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The impact of deleterious variation on both plant fitness and crop productivity is
not completely understood and is a hot topic of debates. The deleterious mutations
in plants have been solely predicted using sequence conservation methods rather
than function-based classifiers due to lack of well-annotated mutational datasets
in these organisms. Here, we developed a machine learning classifier based on a
dataset of deleterious and neutral mutations in Arabidopsis thaliana by extracting
18 informative features that discriminate deleterious mutations from neutral, including
9 novel features not used in previous studies. We examined linear SVM, Gaussian
SVM, and Random Forest classifiers, with the latter performing best. Random Forest
classifiers exhibited a markedly higher accuracy than the popular PolyPhen-2 tool in
the Arabidopsis dataset. Additionally, we tested whether the Random Forest, trained
on the Arabidopsis dataset, accurately predicts deleterious mutations in Orýza sativa
and Pisum sativum and observed satisfactory levels of performance accuracy (87%
and 93%, respectively) higher than obtained by the PolyPhen-2. Application of Transfer
learning in classifiers did not improve their performance. To additionally test the
performance of the Random Forest classifier across different angiosperm species, we
applied it to annotate deleterious mutations in Cicer arietinum and validated them
using population frequency data. Overall, we devised a classifier with the potential to
improve the annotation of putative functional mutations in QTL and GWAS hit regions,
as well as for the evolutionary analysis of proliferation of deleterious mutations during
plant domestication; thus optimizing breeding improvement and development of new
cultivars.

Keywords: deleterious mutation, random forest (bagging) and machine learning, Orýza, Pisum, Cicer

INTRODUCTION

New mutations continuously arise in populations. Some of them are neutral, but many are
deleterious (Grossman et al., 2010). Under most circumstances, natural selection is effective
in maintaining strong deleterious mutations at low level, however mildly deleterious variants
may reach considerable frequency in populations due to hitchhiking and population bottlenecks.
Deleterious variants may affect phenotypic traits and decrease organismal fitness. Quite the
opposite, in maize intermediate and weakly deleterious alleles are involved in heterosis
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(Yang et al., 2017). In human rare, deleterious SNPs are
associated with common diseases and cancer (Taylor et al., 2015).
Therefore, it is no wonder that estimation of the deleterious
mutations prevalence in different species is a topic of vivid
interests.

Theoretical predictions place the fraction of deleterious
mutations in barley, soybean, rice, maize, and Arabidopsis
genomes from 20% to 40% approximately (Günther and Schmid,
2010; Mezmouk and Ross-Ibarra, 2014; Kono et al., 2016).
Deleterious alleles are usually at low frequency, an observation
that is in agreement with the action of weak purifying selection.
The prevalence of deleterious alleles differs between wild species,
landraces, and elite cultivars. Using rice sequences Günther
and Schmid (2010) found fewer deleterious substitutions in the
wild than in cultivated rice. In comparisons with traditional
landraces, elite maize inbreds show an increase in the proportion
of deleterious variants fixed within the population, but the
much smaller proportion of segregating deleterious variants
(Yang et al., 2017). This is explained by bottlenecks during
modern breeding that results in fixation of the majority
of mutations, therefore reducing a fraction of segregating
variation.

The issue of deleterious variation in plant genotypes
is particularly essential for crop improvement, because
crop productivity may be reduced due to a persistence of
deleterious variants at a moderate frequency. Indeed Yang
et al. (2017) found that deleterious variants may contribute
substantially to variation in fitness-related quantitative
traits in maize and that incorporation of information about
deleterious mutations may improve existing genomic prediction
frameworks.

NGS technologies open a way to annotate the functional
effect of individual SNPs. As the regulatory code responsible
for gene activity still remains a puzzle, only genetic variants
in the coding regions are considered. The general belief
is that non-synonymous substitutions may change protein
structure and therefore many of them should have the
deleterious effect on protein function, which in turn
manifests as biochemical or morphological mutations.
The methods for prediction of deleterious effects of non-
synonymous substitutions in proteins could be subdivided
into two groups. The first group methods exploit sequence
conservation and are based on the assumptions that SNPs in
evolutionarily conserved regions are likely to be deleterious.
Some of them like SIFT use simple cut-off to discriminate
deleterious variants from neutral (Sim et al., 2012), while
other like MAPP (Stone and Sidow, 2005) and GERP+++
(Davydov et al., 2010) employ phylogenetic information in
addition.

The machine learning algorithms lay the foundation of
the second group methods. Of these the most widely used
is PolyPhen-2 (Adzhubei et al., 2010). This method employs
the rigorously annotated datasets of human disease-causing
mutations for training that preconditions its high predictive
accuracy. As a machine learning method PolyPhen-2 consists
of three steps: firstly a set of features that characterize a
mutation was extracted using sequence characteristics, multiple

alignment scores, and information about the 3D structure of
the resulting protein. At the next steps, training and cross-
validation were performed followed by classification with a
naïve Bayes approach. It should be noted, that being trained
on human data, PolyPhen-2 is sometimes applied to predict
deleterious mutations in other species. There is, however, little
consensus about the eligibility of such a direct knowledge
transfer. Indeed, it is known that alleles annotated as deleterious
in humans at about 15% of cases correspond to normal
alleles in other mammals (Kondrashov et al., 2002). It appears
from this that to achieve more accurate predictions training
might have to be separately executed species by species.
However, for many species, information required for classifier
training might be substantially more limited than for humans.
Accordingly, the question arises whether it is possible to use
the information obtained for one species for the search for
harmful mutations in another, perhaps phylogenetically close,
species.

This question has long been discussed in machine learning
in the following formulation: how to transfer knowledge from
one object to another, considered to be close (in the sense of
data sampling distribution), to solve a specific problem (whether
classification or regression). A set of methods that provide the
methodology for solving such problems is denoted Transfer
Learning (TL). These methods have found broad application
in many practical problems. For instance, Lagunas and Garces
(2017) classify the painted images of various objects using their
naturalistic form (photos). Closer to home, Transfer Learning
was used for evaluating the quality of protein models (Hurtado
et al., 2018), the localization of proteins in the cell based
on ontology databases (Mei et al., 2011) and the search for
associations between the genome and the phenotype (Petegrosso
et al., 2018).

Up to now, most publications predicting deleterious
mutations in plants use sequence conservation methods that
is mostly due to lack of well-annotated datasets of deleterious
and neutral mutations in these organisms. However, recently,
Kono et al. (2016) have assembled a validated database of 2,910
function-altering mutations in Arabidopsis that opens the way
for development of machine learning methods specifically
tailored for plants. Here, we developed the Random Forest
classifier that being tested on two plant species – Orýza
sativa and Pisum sativum – for which the sufficient number
of neutral and functional mutations are known – showed
substantially better performance than PolyPhen-2. We also
attempted to improve our classifier using the approaches of
Transfer learning, as this technique could provide knowledge
transfer from one species for which a lot of information is
available to a close species with limited information. Finally,
we validate this classifier using population data on single
nucleotide allele frequency available for Cicer arietinum
(Plekhanova et al., 2017). We believe our classifier will be
helpful in plant research for prioritizing mutations in QTL
and GWAS support intervals for functional validation, for
developing GRN-based models to solve the genotype-to-
phenotype problem, as well as for improvement of breeding
programs.
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MATERIALS AND METHODS

Arabidopsis Training Database
The list of amino acid substitutions in Arabidopsis thaliana
proteins was obtained from the database created by Kono et al.
(2018). The database consists of 13,707 replacements available,
of them 4,409 were labeled mutations in 994 proteins: 2,894
deleterious and 1,515 neutral. The protein sequences were
downloaded from “The Arabidopsis Information Resource.”

Orýza sativa and Pisum sativum Test
Datasets
The sets of deleterious mutations in rice (O. sativa) and pea
(P. sativum) were extracted from the UniProt mutation database
(The UniProt Consortium, 2017). To construct a set of neutral
mutations in rice and pea BLASTp program (Altschul et al.,
1997) was used to align each protein sequence against SwissProt
sequence database (Bairoch, 1996) and proteins with more than
95% identity to a query sequence were selected. At the next
step, the selected sequences were multiply aligned with Clustal
Omega (Sievers and Higgins, 2014) and a set of neutral mutations
was generated under the following rule. We consider amino
acid substitutions without any known phenotype, not present
in a continuous block of substituted residues (i.e., are isolated)
and independent (i.e., there were no other substitutions in
the same sequences of alignment). This rule makes it possible
to avoid the phenomenon of correlated mutational behavior
between columns in multiple sequence alignment (Kowarsch
et al., 2010). Besides we consider only alignment columns that
have no more than one substitution. To balance the datasets,
neutral mutations were randomly downsampled so that their
number was equal to the number of deleterious mutations.
Overall, the dataset for rice contained 764 mutations in 400
proteins (by 382 deleterious and neutral); the pea dataset
contained 136 mutations in 60 proteins (by 68 deleterious and
neutral).

Cicer arietinum Target Dataset
433 Cicer arietimum landraces from N. I. Vavilov All-Russian
Institute for Genetic Resources (VIR collection) were genotyped
by GBS sequencing and variants were called and filtered following
standard criteria; overall 56855 SNPs were identified (Plekhanova
et al., 2017). Identification of SNPs in protein coding regions and
classification of those into synonymous and non-synonymous
classes was done with SnpEff tools (Cingolani et al., 2012):
3023 synonymous and 3467 non-synonymous replacements were
determines within 2569 proteins.

Classifier Features
The set of classification features was aggregated by different
methods. To extract a set of features characterizing substitutions,
the PolyPhen-2 web service (Adzhubei et al., 2010) was used.
Additional servers and sources of information were also involved,
such as the PfamScan (Finn et al., 2014) and the PCI-SS
(Green et al., 2009). The former was used to check whether
the amino acid substitution locates within a protein domain

of the Pfam database. Features obtained with the latter service
incorporate information about the secondary structure of the
protein in the loci of the substitution. Since information about
the three-dimensional structure of a target protein is not always
known, these features played the role of alternative structural
characteristics. PCI-SS server indicates a protein secondary
structure – α-helix, β-sheet, or non-regular structure – which
contains the substitution of interest, and also provides three
quantitative characteristics about the structural state of the target
amino acid in the protein based on the mean-square error
between the models considered in the PCI-SS algorithms. To
evaluate the physicochemical nature of amino acid substitutions,
several measures were used: the Grantham distance (Grantham,
1974), the Sneath index (Sneath, 1966), the Epstein’s coefficient of
difference (Epstein, 1967), and the Miyata distance (Miyata et al.,
1979). The quantitative evaluation of the amino acid substitution
by the matrix of BLOSUM62 substitutions was added as an extra
feature (Henikoff and Henikoff, 1992).

Two additional features have been constructed that take into
account the amino acid context around the mutation position.
The first feature was defined as the mean distance over the
Grantham matrix between the wild-type amino acid in the
mutation position and each of the two neighboring amino
acids. The second feature was calculated in the same way but
considering two amino acids from a mutant position at a distance
of one. The construction of these features was based on the
following hypothesis: if the amino acids that are very different
in their physicochemical properties are next to each other, this
is most likely justified by the constraints on functions to be
performed. Therefore, the more physicochemical differences are
in the amino acid position from its context, the more likely it
is for the mutation in the position of this amino acid to be
harmful.

Classifiers
To solve the classification problem of mutations to deleterious
versus neutral, three classifiers were tested: Support Vector
Machines with a linear kernel (Linear SVM), Support Vector
Machines with a Gaussian kernel (Gaussian SVM) (Cristianini
and Shawe-Taylor, 2000), and Random Forest (RF) (Breiman,
2001). The Linear SVM method is based on the search for a
separating hyperplane with the maximum gap between the data.
To use a non-linear separation of classes, the Gaussian SVM was
examined; it utilizes the Gaussian kernel instead of the scalar
product in the Linear SVM (Cristianini and Shawe-Taylor, 2000).
The RF uses the ideas of bagging, or Bootstrap Aggregating (a
composition of independent classifiers, in this case, of decision
trees) and the method of random subspaces (description of
objects using subspaces of the feature space) (Breiman, 2001).

The choice of hyperparameter values for classifiers was carried
out on the Arabidopsis dataset. For each classifier, the traditional
procedure – grid search with fivefold cross-validation – was
performed to find the optimal values of hyperparameters. These
values are usually selected as the values that provide the
highest cross-validation score that leads to the preventing of
overfitting. Further, the optimal hyperparameters were utilized
while classifiers’ training. One might see that the overfitting effect
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was not observed (Supplementary Figure S1). Cross-validation
was performed with tools from the scikit-learn Python module1.

The accuracy was chosen as the characteristic by which the
best values of hyperparameters were selected, as calculated by
the following formula: Accuracy = (TP + TN)/N, where N is the
sample size for which the classification was made, and TP and TN
are the numbers of correctly defined deleterious mutations and
neutral ones, respectively. To select the best classifier, the data for
A. thaliana were divided into training and validation sets (3409
and 1000 samples, respectively). Classifiers were first trained, and
then the classification on the validation set was performed. We
used Linear SVM, Gaussian SVM, and RF methods from scikit-
learn Python module (see footnote 1); the pipeline for tuning,
training and testing the classifiers is available at the GitHub
repository https://github.com/kovmax/DelMut.

Transfer Learning
The transfer learning (TL) is a machine learning technique
that improves a model trained on the target data by transfer
knowledge from the related and usually larger source data (Pan
and Yang, 2010). In our study, we applied TL for training
classifiers to predict deleterious mutations in rice and pea
datasets (target data) based on the knowledge about deleterious
mutations in A. thaliana dataset (source data). We examined the
Transductive Transfer Learning which assumes that the source
data is labeled (classes of samples are known) but the target data is
not and, accordingly, labels for the target data were not used until
final validation of the predictions. To implement Transductive
TL we assign a weight (W) for each sample from the source data,
which inversely depends on the distance in the feature space from
this sample to the mean of the target data domain:

W = exp
(
−||xS

i −mt
||

2)
where xS

i is i-th sample from the source data, mt represents mean
values of the target dataset features (Pan and Yang, 2010; Lapin
et al., 2014). The Transductive TL classifier predicts classes of
the target dataset and learns on the weighted source data: the
closer a sample form the source data to the target dataset, the
more significant it is for training. We applied the Transductive
TL technique to Linear SVM, Gaussian SVM, and RF classifiers
with hyperparameter values estimated for these classifiers without
TL. Methods were implemented with tools of scikit-learn Python
module (see footnote 1); all datasets and scripts are available at
the GitHub repository https://github.com/kovmax/DelMut.

RESULTS

Feature Extraction
To develop a method for predicting damaging missense
mutations in plants we use machine learning approach and three
annotated datasets of non-synonymous deleterious and neutral
mutations in A. thaliana, O. sativa, and P. sativum (see Materials
and Methods). The method employs classification algorithms

1http://scikit-learn.org

and therefore we need to characterize the datasets with a set of
features able to discriminate classes. In total, 18 features were
selected characterizing the impact of substitution of the wild-
type allele by mutant allele on protein sequence and structure. As
Figure 1 shows the distributions of all the features differ between
subsets of neutral and deleterious mutations in A. thaliana that
points on their utility for discrimination between these subsets.

Best Classifier for the Arabidopsis
thaliana Dataset
The dataset was divided into training and test samples. The test
sample was randomly determined, containing 357 neutral and
643 deleterious mutations, and was used to compare the accuracy
of the predictions of the four classifiers (PolyPhen-2, Linear
SVM, Gaussian SVM, and Random Forest). The results (see
Table 1) showed that all the classifiers − Linear SVM, Gaussian
SVM, and Random Forest− were more accurate than Polyphen-
2, and the most accurate one was Random Forest, it had the
highest accuracy and AUC values (ROC-curves are presented in
Supplementary Figures S2–S4) and the lowest False Negative
and False Positive Rates.

Classification of Orýza sativa and Pisum
sativum With and Without Transfer
Learning
Each classifier was trained on Arabidopsis training samples
and applied for prediction in two settings: direct prediction
or prediction additionally involving Transfer Learning. Since
there is an element of randomization in the Random Forest
classification method, estimates for this method were obtained by
choosing the best prediction of 300 trained classifiers (Figure 2).
By comparing the predicted and annotated class values for the
rice and pea mutations, we concluded that the best of the
proposed classifiers is Random Forest without the addition of
Transfer Learning (Table 2). Predictions of PolyPhen-2 were
better only by the criterion False Positive rate, but by the
criterion False Negative Rate was significantly underperforming.
Overall the Random Forest classifier makes fewer errors in the
predictions of a truly deleterious mutation. The prediction of
classifiers in the modes without and with Transfer Learning did
not exhibit significant differences. Moreover, for the best Random
Forest classifier the mode with Transfer Learning turned out to be
less accurate.

Classification of Non-synonymous
Mutations in Cicer arietinum
To test whether or not our classifiers reasonably perform across
different angiosperm species, we chose to annotate deleterious
mutations in chickpea, C. arietinum. Classification has been
pursued with both PolyPhen-2 and the Random Forest classifier
demonstrated the best discriminating ability on rice and pea
datasets (see Figure 2). One may observe (Table 3) that there
is a general correspondence between annotations, with 1923
designated as neutral and 851 as deleterious by both classifiers.
However, there were also appreciable differences, as may be
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FIGURE 1 | Distribution of features used to characterize the impact of amino acid substitutions in protein sequence for subsets of neutral and deleterious mutations
in Arabidopsis thaliana. The first row of features – Grantham, Sneath, Epstein, Miyata, and Blo62 (BLOSUM62) – represents distributions of substitution scores
based on five corresponding distance matrices. The second row represents the scores obtained with the PolyPhen-2 service: pph2_Score1 and pph2_dScore
reflect PSIC scores; pph2_IdPmax, pph2_IdQmin, and pph2_Nobs represent specific features based on the multiple protein alignments. The third row contains
features of the secondary protein structure: two features of belonging to helix or strand (helix, strand), and three scores obtained with PCI-SS service (E_dist, T_dist,
H_dist). The last row includes two features of the amino acid context around the substitution of interest (Neighb1, Neighb2) and belonging to known Pfam domains
(PfamHit). The detailed explanation of features are presented in the Supplementary Table S1.

TABLE 1 | Performance of four classifiers: PolyPhen2, Linear SVM, Gaussian SVM and Random Forest on the Arabidopsis thaliana dataset.

PolyPhen-2 (PPh2) Linear SVM (lSVM) Gaussian SVM (gSVM) Random Forest (RF)

Neutral Deleterious Neutral Deleterious Neutral Deleterious Neutral Deleterious

Actual classes Neutral 293 64 296 61 301 56 306 51

Deleterious 100 543 70 573 74 569 60 583

Accuracy 0.836 0.869 0.870 0.889

False Positive Rate (FPR) 0.179 0.171 0.157 0.143

False Negative Rate (FNR) 0.156 0.109 0.115 0.093

Sensitivity 0.844 0.891 0.885 0.907

Specificity 0.821 0.829 0.843 0.857

AUC 0.907 0.937 0.935 0.952

observed by alternative classifications for 517 mutations. Overall,
concordance between two classification results was 84.3%.

Due to the lack of annotated missense mutations in chickpea
only circumstantial evidence could be used to demonstrate
the validity of predictions in this species. To this end, we
analyzed the population frequencies of classified polymorphisms
in the dataset of 433 chickpea accessions (see Material and

Methods). We have calculated the frequencies of synonymous
(that are mostly neutral), predicted neutral and predicted
deleterious mutations. Due to a large number of missed data,
only those genome positions that were called in at least 300
accessions were retained for analysis. Overall, there were 1028
non-synonymous (672 neutral and 356 deleterious) and 901
synonymous polymorphisms (Table 4).
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FIGURE 2 | Classification accuracy of 300 Random Forest classifiers learned
on the Arabidopsis thaliana dataset and applied to classify mutations in pea
and rice. Some of the 300 classifiers demonstrated the same values of
accuracy on both Orýza sativa and Pisum sativum. Size and color of circles
show frequencies of the classifiers with the same performance. The accuracy
value for the best classifier is emphasized with red color.

Applying the Wilcoxon rank sum test with continuity
correction, we showed that there was no statistically significant
difference between frequencies of neutral and synonymous
substitutions; however, the frequency of deleterious mutations is
statistically significantly lower than the frequency of mutations
from other classes (one sided test, P < 0.05) (Table 5).
These results are fully consistent with previous studies on
deleterious mutations in other species (Günther and Schmid,
2010; Mezmouk and Ross-Ibarra, 2014) and could be explained
by the action of weak purifying selection that sweeps deleterious
mutations away. We conclude that our classifier appears to be
working across a broad range of angiosperm species.

DISCUSSION

Here we aimed to develop a classifier specifically tailored for
plant datasets that classifies coding non-synonymous mutations

TABLE 3 | Comparison of the number of deleterious and neutral mutation
predicted by PolyPhen-2 and Random Forest classifier in Cicer arietinum.

Random forest

Neutral Deleterious

PolyPhen-2 Neutral 1923 239

Deleterious 278 851

TABLE 4 | Mean ffrequencies of non-synonymous deleterious and neutral
mutations, as well as synonymous mutations in chickpea dataset.

Mean frequency

Deleterious 0.050

Neutral 0.097

Synonymous 0.109

TABLE 5 | Results of the Wilcoxon rank sum test for mutation frequencies
comparison.

Neutral Synonymous

Deleterious 0.036 (<0.05) 0.003 (<0.05)

Neutral 0.279 (>0.05)

into neutral versus functionally deleterious. We have trained
the Random Forest classifier in the deleterious mutations in
A. thaliana using 18 selected features and accomplished a
substantially better performance than PolyPhen-2 for two plant
species – O. sativa and P. sativum – for which the sufficient
number of neutral and functional mutations is known. The
accuracy of our classifier based on Random Forest approach
versus PolyPhen-2 was 87% versus 81% for rice and 93% versus
90% for pea. The new classifier also exhibited the superior balance
of type I versus type II errors.

We also attempted to improve our classifier using the
approaches of Transfer Learning (TL). This has been justified
by the following considerations. The task of calling mutation
as neutral and deleterious can be set as a classification
problem and solved by various methods of machine learning.
In mammals, it appeared that the same nucleotide might be

TABLE 2 | Testing classifiers learned on Arabidopsis dataset to discriminate deleterious and neutral mutations in rice and pea.

Orýza sativa Pisum sativum

Accuracy FPR FNR AUC Accuracy FPR FNR AUC

PPh2 0.814 0.102 0.270 0.855 0.897 0.044 0.162 0.975

lSVM 0.848 0.144 0.160 0.918 0.912 0.103 0.074 0.971

gSVM 0.842 0.164 0.152 0.890 0.912 0.088 0.088 0.955

RF 0.873 0.115 0.139 0.928 0.926 0.074 0.074 0.981

lSVM + TL 0.848 0.144 0.160 0.918 0.912 0.103 0.074 0.971

gSVM + TL 0.803 0.285 0.110 0.902 0.904 0.147 0.044 0.960

RF + TL 0.861 0.128 0.149 0.926 0.919 0.088 0.074 0.979

PPh2, PolyPhen-2; lSVM, linear SVM; gSVM, Gaussian SVM; RF, random forest; TL, transfer learning.
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deleterious in one species but neutral in another (Kondrashov
et al., 2002). Accordingly, training might have to be separately
executed species by species. TL appears to be a suitable
methodology to implement species-specific training as it could
provide knowledge transfer from one species for which à lot
of information is available to a close species with limited
information. However, here we failed to improve the classifier
performance with TL. In fact, the performance of our best
Random Forest-based classifier dropped between 1% and 2%
for both species, O. sativa and P. sativum. The reason why
TL does not improve classifier performance is not clear. There
might be unknown technical reasons, but also some biological
considerations. It is known, for instance, that alleles annotated
as deleterious in humans at about 15% of cases correspond to
normal alleles in other mammals (Kondrashov et al., 2002).
Which is to say, as GRNs and proteins diverge between species,
the functional importance of different amino acids may also
diverge. This might partially be explained by a highly epistatic
landscape of amino acid substitutions, as best documented for
green fluorescence protein (Sarkisyan et al., 2016). When species
with diverged GRNs and proteins mate, their progeny suffer from
F1 incompatibility and F2 hybrid breakdown because of epistatic
incompatibilities (Turelli and Orr, 2000; Rieseberg and Willis,
2007; Coyne, 2016). It is rather interesting to note that the hybrids
between different angiosperm species are much more frequently
viable, even at higher phylogenetic distances, than mammals
are. In fact, rather than suffering from incompatibilities, plant
hybrids may exhibit remarkable hybrid vigor (Garcia et al., 2008;
Charlesworth and Willis, 2009) raising a question whether the
patterns of GRN and protein divergence in plants are functionally
equivalent to those in mammals. It might imply that amino
acids substitutions in plant proteins and GRNs are less epistatic,
which is to say whether an amino acid substitution is deleterious
or not could only weekly change between angiosperm species,
unlike mammals. If so, then TL should result in substantial
improvements when applied to mammals but not angiosperms.
Of course, at this moment, this consideration is nothing more
than speculation, but the one deserving attention and specially
designed analysis to try the TL methodology in mammals.

While somewhat disappointing, that the classifier works well
for different species without the need for species-specific learning
also has positive aspects – the classifier does not have to be
retrained before applying across angiosperms. To test whether
our classifier would work with a new species, we utilized the data
on population polymorphisms available for C. arietinum. Our
hypothesis was that if we annotate these chickpea polymorphisms
the population frequency of neutral non-synonymous positions
would be identical to the frequencies of synonymous mutations,

while the frequencies of functional (i.e., mostly deleterious)
mutations would be significantly lower, as these mutations
are actively removed by natural selection. This hypothesis was
strongly supported, thus the use of our classifier is justified for
a broad use with flowering plants.

Overall, our advances open the path to multiple future
directions of research. For instance, it would be interesting
to infer how different are domesticated plants from their
wild progenitors at the genomic level? While it might be
assumed that only a few loci contribute to the process of
domestication (Gross and Olsen, 2010), domestication can also
indirectly affect the entire genome by interfering with natural
selection. First, there is strong selection fixing segregating and
novel functional alleles. Second, there is an extensive relaxation
of natural selection on characters that are important in the
wild but not in cultivation, including due to population size
reduction. The selective spread of beneficial mutations but
also a consequent build-up of deleterious mutations (especially
closely linked to selective sweeps) have been well-documented
in plants, including rice (Günther and Schmid, 2010) and
maize (Pyhäjärvi et al., 2013). However, whether deleterious
mutation build-up is a minor nuisance or a major drag
on yield remains incompletely understood, and can now be
researched. This will help to understand whether ‘cleaning out’
such adverse mutations, for instance with CRISPR-based tools,
might contribute to substantial gains in yield. Further, it opens
the way to prioritizing these mutations for being edited out –
perhaps of substantial value to the workflow in future agricultural
advances.
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