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Abstract  

The Ce-ZSM-11 zeolite has been used as an efficient catalyst for the one pot synthesis of 1,8-dioxo-

octahydroxanthene derivatives from aromatic aldehyde and 5,5-dimethyl-cyclohexane-1,3-dione under 

reflux condition. The catalyst was characterized by Powder X-ray diffraction (XRD), Scanning Electron 

Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy 

(FTIR), Brunauer-Emmer-Teller (BET) surface area analysis, and Temperature Programmed Desorp-

tion (TPD) techniques. This method provides several advantageous such as use of inexpensive catalyst, 

simple work-up procedure, high yield of desired product and reusability of catalyst. Copyright © 2018 

BCREC Group. All rights reserved 
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1. Introduction 

The significant challenge in the synthetic 

chemistry is to develop environmentally benign, 

efficient and economical methods for the syn-

thesis of biologically active compounds [1]. Mul-

ti-component reactions (MCRs) have become 

one of the best tools for modern synthesis of 

chemically and biologically important com-

pounds because of their high atom economy, 

simple procedure and excellent yields [2-4]. 

Xanthene and its derivatives have received con-

siderable attention in the field of pharmaceuti-

cal and medicinal chemistry because of their 

wide range of biological and pharmacological 

properties such as antibacterial [5], analgesic 

[6], anti-inflammatory [7], and anti-cancer  

properties [8]. In addition, these heterocyclic 

compounds can be used as pH-sensitive fluores-

cent materials [9], in laser technology [10], and 

as luminescent dyes [11]. In view of this wide 

applicability of xanthene derivatives, the        

development of synthetic procedure is im-

portant. Several methods that have been report-

ed for the synthesis of xanthene derivatives cat-

alyzed by Fe3O4 nanoparticle [12], SiCl4 [13], 

CaCl2 [14], Imidazol-1-yl-acetic acid [15], CAN 
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[16], DSIMHS ionic liquid [17], ZnO nanoparti-

cle [18], Ru@SH-MWCNT [19], and                

Fe-Cu/ZSM-5 [20] catalyst. However, some of 

these protocols suffer from one or more draw-

backs, such as: use of hazardous solvent, high 

temperature, long reaction time, tedious work-

up procedure and use of expensive catalyst. 

Therefore, the development of alternative route 

for the synthesis of 1,8-dioxo-octahydro-

xanthene derivatives is highly desirable. 

Zeolites are microporous, crystalline, alumi-

nosilicate compounds composed of staggered 

framework of [AlO4]5¯ and [SiO4]4¯ tetrahedra 

which generates a network of pores and cavi-

ties having molecular dimensions. They finds 

extensive applications in heterogeneous cataly-

sis due to their tunable pore sizes, high surface 

area, framework acid/base properties and  pro-

vides greener alternatives to homogeneous cat-

alysts [21]. ZSM-11 belongs to pentasil family 

of zeolites which has straight micropore with 

MEL framework topology [22]. ZSM-11 possess-

es unique properties, such as high-surface area, 

acidity and shape selectivity characters [23] 

hence it has been utilized as heterogeneous cat-

alyst for conversion of methanol to hydrocar-

bon, aromatization and isomerization of           

1-hexene, cracking of pentene to C2-C4 olefins 

and conversion of methanol into light olefins 

[24-27]. The transition metal doped ZSM-11 

possesses greater Lewis acidity compared to 

parent ZSM-11 and showed better catalytic 

performance in some reaction such as degrada-

tion of Dichlorvos, decomposition of N2O, con-

version of methane (C1) into higher hydrocar-

bons, dehydrogenation-aromatization of alkane  

and decomposition of low-density polyethylene 

[28-32]. 

Thus, in continuation to our research work 

[33,34],  we report the synthesis, characteriza-

tion, and catalytic application of  Ce-ZSM-11 

zeolite catalyst for one pot synthesis of           

1,8-dioxo-octahydroxanthene derivatives via cy-

clocondensation of aromatic aldehyde, 5,5 dime-

thyl-cyclohexane-1,3-dione using catalytic 

amount of Ce-ZSM-11 under reflux condition in 

water as solvent (Scheme 1). 

2. Materials and Method  

2.1 Chemicals and Instrument 

All the chemicals were purchased from 

Merck, Avra, and Spectrochem and were used 

without purification. Thin layer chromatog-

raphy was performed on Merck pre-coated sili-

ca gel 60F254 aluminum sheets as adsorbent. 

Melting points were taken in an open capillary 

and are uncorrected. FT-IR spectra were rec-

orded on Thermo Nicolet; Avatar 370. 1H NMR 

spectra were recorded on a 400 MHz using 

DMSO-d6 as solvent and tetramethylsilane 

(TMS) as an internal standard. The X-ray dif-

fraction (XRD) patterns were recorded on 

Bruker AXS D8 Advance X-ray diffractometer 

using monochromatic Cu-Kα radiation having 

wavelength λ = 1.5406 Å. Scanning Electron 

Microscope image (SEM) was obtained on JS-

6390 LV operated at 30.0 KV. Surface area and 

porosity (BET) of catalyst was measured on mi-

cro-meritics, ASAP 2010 instrument. Tempera-

ture Programmed Desorption (TPD) ammonia 

was measured on Micromeritics instrument. 

 

2.2 Synthesis of ZSM-11 Zeolite Catalyst 

The ZSM-11 zeolite was synthesized by hy-

drothermal method. Tetraethyl orthosilicate 

and sodium aluminate were used as silicon and 

aluminum source respectively and tetra propyl 

ammonium bromide was used as structure di-

recting agent. In a typical synthesis, tetraethyl 

orthosilicate (20.8 g) was mixed with 50 mL de-

ionized water and stirred at room temperature 

for 2 h to obtain silica sol. Sodium aluminate 

(0.246 g) and 2 g NaOH were dissolved in 50 

mL deionized water and added drop-wise to 

stirred solution of silica sol. Tetra propyl am-

monium bromide (2 g) was dissolved in 20 mL 

of deionized water and added drop wise to 

above solution. The resulting mixture was 

stirred at room temperature for 12 h. The vis-

cous homogeneous gel was transferred into Tef-

lon lined stainless steel autoclave and treated 

hydrothermally under static condition and au-

togenous pressure at 150 °C for 24 h. The solid 
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 Scheme1. Synthesis of 1,8-dioxo-octahydroxanthene derivatives  
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product was collected, filtered and washed with 

deionized water. Finally, it was dried in an ov-

en and calcined at 550 °C for 4 h in muffle fur-

nace.  

For the enhancement of acidic strength in 

the catalyst, the cerium ion containing ZSM-11 

was prepared by ion exchange method.  In this 

procedure 2 g ZSM-11 zeolite and 20 mL 0.1 M 

ceric ammonium nitrate solution were stirred 

at 50 °C for 12 h. The resulting product        

(Ce-ZSM-11) was filtered, washed with           

deionized water and dried in oven at 100 °C for 

5 h. 

 

2.3 General Procedure for the Synthesis 1,8-

dioxo-octahydroxanthene Derivatives: 

To a mixture of aromatic aldehyde (1 mmol), 

5,5 dimethyl-cyclohexane-1,3-dione (2 mmol) 

and Ce-ZSM-11 catalyst (0.1 g) in water (10 

mL) as solvent were added and refluxed for the 

time shown in (Table 4). The progress of the re-

action was monitored by TLC (petroleum ether: 

ethyl acetate = 7:3 as eluent). After completion 

of the reaction, the reaction mixture was fil-

tered, the catalyst was separated and the crude 

product obtained was recrystallized from etha-

nol to afford pure product (3a-k) and repre-

sentative compound characterized by FT-IR, 
1H, and 13C NMR spectroscopy. 

 

2.4 Selected Spectroscopic Data 3,3,6,6 

tetramethyl-9-(3-nitro-phenyl)-3,4,5,6,7,9-

hexahydro-2H-Xanthene-1,8-dione (3c) 

FT-IR (KBr, cm-1): 2955, 2874, 1708, 1584, 

1452, 1363 , 1H NMR (400 MHz, DMSO-d6): 

δ(ppm)= 8.05 (s, 1H), 7.97 (d, J= 8.1 Hz, 1H), 

7.63 (d, J= 7.7 Hz, 1H), 7.48 (t, J= 7.9 Hz, 1H), 

4.67 (s, 1H), 2.56 (s, 4H), 2.09 (s, 4H), 1.08 (s, 

6H), 0.9 (s, 6H), 13C NMR (400 MHz, DMSO-

d6): 26.61, 28.61, 31.63, 39.57, 49.94, 113.48, 

121.17, 122.70, 129.08, 134.55, 146.27, 147.39, 

163.14, 195.74. 

 

3. Results and Discussions 

3.1 Catalyst Characterizations 

3.1.1 Powder X-ray diffraction analysis 

X-ray diffraction pattern of parent ZSM-11 

and Ce-ZSM-11 are given in Figure 1 which 

shows intense peaks at 2θ° = 8.17, 9.08, 14.15, 

15.00, 23.30, 24.04, 26.05, 27.06, 29.45, 45.31 

with corresponding planes (101), (111), (221), 

(301) (223), (303), (441), (413), (224), (814),    

respectively. The high intense peaks at 23.30 

and 24.04 is the characteristic peak for the 

MEL type framework topology which indicates 

the presence of ordered tetragonal crystal 

structure of ZSM-11 material [35]. Figure 1 (b) 

shows decreased peak intensities as compared 

Figure 1 (a) this may be due to insertion of ce-

rium ion inside the channels of parent ZSM-11.  

However, crystal structure of parent ZSM-11 is 

retained after ion exchange. 

  

3.1.2  Scanning electron microscopy-energy dis-

persive spectrometry analysis 

The surface morphology and chemical com-

position of synthesized catalyst was analyzed 

by SEM-EDS spectroscopy. The Figure 2 shows 

uniform sphere shaped crystals which is    

characteristic morphology of ZSM-11. The SEM   

images show that prepared catalyst has uni-

form particle size and ordered morphology. The 

elemental composition Ce-ZSM-11 is shown in 

Figure 3 which confirms the presence of Si, Al, 

O and Ce with atomic wt. % 29.82, 1.11, 67.82, 

1.25, respectively. 

Figure 1. Powder XRD pattern of (a) ZSM-11 and (b) Ce-ZSM-11  
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 3.1.3 Fourier Transforms Infrared Spectrosco-

py analysis 

The FT-IR spectrum of the ZSM-11 and    

Ce-ZSM-11 zeolite is shown in Figure 4. The 

FT-IR spectrum shows sharp peak at 451, 550, 

798, 1104, and 1229 cm-1 which are characteris-

tic adsorption bands of ZSM-11. The band at 

798, 1229 assigned for external symmetric and 

asymmetric stretching vibration and sharp 

band at 1104 cm-1 is assigned to internal asym-

metric stretching of T–O–T (T= Si or Al) unit in 

ZSM-11 framework.  The band at 550 cm-1  con-

firms the presence of double five member ring 

which is secondary building unit of pentasil 

family zeolites framework (MFI or MEL) [36]. 

The peak at 1635 cm−1 is attributed to defor-

mation mode of Si–OH bond.  The band appear  

between 3455 cm−1 confirms presence of 

bridged hydroxyl group, i.e. Brönsted acidic 

center.  

Figure 3. EDS-Spectrum of Ce-ZSM-11  Figure 4. FT-IR Spectrum of (a) ZSM-11 and 

(b) Ce-ZSM-11  

Figure 2. (a) SEM images of ZSM-11 zeolite and (b) SEM images of Ce-ZSM-11 zeolite 



 

Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3), 2018, 440 

Copyright © 2018, BCREC, ISSN 1978-2993 

3.1.4 Brunauer-Emmer-Teller Surface Area 

analysis 

The presence of intercrystalline pore was 

studied by N2 adsorption-desorption isotherm. 

It is observed that surface area, micropore     

volume and average pore diameter of Ce-ZSM-

11 decreased as compared to ZSM-11 zeolite 

which implies that cerium ions are well dis-

persed in framework (Table 1). 

 

3.1.5 Temperature Programmed Desorption 

(Ammonia) analysis 

The Figure 5a and 5b shows NH3-TPD pro-

file of ZSM-11 and Ce-ZSM-11 zeolite. The sin-

gle broad peak at 662.5 °C for ZSM-11 and 

623.4 °C for Ce-ZSM-11 is  due to desorption of 

ammonia from strong acidic sites. The total 

acidity was found 1.8195 mmol.g-1 and 2.6178 

mmol.g-1 for ZSM-11 and Ce-ZSM-11, respec-

tively. It was observed that the acidity of ZSM-

11 zeolite increases after ion exchange. 

 

3.2 Optimization of Reaction Conditions 

3.2.1 Optimization of solvent and amount of 

catalyst 

In order to investigate suitable solvent and 

optimum loading of catalyst amount for the 

synthesis of 1,8-dioxo-octahydroxanthene de-

rivatives, 3-nitro benzaldehyde (1 mmol) and 

5,5-dimethyl-cyclohexane-1,3-dione (2 mmol) 

were taken as model substrate and various sol-

vents were screened on model reaction. Initial-

ly the model reaction was performed under sol-

vent free condition low yield of desired product 

was obtained. The same reaction was per-

formed using different solvents such as, EtOH, 

MeOH, THF, and H2O under reflux condition. 

Among all these solvents in H2O maximum 

yield was obtained, hence H2O was selected as 

Figure 5. NH3-TPD Spectrum of (a) ZSM-11 and (b) Ce-ZSM-11  

Sr. No. Sample Surface area (m2/g) 
Micropore volume 

(cm3/g) 
Average pore diameter  (Å) 

1 ZSM-11 641.37 0.52 16.37 

2 Ce-ZSM-11 541.44 0.35  13.12 

Entry Solvent Time (min.) Yield(%)b 

1 No 120 30 

2 EtOH 120 30 

3 MeOH 120 20 

4 THF 120 35 

5 H2O 120 90 

Table 1. BET surface area, micropore volume, and average pore diameter for ZSM-11 and Ce-ZSM-11  

aReaction conditions: 3-Nitro benzaldehyde (1 mmol) and 5, 

5 dimethyl-cyclohexane-1,3-dione (2 mmol) and catalyst 

with different solvents (10 ml) at reflux condition. bIsolated 

yields.  

Table 2. Effect of various solvent on the syn-

thesis of synthesis of 1,8-dioxo-octahydro-

xanthene derivativesa  
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optimum solvent (Table 2). Therefore, further 

optimization of catalyst was carried out in wa-

ter solvent. It was observed that 0.1 g of cata-

lyst is sufficient for the reaction and use of ex-

cessive catalyst had no effect on either the rate 

of reaction or on the product yield (Table 3). 

The scope and efficiency of the present 

method was studied by reacting various substi-

tuted aromatic aldehyde with 5,5-dimethyl-

cyclohexane-1,3-dione under optimize reaction 

conditions and results are summarized in Table 

4. In all cases, it was found that aromatic alde-

hydes having electron withdrawing or electron 

donating group reacted effectively and gave the 

product in good yields. It is observed that the 

substituents in aromatic ring of aldehydes 

have little effect on the reaction time as well as 

yield of the product. 

The main advantage of present method is 

reusability of Ce-ZSM-11 zeolite catalyst. The 

catalyst was separated after completion of re-

action by diluting reaction mixture by hot etha-

nol and filtration. The recovered catalyst was 

washed with acetone and dried at 100 °C for 3 

h before the next catalytic run. Reusability of 

the catalyst was investigated on model reaction 

for three times and it was found that the cata-

lyst has retained almost consistent activity 

(Table 4, entry 3). 

Aldehyde (R)   Product   
Time 

(min.)   
Yield (%)b   

M.P. (°C) 
Entry   

Observed Literature 

1 H 3a 120 85 200-202 203-204 [15] 

2 4-NO2 3b 120 88 226-228 222-224 [15] 

3 3-NO2 3c 120 90 (90, 85, 85)c 171-173 172-174 [19] 

4 4-Br 3d 120 88 240-243 240242 [19] 

5 2-Br 3e 120 88 226-228 225-227 [18] 

6 4-OH 3f 120 80 248-250 247-249 [18] 

7 3-OH 3g 120 84 220-222 222-224 [18] 

8 4-CH3 3h 120 80 216-218 215-217 [18] 

9 2-NO2 3i 120 92 250-252 248-250 [18] 

10 4-N(CH3)2 3j 120 80 222-224 221-223 [14] 

11 4-Cl 3k 120 90 229-231 232-234 [19] 

aReaction condition: 3-NO2 benzaldehyde (1 mmol),  5,5 dimethyl-cyclohexane-1,3-dione ( 2 mmol)  and 

catalyst 0.1 g in water 10 mL. bIsolated yields. cYield after consecutive cycle.  

Table 4.  Ce-ZSM-11 catalyzed synthesis for 1,8-dioxo-octahydroxanthene derivativesa  

Entry Catalyst amount (g) Time (min.) Yield (%)b 

1 0 120 - 

2 0.05 120 85 

3 0.10 120 90 

4 0.15 120 90 

5 0.20 120 90 

aReaction condition: 3-trio benzaldehyde (1 mmol) and 5,5 dimethyl-cyclohexane-1,3-dione (2 mmol) and 

catalyst in water (10 mL) at reflux condition. bIsolated yields   

Table 3.  Optimization of amount catalyst for the synthesis of of 1,8-dioxo-octahydroxanthene deriva-

tivesa  
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To specify the advantages of present     

methods, results of different reported methods 

are compared with present work and summa-

rized in Table 5. It is observed that, Ce-ZSM-11 

zeolite promote reaction more effectively than 

other reported catalyst. 

 

4. Conclusions  

In summary, we described the synthesis, 

characterization of ZSM-11 and Ce-ZSM-11 ze-

olite catalyst. The Ce-ZSM-11 zeolite was found 

efficient catalyst for the synthesis of   1,8-dioxo-

octahydroxanthene derivatives. The distin-

guished advantageous of present method are 

use of inexpensive catalyst, simple reaction 

workup, good to excellent yield, and reusability 

of catalyst. 
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APPENDICES 

 

3,3,6,6 Tetramethyl-9-(3-nitro-phenyl)-3,4,5,6,7,9-hexahydro-2H-Xanthene-1,8-dione (3c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

FT-IR spectrum of 3,3,6,6 Tetramethyl-9-(3-nitro-phenyl)-3,4,5,6,7,9-hexahydro-2H-Xanthene-1,8-

dione (3c)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FT-IR (KBr, cm-1): 2955, 2874, 1708, 1584, 1452, 

1363 
1H NMR (400 MHz, DMSO-d6): δ(ppm)= 8.05 (s, 

1H), 7.97 (d, J= 8.1 Hz , 1H), 7.63 (d, J= 7.7 Hz , 1H), 

7.48 (t, J=  7.9 Hz , 1H), 4.67 (s, 1H), 2.56 (s, 4H), 2.09 

(s, 4H), 1.08 (s, 6H), 0.9 (s, 6H) 

 13C NMR (400 MHz, DMSO-d6): 26.61, 28.61, 

31.63, 39.57, 49.94, 113.48, 121.17, 122.70, 129.08, 

134.55, 146.27, 147.39, 163.14, 195.74  
O

OO

NO2
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1H NMR spectrum of 3,3,6,6 Tetramethyl-9-(3-nitro-phenyl)-3,4,5,6,7,9-hexahydro-2H-Xanthene-1,8-

dione (3c)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
13C NMR spectrum of 3,3,6,6 Tetramethyl-9-(3-nitro-phenyl)-3,4,5,6,7,9-hexahydro-2H-Xanthene-1,8-

dione (3c)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


