
(Figure 5B). According to previous works (e.g., Bates et al., 1996),
the higher photosynthetic efficiency found in Fall-Winter can
be related to the position of the thermocline and, therefore, to
injection of nutrients into the euphotic zone. In both regions,
between Summer and Spring the photosynthetic efficiency
remained low.

On the other hand, Kφ is found following the temporal
variability of PARday(0

+), with the highest values in Summer
and the lowest in Winter (Figures 5C,D). Comparing both
stations, a higher annual median value was observed in φm

at BATS, suggesting a higher photosynthetic efficiency during
the whole year. Kφ was higher at BATS as well. Also at

BATS, the monthly variability in the parameters was found
higher than HOT, even though both stations were located in
oligotrophic waters of the North Subtropical Gyres. Estimated
median annual values of φm were 0.0395 and 0.063mol C mol
photons−1 at HOT and BATS, respectively; while Kφ values
were 8.0 and 10.8mol photons m−2 d−1, respectively. The
seasonal patterns found in both parameters and stations led
us to incorporate temporal variation in the model through a

A

B

FIGURE 6 | (A) Monthly median φm as a function of monthly SST and (B)

monthly median Kφ as a function of PAR. Station HOT is displayed as blue

circles and BATS as green squares. Filled markers refer to parameters

obtained from satellite measurements; empty markers correspond to the same

parameters from in situ data.
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dynamical modeling of φm and Kφ, (Figures 5E,F) as presented
below:

φm = −0.0451 ·

(

SST

20

)

+ 0.098,

and φm ≤ 0.125 mol C mol photons−1 (8)

Kφ = 0.215 · PARday,in situ

(

0+
)

− 0.614 (9)

φm = −0.1071 ·

(

SST

20

)

+ 0.1828,

and φm ≤ 0.125 mol C mol photons−1 (10)

Kφ = 0.51 · PARday,in situ

(

0+
)

− 4.14 (11)

Here, Equations 8, 9 correspond to parameterizations for φm

and Kφ at HOT (regression analysis for φm vs. (SST/20): R2 =

0.17, p = 0.183, for Kφ vs. PAR: R2 = 0.91, p = 1.7 10−6, at
95% confidence level); while Equations 10-11 are used at BATS
(regression analysis for φm vs. (SST/20): R2 = 0.90, p= 2.89 10−6,
for Kφ vs. PAR: R2 = 0.88, p = 8.22 10−6, at 95% confidence
level). The p-values suggest significance in models, except for
the quadratic relation between φm and (SST/20) at HOT. The

narrow variability not only in monthly φm but also in SST,
explains its lack of significance in the parameterization for HOT.
For this reason, we did not incorporate this parameterization
into the instantaneous φ modeling but decided to keep it
constant and equal to themedian annual value (0.0395mol Cmol
photons−1).

Median values of φm and Kφ resulted from the above
modeling were similar to those found in situ, even when
they were derived from different inputs and slightly different
periods of time (Figure 6). Median φm was 0.060mol C mol
photons−1 at BATS. Kφ resulted in 9.5mol photons m−2

d−1 at HOT and higher at BATS (15.7mol photons m−2

d−1). At BATS, the modeled φm from SSTsat showed higher
values in Fall-Winter and the lowest in Summer, following the
in situ pattern. Sorensen and Siegel (2001) found a similar
relationship between φm and SST at BATS. Even though the
correlation was weak, it seems that SST is a good predictor
for φm over the year, thus allowing an effective temporal
modeling of φm. The temporal pattern of Kφ modeled with
PARday,sat, was the same as that observed in situ at the two
stations.

A C

B D

FIGURE 7 | PPsat (expressed in mg C m−2 d−1) obtained through the VGPM model, Chl-based. The light blue line represents the results obtained for the 8-Day

composite, while the dark blue represents the monthly median calculated for these data, at HOT (A) and BATS (B). The graphs on the right shows a comparison

between satellite and in situ PP estimates (monthly median of the PPsat−chl−based in the blue line, and monthly median of the PPin situ in the green line), for HOT (C)

and BATS (D).
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PP by Satellite
Comparing PPsat−chl−based with PPin situ, the performance by
the default VGPM for the two stations is different (Figure 7).
At HOT, the PPsat−chl−based presented a strong underestimation
with average difference of 62.8%, and a seasonal pattern opposite
to in situ measurements (R2 = 0.27). At BATS, the performance
was better than that at HOT, withmean AUPD of 37.8%. At BATS
the seasonal cycle was similar to that of in situmeasurements (R2

= 0.34), but with a delay of 3–4 months in the minimum and a
shorter length on the maximum.

On the contrary, the PPsat−aphy−based model with the dynamic
parameterization of φ considerably reduces the differences
between satellite estimates and in situ measurements at HOT. In
this area, UAPD reduced to only 8.3%. At BATS, UAPD remains
about the same (36.4%). However, results are improved when
observing the seasonal pattern. PPsat−aphy−based is able to well
reproduce the PP seasonal cycle in both areas (R2 = 0.76 at
HOT; R2 = 0.71 at BATS, Figure 8). The summer maximum of
PPsat−aphy−based matches the in situ findings. The overestimation
of the PP peak at BATS still needs to be inspected. Interestingly,

the highest instantaneous φ, which is a function of both φm and
Kφ, does not correspond to the maximum PP at HOT (Figure 9).
Even when the φ is highest in winter, the PP peak was predicted
to be during summer. The quantum yield of photosynthesis is not
exclusively nutrient-driven nor light-driven but a combination
of both factors (Sorensen and Siegel, 2001), which explains
its large temporal variability. However, it is important to keep
in mind that the instantaneous φ is not the only parameter
responsible for PP, but also the phytoplankton absorption (which
is related to its abundance) and light availability. Note that even
though the temporal pattern of PPin situ is different, both PAR
and aphy showed a similar seasonal variation comparing both
stations (Figure 10). We also run the PPsat−aphy−based model
using annual median values of φm and Kφ instead of the dynamic
parameterization, as a way to evaluate the impact of the temporal
variability in those parameters on predicting PP. In this case,
at HOT the temporal response of PP generally followed the in
situ values with lower correlation (R2 = 0.70) (Figure 8C, red
curve), and slightly lower performance in terms of magnitude,
with AUPD of 9.1%. At BATS, however, using fixed parameters

A B

C D

FIGURE 8 | PPsat (expressed in mg C m−2 d−1) obtained through the aphy model using temporal dynamic parameterization. The light blue line represents the

results obtained for the 8-Day composite, while the dark blue represents the monthly median calculated for these data, at HOT (A) and BATS (B). The graphs on the

right shows a comparison between satellite and in situ PP estimates (monthly median of the PPsat−aphy−based using our dynamic parameterization in the blue line,

monthly median of the PPsat−aphy−based using both parameters as constant in the red line, and monthly median of the PPin situ in the green line), for HOT (C) and

BATS (D).
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A B

C D

FIGURE 9 | Average of instantaneous φ (expressed in mol C mol photons−1) within the euphotic zone obtained through MODIS-Aqua data for the whole data series

(2002–2014). The green line represents the median of instantaneous φ for the euphotic zone (A) at HOT and (B) BATS. Aside, graphs (C) and (D) show the monthly

median of φ for each of the stations obtained from satellite.

A B

FIGURE 10 | (A) Monthly median of MODIS-Aqua aphy (m−1) and (B) monthly median of MODIS-Aqua PAR (mol photons m−2 d−1) at surface. In both graphs

stations HOT (blue circles) and BATS (green squares) are displayed together.

PP showed a similar AUPD (35.2%) but a worse response in
terms of the seasonal pattern (R2 = 0.53) with a secondary
peak of PP during summer not observed in situ (Figure 8D,

red curve). These findings support then the need of regional
in situ measurements and incorporating temporal dependence
on photosynthetic parameters according to the study area. It is
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exactly the efficiency in the conversion from light into fixed C
(this is the φ) that conforms satellite measurements into the real
environmental observations, and thus fixed values for φm and Kφ

would limit the capability to produce consistent observations for
the global oceans.

DISCUSSION

In this work, we estimatedφm and Kφ from in situmeasurements.
According to their temporal behavior, we modeled φm and Kφ

based on in situ measurements as function of environmental
parameters. At HOT, in situ median value of φm was equal to
0.04mol Cmol photons−1. While at BATS, annual median values
of φm were found between ∼0.06mol C mol photons−1 from
both methods. Kφ varied between 8 and 16mol photons m−2

d−1 for both, stations and methods. These magnitudes are in
good agreement with such values provided in other works. Kiefer
and Mitchell (1983) found φm as 0.06mol C mol photons−1

and Kφ as 10mol photons m−2 d−1 from laboratory analysis
using monocultures of a diatom species and varying nutrient
and light levels. Morel (1978) estimated φm in the Sargasso Sea
from in situ measurements and found an average of 0.03mol C
mol photons−1. In a work developed at BATS from the same
dataset (Sorensen and Siegel, 2001), it was found an average
φm ∼0.035mol C mol photons−1. This value is slightly lower
than the values presented in this work, but in this case the same
seasonal pattern with the lowest φm in summer. Also in the
referred work, Kφ was 16mol photons m−2 d−1, a bit higher than
that obtained here. These differences can be caused by differences
in the time period used in both works and the inputs [aphy and
Ed(z)] used to derive those parameters. Morel (1978) considered
only two cruises (in May/1970 and March-April/1974 totalizing
32 stations) and Sorensen and Siegel (2001) used only 5 years of
data. We included 14 years of measurements.

The dynamic parameterization we adopted was SSTsat for
the estimation of φm at BATS and PARday(0

+) for Kφ in the
two regions. It is known that phytoplankton have an optimum
temperature for growth and photosynthesis (Li, 1980). Lower
temperatures mean physiological restrictions in the metabolism
of the Calvin Cycle (Falkowski, 1980). Above such an optimum,
there are also metabolic restrictions linked to protein inactivation
and denaturation (Ratkowsky et al., 1983). Figure 11 illustrates
the PBopt parameter, used by the VGPM. This parameter shows
the maximum C fixation rate within a water column, and is
obtained from a polynomic function that depends only on
SST. It expresses the metabolic functioning of phytoplankton
and we use it here to show the relation between temperature
and physiology. Note that SSTsat in this region in the period
2002–2014 ranges within narrow intervals:18–28.8◦C, and the
optimum temperature seems to be ∼20◦C and not at the highest
values observed. Besides physiology, temperature and nutrient
inputs could also be related in the euphotic zone. Even though
no nutrients were analyzed in this work, periods with the highest
φm are perceived to follow the nutrient injection to surface,
facilitated by the breakdown of the thermocline and vertical
recirculation in the water column (Figures 5B,C), which implies

FIGURE 11 | Maximum C fixation rate within a water column [PBopt, in mg C

(mg Chl)−1 h−1] following VGPM, as a function of SSTsat at BATS.

lower temperatures. There appears to be a reduction in metabolic
rates under 20◦C. However, during winter conditions, nutrient
concentration was expected to be the highest, stimulating
phytoplankton production and overriding any limitation caused
by temperatures being under its optimum. This relation between
φm, temperature, and nutrients explains the inverse relation
between φm and SSTsat, supporting the idea of using this
environmental parameter to model φm. The exploration of this
relationship should be evaluated carefully at higher latitudes,
where temperatures in winter can drop considerably thus the
impact to φm separated from that by nutrient would be complex.
Also, coastal environments can behave differently and SSTsat

would not necessarily be a good proxy of the φm, since nutrient
input also has a terrestrial contribution in addition to vertical
stratification and the position of the thermocline.

It was shown here temporal variability of φm and Kφ estimated
from in situ experiments of PPin situ and measurements of Ed
and PAR at surface. Such estimation was only possible thanks
to the effort of many people engaged to maintain long time-
series measurements, with careful collection methods at HOT
and BATS. These activities should be encouraged worldwide
as we see that in situ observations are critical for calibration
and validation activities into remote sensing science to allow
it to provide reliable products. It appears that there is a better
performance at HOT than at BATS, likely because we have a
much bigger data pool at HOT than at BATS for the derivation
of φm and Kφ. It thus allowed a better calibration of the model in
the Pacific Ocean, improving PPsat−aphy−based performance. Also
at BATS, the number of samples during some months (Jan, May,
Nov, and Dec) was a bit lower than other months considering
the coefficient of variation. Sorensen and Siegel (2001) showed
a difference up to 40% along 4 consecutive days at BATS,
exemplifying how highly noisy PPin situ can be. This suggests that,
even with a great effort in keeping a long time-series of 26 years,
in situ sampling could not be sufficient during some periods to
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capture the real variability that could explain differences between
PPin situ and PPsat−aphy−based.

Within vegetal cells, only chlorophyll-a contributes to
photosynthesis. Based on this premise, the PPsat−chl−based
methods propose that PP can be directly estimated from Chl.
However, there are some caveats in estimating PP with this
strategy. First, even when Chl has been widely considered
an indicator of phytoplankton biomass it is also known
that Chl is a weak indicator of it (Behrenfeld et al., 2005,
2016; Bellacicco et al., 2016). It has been demonstrated that
pigment concentration is dependent on the phytoplankton
group, cell size, light availability, nutritional state of the cells,
meaning that the same Chl value can be found in waters with
different abundance of phytoplankton. Second, there are other
accessory pigments in phytoplankton cells that also capture
photons, which can be transmitted to chlorophyll-a and used
in photosynthesis (if they are photosynthetic pigments, as for
example, chlorophyll-b and -c) or this energy is lost as heat
(when the implicated pigments are photoprotective, as for
example diadinoxanthin and diatoxanthin) (Ostrowska et al.,
2012). On the other hand, not all chlorophyll-a is active for
photosynthesis. It is well known that it can exist as a “package”
inside the cell, which means the capacity to absorb photons
can be different even for the same Chl value. But these are
not the only factors to take into account when evaluating
the result of PPsat−chl−based models. Satellite sensors actually
measures radiometric magnitude (i.e., radiance). The direct
parameters we can derivate from those satellite measurements
are, then, optical parameters (absorption, backscattering) rather
than biological information such as Chl, which constitutes a
secondary measurement. This suggests that PPsat−aphy−based, that
uses a phytoplankton absorption coefficient as input, reduces
uncertainties in model inputs. In this context, φ is a key
parameter that introduces biological information into the model
that converts optical (absorbed light) into biological information
(PP).

It is exactly to those optical and photophysiological
parameters to whom researchers have attributed the
responsibility for the low performance found in some PPsat
models that have been commonly applied (Platt et al., 1991;
Morel et al., 1996; Bouman et al., 2000). Kovač et al. (2017) also
point to the relation between the rate of carbon assimilation by
phytoplankton and light as the core parameters that convert
stocks of C (the immediate image taken by satellite) into a
rate (PP). We demonstrated here that actually questionable
photophysiological parameters are responsible for high
uncertainties observed frequently in PPsat results. In fact,
the mathematical formulation of the PPsat−aphy−based and the
optical inputs appear to be adequate. The part of the model
that is still a challenge is in the linkage between optics and
biology, that is, the quantum yield of photosynthesis. More
efforts into the estimation of global ocean PP via satellite remote
sensing should be allocated to in situ sampling to provide
data to model this parameter. We showed that appropriate,
spectrally resolved, inputs [aphy(λ) and Ed(z, λ)] combined with
regionalized biological parameters reduce such uncertainties
in producing reliable PP estimates over the years. This work

shows also an example of how important regional studies are,
and that the same biome in two different places, oligotrophic
gyres in this case, can present different temporal behaviors
in photosynthetic restrictions. We suggest that the formula
to provide good estimates of oceanic primary production in
the global ocean seems to be combining satellite observations
with regionalized dynamical parameterization based on in situ
measurements and using biogeochemical provinces as a frame
for such regionalization.

CONCLUSIONS

Temporal and regional variability were observed in
photophysiological parameters φm and Kφ estimated from
decades of in situmeasurements. At HOT, into the North Pacific
Subtropical Gyre, the median annual values for φm and Kφ

were 0.040mol C mol photons−1 and 8.0mol photons m−2 d−1,
respectively. Slightly higher values were found for both at BATS,
located in the North Atlantic Subtropical Gyre, where φm was
found equal to 0.063mol C mol photons−1 and Kφ of 10.8mol
photons m−2 d−1. In both regions, highest values of φm occurred
in the Fall-Winter period, coinciding with the highest nutrient
concentration. The peak of Kφ, on the contrary, was found in
Summer, following seasonality in PAR. SST and PARday(0

+)
were chosen as proxies to estimate temporal variability of φm

and Kφ, respectively. However, at HOT, seasonal variability
seems negligible for φm and we kept it as a constant in this
region equal to the annual median value derived from in situ
measurements. Our dynamic parameterization was tested using
satellite information and further applied to the PPsat−aphy−based
model. The values found from such dynamic parameterization
were within the same range as those from in situ measurements:
0.060mol C mol photons−1 for φm at BATS, and 9.5 and
15.7mol photons m−2 d−1 for Kφ, corresponding to HOT and
BATS, respectively. Comparing with in situ measurements, the
PPsat−aphy−based showed the same temporal variability, with
differences of only 8.3% at HOT and 36.4% at BATS when our
dynamic parameterization was used. These differences were
lower than the ones found using a default PPsat−chl−based model
at HOT which resulted in 62.8% difference, and similar at
BATS, with AUPD of 37.8%. However, in terms of the seasonal
pattern the PPsat−chl−based model performed worse in both
areas (R2 = 0.27 and 0.34 at HOT and BATS, respectively)
and an opposite seasonal pattern at HOT. Our results strongly
suggest that an effort to regionally parameterize φm and Kφ

from in situ data can significantly improve PPsat, to provide
then, solid estimates of primary production of the global
oceans.
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APPENDIX

TABLE A1 | Normalized spectra [ES(λ), dimensionless] for the visible spectra (400–700 nm).

λ (nm) ES λ (nm) ES λ (nm) ES λ (nm) ES λ (nm) ES

400 0.00252 460 0.00372 520 0.00349 580 0.00353 640 0.00323

402 0.00279 462 0.00371 522 0.00359 582 0.00355 642 0.00322

404 0.00283 464 0.00371 524 0.00360 584 0.00349 644 0.00317

406 0.00279 466 0.00370 526 0.00358 586 0.00339 646 0.00312

408 0.00279 468 0.00371 528 0.00356 588 0.00331 648 0.00307

410 0.00288 470 0.00372 530 0.00358 590 0.00328 650 0.00307

412 0.00296 472 0.00373 532 0.00359 592 0.00326 652 0.00307

414 0.00299 474 0.00376 534 0.00361 594 0.00328 654 0.00303

416 0.00301 476 0.00379 536 0.00362 596 0.00331 656 0.00297

418 0.00302 478 0.00381 538 0.00362 598 0.00334 658 0.00295

420 0.00301 480 0.00380 540 0.00359 600 0.00336 660 0.00303

422 0.00300 482 0.00379 542 0.00357 602 0.00338 662 0.00311

424 0.00293 484 0.00370 544 0.00357 604 0.00339 664 0.00313

426 0.00284 486 0.00360 546 0.00358 606 0.00340 666 0.00312

428 0.00276 488 0.00354 548 0.00359 608 0.00340 668 0.00311

430 0.00275 490 0.00363 550 0.00359 610 0.00336 670 0.00310

432 0.00274 492 0.00372 552 0.00359 612 0.00333 672 0.00308

434 0.00287 494 0.00373 554 0.00357 614 0.00332 674 0.00307

436 0.00305 496 0.00371 556 0.00353 616 0.00331 676 0.00306

438 0.00321 498 0.00369 558 0.00351 618 0.00331 678 0.00305

440 0.00330 500 0.00363 560 0.00353 620 0.00331 680 0.00304

442 0.00339 502 0.00358 562 0.00355 622 0.00331 682 0.00302

444 0.00346 504 0.00361 564 0.00353 624 0.00329 684 0.00290

446 0.00353 506 0.00367 566 0.00351 626 0.00326 686 0.00275

448 0.00359 508 0.00371 568 0.00349 628 0.00323 688 0.00264

450 0.00365 510 0.00368 570 0.00350 630 0.00323 690 0.00265

452 0.00370 512 0.00364 572 0.00351 632 0.00323 692 0.00266

454 0.00372 514 0.00356 574 0.00351 634 0.00324 694 0.00269

456 0.00373 516 0.00345 576 0.00351 636 0.00324 696 0.00272

458 0.00373 518 0.00340 578 0.00351 638 0.00325 698 0.00274

700 0.00272
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