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ABSTRACT
Background. The proportion of overweight and obese people has increased tremen-
dously in a short period, culminating in a worldwide trend of obesity that is reaching
epidemic proportions. Overweight and obesity are serious issues, especially with regard
to children. This is because obese children have twice the risk of becoming obese as
adults, as compared to non-obese children. Nowadays, many methods for maintaining
a caloric balance exist; however, these methods are not applicable to children. In
this study, a new approach for helping children monitor their activities using a
convolutional neural network (CNN) is proposed, which is applicable for real-time
scenarios requiring high accuracy.
Methods. A total of 136 participants (86 boys and 50 girls), aged between 8.5 years
and 12.5 years (mean 10.5, standard deviation 1.1), took part in this study. The
participants performed various movement while wearing custom-made three-axis
accelerometer modules around their waists. The data acquired by the accelerometer
module was preprocessed by dividing them into small sets (128 sample points for 2.8 s).
Approximately 183,600 data samples were used by the developed CNN for learning to
classify ten physical activities : slow walking, fast walking, slow running, fast running,
walking up the stairs, walking down the stairs, jumping rope, standing up, sitting down,
and remaining still.
Results. The developed CNN classified the ten activities with an overall accuracy of
81.2%. When similar activities were merged, leading to seven merged activities, the
CNN classified activities with an overall accuracy of 91.1%. Activity merging also
improved performance indicators, for the maximum case of 66.4% in recall, 48.5%
in precision, and 57.4% in f1 score . The developed CNN classifier was compared to
conventionalmachine learning algorithms such as the support vectormachine, decision
tree, and k-nearest neighbor algorithms, and the proposedCNNclassifier performed the
best: CNN (81.2%)> SVM (64.8%)>DT (63.9%)> kNN (55.4%) (for ten activities);
CNN (91.1%) > SVM (74.4%) > DT (73.2%) > kNN (65.3%) (for the merged seven
activities).
Discussion. The developed algorithm distinguished physical activities with improved
time resolution using short-time acceleration signals from the physical activities
performed by children. This study involved algorithm development, participant
recruitment, IRB approval, custom-design of a data acquisition module, and data
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collection. The self-selected moving speeds for walking and running (slow and fast)
and the structure of staircase degraded the performance of the algorithm. However,
after similar activities were merged, the effects caused by the self-selection of speed
were reduced. The experimental results show that the proposed algorithm performed
better than conventional algorithms. Owing to its simplicity, the proposed algorithm
could be applied to real-time applicaitons.

Subjects Public Health, Computational Science, Data Mining and Machine Learning
Keywords Physical activity, Children, Classification, Convolutional neural network, Time
resolution

INTRODUCTION
The World Health Organization has stated that the obese population worldwide has more
than doubled since 1980. In 2014, over 1.9 billion adults (over the age of 18)were overweight
and more than 6 million from that number were obese (World Health Organization, 2014).
The proportion of overweight and obese individuals has increased tremendously in a short
period, creating a worldwide obesity trend reaching epidemic proportions. Overweight
and obese conditions are especially critical in childhood. The risk of adult obesity is at least
doubled in obese children relative to non-obese children, and increases for children at
higher obesity levels and older ages (Serdula et al., 1993). The United States government,
considering these facts seriously, established a task force to address childhood obesity. In
2010, the ‘‘Let’sMove!’’ campaignwas launchedwith the first lady,MichelleObama, playing
a leading role, illustrating how significant the problem of childhood obesity has become
(The White House, 2010). Overweight and obese conditions are caused by an imbalance
between caloric intake and output, because excessive calorie consumption results in weight
gain (Food and Nutrition Information Center, 2015). If people balance their caloric intakes
and outputs, they canmanage weight gain, preventing obesity. Balancing calories prioritizes
knowing how many calories are consumed versus how many are expended.

Many solutions for establishing a caloric balance have been released, especially in
the form of smartphone applications and wearable smart devices (Becker, 2017; Jessica
Timmons, 2017). Although smartphone applications for assessing calorie intake exist,
logging what and how much has been eaten to verify caloric intakes, these are not ready
for common use (Gilhooly, 2017). Because human memories have both imperfect and
subjective characteristics, discrepancies exist between self-reported and actual caloric
intakes, with self-reported numbers normally lower than actual ones (Lichtman et al.,
1992). The field of caloric intake assessment thus remains a challenging area. On the
other hand, caloric expenditure assessments have been the target of much prior research
(Madden, Mulrooney & Shah, 2016) and numerous commercial devices (Stables, 2017).
Prior studies have primarily focused on assessing energy expenditures using accelerometers
and a unit to substitute ‘‘calorie,’’ namely, ‘‘count’’ (Plasqui, 2017), analyzing caloric
consumption from the perspective of overall acceleration signals generated by body
movements. This simple method remains the basis for contemporary wearable calorie
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trackers. These solutions, however, are almost exclusively for adults. Various wearable
devices (i.e., Fitbit and Jawbone) specify that users should be beyond their teenage years.
Furthermore, smartphones and other smart devices are not commonly used by children. A
new solution is thus required to prevent child obesity.

The restingmetabolic rate (RMR) of children differs from that of adults because different
factors affect RMRs in youth, such as growth, puberty, and body mass differences (Harrell
et al., 2005). Children prior to or currently experiencing growth and puberty have highly
changeable body masses and may display significant RMR variations due to differing
growth rates and deviations between individuals (which are significantly higher than those
in adults). These factors make it difficult to accurately estimate caloric consumptions for
children using with statistical methods. A recent study measured energy expenditures in
children during physical activities using commercialized devices, and produced results
showing that energy expenditures measured with consumer activity monitors varied
significantly from the reference device (Cosmed K4b2) and displayed wide standard
deviation ranges (Blythe et al., 2017). A new approach, which is more appropriate for
children than the estimation of energy expenditure during daily life, is thus required. One
proposed alternative, which involves specifying the composition of body movements using
physical activity classification in daily life, could provide a method for this assessment.

The word ‘‘continual’’ is the most critical for characterizing physical movement patterns
in children. It has been empirically determined that children are active in a ‘‘continual’’
way. They more likely repeat ‘‘act and stop’’ movement patterns consistently than maintain
continuous activity without stops. This tendency makes developing calorie trackers for
children difficult because calories must be calculated physiologically over a sufficient
timespan for determining the steady-state metabolism.

Numerous previous studies have investigated physical activity recognition based on
accelerometer systems, each characterized by the aspect of its accelerometer positioning,
target activities for detection, and classification algorithm. For the first characteristic,
individual studies have considered multiple accelerometer positions and varying numbers
of accelerometers. Some studies placed accelerometers on single body parts such as the waist
(Gupta & Dallas, 2014; Karantonis et al., 2006; Mathie et al., 2004), wrist (Garcia-Ceja et
al., 2014; Yang, Wang & Chen, 2008), or trunk (Massé et al., 2015), whereas others attached
sensors to multiple body parts such as the thighs, necklaces, and wrists (Pirttikangas,
Fujinami & Nakajima, 2006); wrists, chests, and hips (Moncada-Torres et al., 2014); thighs,
waists, chests, and ankles (Gupta & Dallas, 2014); chests, thighs, and ankles (Chamroukhi et
al., 2013;Moncada-Torres et al., 2014); and chests, waists, thighs, and sides (Gao, Bourke &
Nelson, 2014). For target activities, some studies detected primarily simple postures (Gupta
& Dallas, 2014; Mathie et al., 2004), whereas others focused on ambient movements such
as walking or running (Pirttikangas, Fujinami & Nakajima, 2006; Yang, Wang & Chen,
2008), and still others covered primarily daily living activities such as eating, writing,
and talking (Moncada-Torres et al., 2014; Salarian et al., 2007). These studies employed
various types of classification algorithms desirable for their target activities, including
supervised machine learning algorithms such as k-nearest neighbors (Foerster, Smeja &
Fahrenberg, 1999; Kaghyan & Sarukhanyan, 2012), support vector machines (Anguita et
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al., 2013; Krause et al., 2005), random forests (Bedogni, Di Felice & Bononi, 2012), Gaussian
mixture models (Mannini & Sabatini, 2010), artificial neural networks (Ong, Koseki &
Palafox, 2013; Yang, Wang & Chen, 2008) and unsupervised algorithms such as K-Means
(Cottone et al., 2013; Lester et al., 2005) and Hidden Markov Models (Trabelsi et al., 2013).

Unfortunately, these studies are not appropriate for application to the daily life of
real children. For studies requiring more than two wearable devices (Chamroukhi et al.,
2013; Gao, Bourke & Nelson, 2014; Gupta & Dallas, 2014; Moncada-Torres et al., 2014;
Pirttikangas, Fujinami & Nakajima, 2006), children failed to comply with equipping
devices for long periods. These studies used multiple devices in multiple body locations to
measure various acceleration signals. Although strategies utilizing multiple devices could
be useful for producing definitive results in this research topic, they are uncomfortable
for application in daily life, especially for children. Other cases encountered issues when
there are insufficient overall or desirable activities for verifying the amount of physical
movement in children (Garcia-Ceja et al., 2014; Karantonis et al., 2006; Massé et al., 2015;
Mathie et al., 2004). Some studies employed various sensors (Salarian et al., 2007), and
highly complex algorithms (Yang, Wang & Chen, 2008); however, if the target users are
children, small devices with long battery operating times and only one sensor should be
used, and the processing algorithm should be fast and simple. Investigating this perspective,
this study aimed to develop a new algorithmappropriate for classifying the physical activities
performed by children based on a single three-axis accelerometer.

The ‘‘continual’’ characteristics of children affect not only the calorie measurement but
also the physical activity classification. To classify short-time movements, time resolution
of classifier should be sufficiently high to cover the movement time. In general, however, a
shorter duration in the data to be processed corresponds to a lower classification accuracy.
This phenomenon was also noted in a previous study (Trost et al., 2012). Thus, both the
time resolution and accuracy must be addressed when classifier is used to evaluate the case
of children.

The machine learning method is one of the best solutions for classifying physical
activities, with novel deep learning method recently demonstrating outstanding
performances. From these emerging methods, the convolutional neural network (CNN)
was adopted in this study because of two of its merits: first, CNNs are capable of simplifying
the classifier, enabling a single processing line by handling signal inputs as image files to
treat opposing characteristics of real time applications when physical activities contain
mixes of static and dynamic, steady-state and transient, or constant and sporadic activities;
and second, CNNs facilitate high-resolution algorithms. When signals must be analyzed
in the frequency domain, the time–frequency transform relationship makes time domain
signal durations important. There is an incompatible relationship between signal time
resolution and category classification accuracy which could be resolved by a CNN.

MATERIALS & METHODS
Methods overview
Developing a physical activity classification algorithm requires the acquisition of actual
acceleration data from body movements of target-age children. This study formed a
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research plan for this data acquisition including subject recruitment, a series of physical
activity protocols, and the preparation of equipment for recording physical activity data.

Acquired data were processed into an appropriate form for generating datasets, which
were then used to develop an algorithm classifying the physical activities of the children.
A deep machine learning method was used to ensure high algorithm performance. This
deep machine learning algorithm used in conjunction with the datasets proved capable of
classifying the physical activities performed children.

Preparation of data acquisition
A total of 136 participants (86 boys and 50 girls) took part in this experiment from one
school and various sports clubs. From these 136 participants, we obtained valid data for 115
subjects consisting of 75 boys and 40 girls. The data from 21 subjects were dropped owing
to pre-existing physical or mental illnesses/conditions, and in some instances, the data was
invalid owing to device malfunctions or unexpected noise. The ages of participants for
whom the data were valid were distributed between 8.5 and 12.5 years with a mean of 10.5,
and a standard deviation of 1.1.

An experimental protocol explaining the types of movements to be conducted, as well
as when and how long they should last, was designed to obtain the physical activity data
generated by the bodymovements. Informed consent was obtained from the participants as
well as from their parents. The consent form explained the contents of the experiment and
the protocol. The experimental plan and consent formwere approved by the internal review
board of the Catholic University of Korea, Seoul ST. Mary’s Hospital (KIRB-00472_9-002).

Participants fulfilled protocols composed of various movements, including walking,
running, and moving on stairs. Each individual wore an accelerometer module on their
waist between the center of the belly and right pelvic, along the waistline of the pants
(standard positioning of a pedometer) as they completed the protocol. The wearable data-
recording module used in this study was designed as an accelerometer system to collect
acceleration signals generated by body movements and fabricated from a microcontroller
unit, three-axis acceleration sensor, memory chip, power unit, etc. Figure 1 shows the
appearance of the devised system. The accelerometer module had a single three-axis
accelerometer and no other sensors, thereby minimizing the use of sensor signals and
power while maximizing the portability and convenience. The module accelerometer range
was set to 4× gravity in both positive and negative directions (±4 g). The module is 50
mm ×30 mm ×15 mm in dimension, weighs 21 g, and has a case with a clip to fasten it to
the wearing point of pants.

Data acquisition procedure
Participants followed the physical activity protocol composed of various motions including
sitting downon and standing up froma chair, jumping in place, walking, running, ascending
and descending stairs, and jumping rope. A table sheet with a summarized protocol listing
selected physical activities was used during the experiment and the physical activity
classification algorithm development. Table 1 shows the protocol of selected activities.
The net protocol conduction time, excluding resting, was 22 min. Although subjects took
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Figure 1 Appearance of devised data acquisition system. (A) Front face of custom –made accelerome-
ter modules. (B) Housing with clip. (C) Front and back sides of electronics board. Photographs by Yong-
won Jang.

Full-size DOI: 10.7717/peerj.5764/fig-1

breaks between protocol activities to catch their breath and recover their stamina, break
times were not marked in the table sheet because each subject had a different recovery
condition and the length of break periods varied widely. Recovery break times were based
on the criterion of heart rate, such that subjects were considered to have recovered when
their heart rates approached a resting level. The usual break time ranged between 2 and 5
min according to the activities.

Table 1 shows three activity groups: Group A lists a still state and intermittent
movements, group B lists basic and highly frequent steady-state movements (i.e., walking
and running), and group C lists relatively infrequent steady-state movements (i.e., moving
on stairs and jumping rope).

As the order of physical activities could influence movement patterns, the effect of
ordering was considered before subjects performed the protocol. For example, successive
vigorous activities could make create differences in movement relative to other activity
sequences even with sufficient resting times. To circumvent this ordering effect, subjects
were evenly divided into six shuffled group orderings: A-B-C, A-C-B, B-A-C, B-C-A,
C-A-B, and C-B-A. Group B activities (walking and running) were repeated at slow and
fast speeds determined entirely by the participants.
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Table 1 Protocol with selected activities for the experiment.

Group Physical activity Net time
(min)

Cumulative
time (min)

Data
samples

1 Stay still (Sitting/Standing) 3 3 20.7 k
A

2 Sitting/Standing repeat 2 5 25.5 k/25.2 k
1 slow 2 7 19.1 k
2

Walking
fast 2 9 16.4 k

3 slow 2 11 16.0 k
B

4
Running

fast 2 13 17.7 k
1 Ascending 2 15 14.2 k
2

Stairs
Descending 2 17 10.4 kC

3 Jumping rope 3 20 18.4 k

Notes.
183.6 k samples in total.

Data preprocessing and learning for classification
A. Data preprocessing
(i) Data collection and filtering

While the participants performed physical activities according to the above protocol,
the accelerometers they wore measured acceleration signals that were then digitized
by the microcontroller unit and stored in a mounted memory chip. Data sampling
was performed at a frequency of 45.4 Hz. Stored data files containing all activity data
segments for an ordered protocol (as in Fig. 2A) were then downloaded onto a PC
for data processing. A high-pass frequency domain filter (over 0.5 Hz) was used to
eliminate the bias signal from data.

(ii) Data samples and augmentation
The filtered data were divided into protocol activities and cut to constant time windows
withwidths of 128 data points, corresponding to∼2.8 s. At this stage, data augmentation
with overlaps and rotations allowed us to enrich and diversify our data samples.
Adjacent windows shared half their data with an overlap of 50%. In addition, the data
was rotated at random degrees within ±10 for yawing, ±15 for pitching, and ±20
for rolling. This was used to simulate the rotated state of equipped accelerometer.
Figure 2B depicts the windowing and cutting data processes.

(iii) Data preparation for learning
The augmented window-sized data samples from all participant data (∼184,000
samples as listed in Table 1) were sorted by activity to form ten dataset types, one for
each activity: slow walking (WS), fast walking (WF), slow running (RS), fast running
(RF), walking up the stairs (SU), walking down the stairs (SD), jumping rope (JR),
standing up (ST), sitting down (SI), and keeping still without activity (NA). Figure 2C
shows the assignment of window-sized data samples to their corresponding datasets.
The dataset bundles for the ten activities were then fed into the CNN training process.

B. Convolutional feature extraction
Figure 3 shows the CNN structure and describes the training procedure. The overall

network architecture was composed of an input stage, a feature extraction stage with three
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Figure 2 Preprocessing procedures for physical activity training of classification algorithm. (A) Accel-
eration signal data file of each subject. (B) Magnified portion of acceleration signals and windowing de-
scription (Window Size= 128 points=∼2.8 s). (C) Dataset of activities from all subjects.

Full-size DOI: 10.7717/peerj.5764/fig-2

convolutional layer blocks, and an output provision classification stage. The input stage
received the preprocessed dataset. The feature extraction stage followed a triple ternary
convolution block structure including convolution, pooling, and activation functions. Each
convolution block is expressed in Fig. 3 with a different color. The last classification stage
consisted of a fully connected layer, dropout, and softmax operator. The final network
outputs came from the softmax operation results.
(i) Input layer

In a CNN, a layer can be represented by the general expression function y= f (x)
where both the input x and output y are tensors. The network input is a
Height(H)×Width(W)×Dimension(D) sized tensor data. In this study, the input
was the time series accelerometer data where H=window size,W= single dimension,
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Figure 3 Convolutional neural network (CNN) structure with input, feature extraction, and classifi-
cation stages. The feature extraction process was composed of a ternary convolution block expressed with
different colors. The classification stage included fully connected layers and a dropout function, and pro-
vided an output from a softmax function.

Full-size DOI: 10.7717/peerj.5764/fig-3

and D = number of sensor axes. As shown in Fig. 3, this input size H×W×D was
equal to 128×1×3.

(ii) Convolution layer
The convolution layer computed the input x convolution using filters f . The element
expressions can be represented as:
x∈RH×W×D,f ∈RH

′
×W

′
×D×D

′′

,y∈RH
′′
×W

′′
×D
′′

. (1)
The output of this convolution layer was the three-dimensional convolution result, as
represented below in Eq. (2) where i,j are spatial subscripts and d represents depth.

yi′′j ′′d ′′ = bd ′′+
H ′∑
i′=1

W ′∑
j ′=1

D∑
d ′=1

fi′j ′d×xi′′+i′−1,j ′′+j ′−1, d ′,d ′′ . (2)

(iii) Pooling layer
Pooling layers are used to identify the most important features and compresses layer
sizes by subsampling. In this study, a max pooling method (as in Eq. (3)) compared
consecutive convolutional result values in H′×W′ sized areas and the maximum
value survived to go through to next layer. The comparison area (H′×W′= 2×1)
was exclusive, decreasing the spatial resolution by the factor of area size.
yi′′j ′′d = max

1≤i′≤H ′,1≤j ′≤W ′
xi′′+i′−1,j ′′+j ′−1, d (3)

(iv) Activation function
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An activation function followed the max pooling step in the convolution block. A
rectified linear unit (ReLU), as expressed in Eq. (4), was selected for this function to
mitigate the vanishing gradient problem and reduce learning time (Glorot, Bordes &
Bengio, 2011). Any negative output values remaining after the max pooling layer were
set to zero.
yijd =max{0,xijd}. (4)

(v) Repeated convolution blocks
Three convolution blockswere used, combining the steps of convolution,max pooling,
and ReLU. Figure 3 shows the ternary convolution block structure, the filter sizes of
which were 7×1×3×72, 6×1×1×144, and 5×1×1×108, respectively.

C. Classification for output
(i) Fully connected layer

The ReLU results of each layer, as with all layer outputs, were connected to the
weighted nodes of the next layer. This study featured 256 empirically set nodes.

(ii) Dropout layer
A dropout layer was imported to prevent overfitting, which may occur if a node
in one layer excessively influences the subsequent layer. The dropout step dropped
randomly selected nodes in fully connected layers with a set turn-on rate. Regularizing
dropouts thinned the ongoing training network and created an ensemble effect within
the thinned network (Hinton et al., 2012; Srivastava et al., 2014). This step could be
performed in every fully connected layer except the final one for output. In this study
case, only a single dropout layer was inserted in the penultimate fully connected layer
using a rate of 0.5.

(iii) Softmax layer
The softmax function was applied across feature channels to consolidate network
results. This normalization method was applied to make that the sum of output
probability distributions 1, as shown in Eq. (5).

yijk =
exijk∑D
t=1e

xijk
. (5)

(iv) Classification losses
The categorical loss function l(x,c) calculates the difference between a prediction x
and ground truth c. The classification error l is zero if the predicted class with the
largest score is same to ground truth, otherwise the error is 1.

D. Training and validation strategy
The stochastic gradient descent (SGD) method was used for backpropagation during the

training process. The gradients for each parameter were averaged over the training cases in
each batch. The learning rate started at 0.0003 and decreased by a log scale function with a
factor of 0.5 for every hundred epochs. The momentum and weight decay parameters were
set to 0.9 and 0.0005, respectively, and the batch size (set by experimental trials) was 128. It
was determined the training epoch was optimized just before overfitting. The critical point
was determined to be when the slope of the log loss curve changed from negative to positive,
although the classification error continued decreasing past this point. Epoch points (such
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Table 2 The confusionmatrix of classification results using the 10-fold cross-validation of the developed CNN algorithm.

Input/Output Target class Sum by
row

WS WF RS RF SU SD JR ST SI NA

WS 1,368 428 29 5 116 19 4 0 0 2 1,971
WF 357 1,060 52 16 43 7 10 0 0 0 1,545
RS 2 47 886 366 42 44 59 0 0 0 1,446
RF 1 5 536 1,321 23 40 43 0 0 0 1,969
SU 136 66 8 6 906 64 32 2 1 0 1,221
SD 33 21 51 36 65 796 70 2 2 0 1,076
JR 10 14 38 23 193 67 1,621 0 0 0 1,966
ST 4 1 0 0 6 1 0 2,425 66 6 2,509
SI 1 1 1 0 1 3 0 73 2,468 8 2,556

Output Class

NA 3 1 0 0 21 0 0 13 13 2,053 2,104

Sum by column 1,915 1,644 1,601 1,773 1,416 1,041 1,839 2,515 2,550 2,069 18,363

Notes.
The number in table mean classified cases with the trained CNN algorithm. For example, 1,368 samples were classified as WS from 1915 WS input samples.

as the global minimum of the error function) were considered to be optimal points. Finally,
the trained network was validated using the 10-fold cross-validation method. Ten groups
of data were established such that nine groups were used for training and the remaining
group was used for validation. Each group was designed to participate in validation in turn.
The performance was measured using the mean of the validation results for each group.

RESULTS
The developed CNN algorithm classified physical activity data for every 1.4 s (with a
window size of 2.8 s) into ten classes: WS, WF, RS, RF, SU, SD, JR, ST, SI, and NA. Table 2
shows the classification results in confusion matrix form. Each cell in the table represents
the number of samples classified by the trained CNN algorithm. The vertical title indicates
the actual class (input class of the algorithm), whereas the horizontal title indicates the
classified results (output class of the algorithm). The ten colored diagonal cells indicate
samples correctly classified by the trained CNN algorithm. The overall accuracy, drawn
from 10-fold cross-validation, was 81.2%. The ratios of various output classifications from
each class are listed in Table 3, with the correctly classified ratios, which could be expressed
in terms of recall or sensitivity, located in the diagonal cells. The performance indicators
of recall, precision, and f1 score are presented in Table 4 for each class. These numbers can
be used for alternative algorithm assessments.

The recall numbers for the ten individual classes were 71.4% for WS, 64.5% for WF,
55.3% for RS, 74.5% for RF, 64.0% for SU, 76.5% for SD, 88.2% for JR, 96.4% for ST,
96.8% for SI, and 99.2% for NA. Non-ambulatory physical activity classes (ST, SI, and NA)
made up a leading group which demonstrated the best performance, whereas ambulatory
moving classes could be divided into a lower performance group (WS,WF, RS, RF, SU, and
SD) with recall numbers under 80%. The vigorous activity class, JR, showed an accuracy
of 88.2%.
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Table 3 The confusionmatrix of the trained network for each class.

Input/Output Target Class

WS WF RS RF SU SD JR ST SI NA

WS 71.4 26.0 1.8 0.3 8.2 1.8 0.2 0.0 0.0 0.1
WF 18.6 64.5 3.3 0.9 3.0 0.7 0.5 0.0 0.0 0.0
RS 0.1 2.9 55.3 20.6 3.0 4.2 3.2 0.0 0.0 0.0
RF 0.1 0.3 33.5 74.5 1.6 3.8 2.3 0.0 0.0 0.0
SU 7.1 4.0 0.5 0.3 64.0 6.2 1.7 0.1 0.0 0.0
SD 1.7 1.3 3.2 2.0 4.6 76.5 3.8 0.1 0.1 0.0
JR 0.5 0.9 2.4 1.3 13.6 6.4 88.2 0.0 0.0 0.0
ST 0.2 0.1 0.0 0.0 0.4 0.1 0.0 96.4 2.6 0.3
SI 0.1 0.1 0.1 0.0 0.1 0.3 0.0 2.9 96.8 0.4

Output
class

NA 0.2 0.1 0.0 0.0 1.5 0.0 0.0 0.5 0.5 99.2

Sum by column 100 100 100 100 100 100 100 100 100 100

Notes.
Numbers in the cells are expressed in %. Each column makes 100% in total.

Table 4 The various performance indicators of developed algorithm for each class.

Class/Indicators WS WF RS RF SU SD JR ST SI NA

Recall 0.714 0.645 0.553 0.745 0.640 0.765 0.882 0.964 0.968 0.992
±0.020 ±0.023 ±0.024 ±0.020 ±0.025 ±0.026 ±0.015 ±0.007 ±0.007 ±0.004

Precision 0.694 0.686 0.613 0.671 0.742 0.740 0.825 0.967 0.966 0.976
±0.021 ±0.022 ±0.024 ±0.022 ±0.023 ±0.027 ±0.017 ±0.007 ±0.007 ±0.007

F1 score 0.704 0.665 0.582 0.706 0.687 0.752 0.852 0.965 0.967 0.984

The precisions of the ten individual classes, which showed similar attributes to the recall
values, were 69.4% for WS, 68.6% for WF, 61.3% for RS, 67.1% for RF, 74.2% for SU,
74.0% for SD, 82.5% for JR, 96.7% for ST, 96.6% for SI, and 97.6% for NA. The recall
leading group also demonstrated high precision ratios (>96.6%). The ambulatory classes
(WS, WF, RS, RF, SU, and SD) demonstrated low performances of less than 80%; however,
the differences among classes were reduced compared to the recall values. JR were ranked
in the middle with a performance of 80%, the same as recall case. The f1 scores of each class,
which demonstrated similar characteristic to the above indicators, are presented in Table
4. Non-ambulatory activity classes showed high f1 scores, whereas ambulatory activities
show relatively low f1 scores.

The performance index of the developed algorithm differs when similar activities are
combined. For this study, WS and WF (types of walking) were merged into WX, RS and
RF (types of running) were merged into RX, and SU and SD (stair-based activities) were
grouped into SX. This reduced the total number of classes to seven: WX, RX, SX, JR, ST,
SI, and NA. Merged class results are shown in Table 2 in cells bounded by colored boxes.
Table 5, the converted confusion matrix using merged class groups, shows the number of
processed samples from merged classes. The distribution of correct or incorrect ratios is
presented in Table 6, demonstrating the overall accuracy of 91.1%. The recall, precision,
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Table 5 The converted confusionmatrix with sevenmerged classes.

Input/Output Target class

WX RX SX JR ST SI NA Sum by
row

WX 3,213 102 185 14 0 0 2 3,516
RX 55 3,109 149 102 0 0 0 3,415
SX 256 101 1,831 102 4 3 0 2,297
JR 24 61 260 1,621 0 0 0 1,996
ST 5 0 7 0 2,425 66 6 2,509
SI 2 1 4 0 73 2,468 8 2,556

Output
class

NA 4 0 21 0 13 13 2,053 2,104

Sum by column 3,559 3,374 2,457 1,839 2,515 2,550 2,069 18,363

Notes.
The number in table mean classified cases with the merged classes.

Table 6 The converted confusionmatrix with sevenmerged classes.

Input/Output Target Class

WX RX SX JR ST SI NA

WX 90.3 3.0 7.5 0.8 0.0 0.0 0.1
RX 1.5 92.1 6.1 5.5 0.0 0.0 0.0
SX 7.2 3.0 74.5 5.5 0.2 0.1 0.0
JR 0.7 1.8 10.6 88.1 0.0 0.0 0.0
ST 0.1 0.0 0.3 0.0 96.4 2.6 0.3
SI 0.1 0.0 0.2 0.0 2.9 96.8 0.4

Output
Class

NA 0.1 0.0 0.9 0.0 0.5 0.5 99.2

Sum by column 100 100 100 100 100 100 100

Notes.
The number in table mean classified cases with the merged classes.

and f1 score numbers for each merged class are shown in Table 7. The recall numbers for
the seven merged classes were significantly improved from the ten-class case: 90.0% for
WX, 92.0% for RX, 75.0% for SX, 88.0% for JR, 96.0% for ST, 97.0% for SI, and 99.0%
for NA. The precision numbers for the seven classes were 91.4% for WX, 91.0% for RX,
79.7% for SX, 82.5% for JR, 97.0% for ST, 97.0% for SI, and 97.6% for NA, whereas the
f1 scores were 0.908 for WX, 0.916 for RX, 0.770 for SX, 0.852 for JR, 0.970 for ST, 0.970
for SI, and 0.984 for NA. It can thus be stated that the recall, precision, and f1 scores were
improved when similar activities were merged.

For proper evaluation, the developed algorithm was compared to other three well-
known, conventional learning classification algorithms: support vector machine (SVM),
decision tree (DT), and k-nearest neighbors (k-NN). Table 8 shows the compared overall
accuracies for these and the developed CNN algorithm for ten individual classes and
seven merged classes. The detail performance indicators from both cases are shown in
Tables 9 and 10 for all comparison targets. The contents of all three tables indicated the
merged classes case performed better than the individual classes. After class merging,
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Table 7 The various performance indicators of the developed algorithmwith sevenmerged classes.

Class/Indicators WX RX SX JR ST SI NA

Recall 0.900 0.920 0.750 0.880 0.960 0.970 0.990
±0.010 ±0.009 ±0.017 ±0.015 ±0.008 ±0.007 ±0.004

Precision 0.914 0.910 0.797 0.825 0.970 0.970 0.976
±0.009 ±0.010 ±0.016 ±0.017 ±0.007 ±0.007 ±0.007

F1 score 0.908 0.916 0.770 0.852 0.970 0.970 0.984

Table 8 The overall accuracies of the compared target algorithms and CNN.

Classifierr/Overall accuracy CNN SVM DT k-NN

10 individual classes (%) 81.2± 0.6 65.3± 0.7 63.9± 0.7 55.4± 0.7
7 merged classes (%) 91.1± 0.4 74.7± 0.6 73.2± 0.6 65.3± 0.7

Notes.
The compared target algorithms showed best results under the below conditions.
SVM, kernel function, Gaussian, kernel scale, 3; DT, split criterion, Gini’s diversity index, maximum number of splits, 5,000;
k-NN, distance metric, Euclidean (weighted), number of neighbors, 10.

Table 9 The performance indicators of the compared target algorithms with the ten individual classes.

Class/Indicators WS WF RS RF SU SD JR ST SI NA

Recall 0.740 0.481 0.597 0.771 0.192 0.374 0.865 0.687 0.531 0.985
±0.020 ±0.024 ±0.024 ±0.020 ±0.021 ±0.029 ±0.016 ±0.018 ±0.019 ±0.005

Precision 0.499 0.527 0.558 0.661 0.449 0.546 0.863 0.614 0.619 0.981
±0.022 ±0.024 ±0.024 ±0.022 ±0.026 ±0.030 ±0.016 ±0.019 ±0.019 ±0.006

SVM

F1 score 0.596 0.503 0.576 0.712 0.269 0.444 0.864 0.649 0.572 0.983
Recall 0.617 0.519 0.547 0.783 0.330 0.380 0.841 0.598 0.586 0.980

±0.022 ±0.024 ±0.024 ±0.019 ±0.025 ±0.029 ±0.017 ±0.019 ±0.019 ±0.006
Precision 0.534 0.523 0.581 0.643 0.413 0.478 0.834 0.621 0.587 0.979

±0.022 ±0.024 ±0.024 ±0.022 ±0.026 ±0.030 ±0.017 ±0.019 ±0.019 ±0.006

DT

F1 score 0.572 0.521 0.563 0.707 0.367 0.424 0.838 0.610 0.586 0.980
Recall 0.497 0.374 0.556 0.752 0.207 0.264 0.818 0.492 0.438 0.944

±0.022 ±0.023 ±0.024 ±0.020 ±0.021 ±0.027 ±0.018 ±0.020 ±0.019 ±0.010
Precision 0.411 0.423 0.552 0.650 0.276 0.422 0.826 0.504 0.463 0.772

±0.022 ±0.024 ±0.024 ±0.022 ±0.023 ±0.030 ±0.017 ±0.020 ±0.019 ±0.018

k-NN

F1 score 0.450 0.397 0.554 0.697 0.237 0.325 0.822 0.498 0.450 0.849

the conventional algorithm used for comparison showed a performance improvement of
approximately 10% like the proposed CNN.

DISCUSSION
The best way to separate the training and validation datasets, would be ‘‘subject-wise’’
cross-validation. In this study, however, it was not possible to obtain evenly distributed
datasets in each data fold because the individual subjects each produce a different number
of data samples for a given activity. While the collecting data for each activity, a data block
was created to overcome this imbalance in the size of the dataset. All data samples for
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Table 10 The performance indicators of the compared target algorithms with the sevenmerged
classes.

Class/Indicators WX RX SX JR ST SI NA

Recall 0.860 0.910 0.330 0.870 0.690 0.530 0.980
±0.011 ±0.010 ±0.019 ±0.015 ±0.018 ±0.019 ±0.006

Precision 0.703 0.815 0.619 0.863 0.614 0.619 0.981
±0.015 ±0.013 ±0.019 ±0.016 ±0.019 ±0.019 0.006

SVM

F1 score 0.773 0.862 0.432 0.864 0.649 0.572 0.983
Recall 0.781 0.892 0.442 0.841 0.600 0.590 0.980

±0.014 ±0.010 ±0.020 ±0.017 ±0.019 ±0.019 ±0.006
Precision 0.723 0.821 0.554 0.834 0.621 0.587 0.979

±0.015 ±0.013 ±0.020 ±0.017 ±0.019 ±0.019 ±0.006

DT

F1 score 0.751 0.855 0.492 0.838 0.610 0.586 0.980
Recall 0.673 0.895 0.311 0.819 0.490 0.440 0.944

±0.015 ±0.010 ±0.018 ±0.018 ±0.020 ±0.019 ±0.010
Precision 0.636 0.824 0.447 0.826 0.504 0.463 0.772

±0.016 ±0.013 ±0.020 ±0.017 ±0.020 ±0.019 ±0.018

k-NN

F1 score 0.654 0.858 0.367 0.822 0.498 0.450 0.849

an activity for a given subject was appended behind the previous subject’s data samples
in a single row. This is how the datablock was formed. Each subject’s data samples were
cut and augmented, but not shuffled. Not shuffling the data samples could minimize the
probability of overlap between training and validation datasets. Subsequently, the data
block was split into 10 evenly sized datasets. The 10-fold dataset groups for the 10 physical
activities were then fed into the CNN for training, and the algorithm performance was
assessed with 10-fold cross-validation.

Data augmentation is one of the most commonly used methods when data is limited,
especially in deep learning. Due to the characteristics of deep learning, a large amount of
input data is required. Augmented data is data that has been slightly modified from the
original data for data diversity and robustness of the performance. For example, flipping,
rotation, scaling, cropping, translation, and adding noise are commonly used in CNNs
that manipulate images. In this study, overlapping and rotation were introduced. These
modifications increased the number of data samples and made the algorithm more robust.
However, these augmentations depend on the original data. This could cause the results to
differ when using data samples that are not augmented. This is the limitation of this study.

It is difficult to discriminate various dynamic physical activities using single waist-
mounted accelerometer. Previous work (Preece et al., 2009) showed that the results
depended on different accelerometer mount positions: at the waist, thigh, ankle, and
combinations of these three positions. The results revealed that the waist location incurs the
maximum difficulty when classifying physical activities. Despite this, this study considered
device-wearing convenience and representative characteristics of the entire bodymovement
for further field application. The inherent disadvantages of the wearing position and short
data period (∼2.8 s) were overcome by using the developed CNN algorithm.
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Many prior studies (Foerster, Smeja & Fahrenberg, 1999; Karantonis et al., 2006; Veltink
et al., 1996; Zhang et al., 2003) have included posture classes utilizing static acceleration
values, such as standing, sitting, lying down, and lying prone. This study was instead focused
on physical activities when children were in physically active states, not their postures or
static states, as these points (determining levels and modes of activity) are essential for
preventing excessive weight or obesity in children. The results of this study may provide
assistance in addressing these essential points.

This study demonstrated a method of classifying ten physical activities in children. A
classification algorithm was developed and utilized for analyzing recorded acceleration
signals, and these results demonstrate the algorithm performance. Table 3 shows the activity
classes WS, WF, RS, and RF demonstrated relatively low accuracies. The protocol may have
caused these low accuracies: movement speeds were self-selected when subjects conducted
the above four activities. If these activities had instead been performed on a treadmill or
paced at a preset speed (Harrell et al., 2005; Riel et al., 2016), classifications may have been
more distinct; however, treadmill speeds do not represent the innate characteristics or real
physical activities performed by children in daily life. It was observed that some participants
walked at equal speeds during WS and WF activities, whereas others ran too fast during
the RS protocol. Additionally, other participants changed their speed over time, even in
same activity of WS, WF, RS, and RF. It is possible that this problem is unavoidable within
this age range of participants because they cannot perfectly control their movement speeds;
instead, revive the movements of their daily life as real during experimental protocols.

Results revealed two questionable characteristics of the stair moving classes: first, both
SU and SD accuracies were relatively low; and second, SU class accuracy was lower than that
of SD by 12.5%. In general, staircases are connected in a zig-zag formation for travelling
up or down. In this study, participants had to ‘‘walk’’ approximately 3∼4 gaits between
staircases in the protocol, unavoidably inserting a walking signal between the recorded
stair movement activity signals. Although efforts were made to identify and remove these
walking signals, this was particularly challenging between stair climbing (SU) signals. Since
these walking signals remained in the staircase movement signals, SU and SD accuracies
were low relative to other classes, especially SU. As the SD signal had relatively distinctive
acceleration peaks along the gravitational axis, walking signal periods could be identified
and eliminated to a somewhat greater extent. Conversely, the SU signal had a relatively
even peak envelope and very few walking signal periods were eliminated. This also reduced
the SD dataset size relative to the SU dataset, as shown in Table 1.

When SU and SD activities were miscategorized, they were most frequently mistaken for
JR outputs; similarly, a considerable error in the JR categorization was in the identification
of RS, RF, SU, or SD.When subjects performed the jumping rope protocol, some conducted
activities such as walking or running with a rotating rope held in two hands rather than
jumping with both feet. They were also children who were physically challenged or poor
at rope jumping. These cases are considered to have measured JR activities that appeared
closer to RS, RF, SU, or SD than the walking classes because jumping actions increase
gravitational acceleration, leading the CNN algorithm to select RS, RF, SU, or SD rather
than JR.
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As shown in Table 3, the non-ambulatory classes (ST, SI, and NA) were classified with
high accuracy. Table 4 shows their excellent performance, quantified by indicators. These
non-ambulatory classes were related to intermittent activities and were easily classified
correctly. These results are predictable given some CNN algorithm characteristics such
as the convolution and max pooling processes. Ambulatory classes related to generating
continuous and periodic acceleration signals via repetitive movements, such as walking
and running, have relatively similar signal appearances, unlike the above intermittent
activity-related classes. These similarities could explain some class confusions, because
the convolution and max pooling steps could have compressed the signals until they were
indistinguishable. On the other hand, the signal appearances of intermittent activities are
relatively apparent, which may enhance the accuracy.

The NA class played the role of a physical activity control group, or negative. If this
negative class was not included in the class set, even static signals could be classified as
real physical activities. Using the definition of true negative for bi-class cases, NA could be
assigned as the negative and all physically active classes could be included as the positive. In
this case, the NA class recall could be expressed as the sensitivity of the developed network.
By this logic, the developed network specificity would be 99.2%.

Tables 5 and 6 show another aspect of the classification results: the recalculated accuracies
after similar activity categories were merged into new integrated classes. The WS and WF,
RS and RF, and SU and SD classes were merged into a walking group WX, running
group RX, and stair moving group SX, respectively. Thus, the recalculated confusion
matrix was shrunk from ten to seven classes. Consequently, this class merger improved
the performance indicators because the merged classes were the most frequently mutually
confused classes and made up a significant portion of original errors. If this algorithm was
embedded into a child activity monitoring device, the merged algorithm case would be
most relevant. Decreasing the class number would reduce the number of micro-controller
unit executions and also improve accuracy.

The developed algorithm was also compared to conventional algorithms using 128
signal points and a processing window size of 2.8 s. For comparison, similar window size
classification examples were sought and cited. A similar prior study (Kühnhausen, Dirk &
Schmiedek, 2017) adopted SVM for feature classification, demonstrating an overall accuracy
of 87.5% using a general model. However, when this conventional SVM algorithmwas used
with the current data set, its results were worse than those published in the prior study.

Table 9 displays the poor performance of conventional algorithms. Overall, no class but
NA demonstrated good results, revealing these conventional algorithms had insufficient
power for classifying the ten individual classes in the original dataset. The developed
CNN algorithm (see Table 4), conversely, demonstrated better performance especially
in recognition of WF, SU, SD, ST, and SI compared to SVM (which is the best among
the alternatives). Table 10 shows the performance indicators of the three conventional
algorithms for the seven merged classes case. Although these results were improved from
those seen in Table 9, the SX class performance was significantly inferior in all three
algorithms even after merging. This indicates conventional algorithms find it difficult to
distinguish SX from other activities, meaning SX is too difficult a problem to solve with
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conventional algorithms. The CNN algorithm, however, shows improved performance
in the case of seven merged classes (see Table 7); however, the performance was not as
good as that of WX and RX. These facts revealed the dataset used in this study required
complex classification and the developed CNN algorithm was superior for this task relative
to conventional SVM algorithms.

Generally, the health benefits of physical activity are maximized when the activity is
performed in bouts of moderate-to-vigorous intensity (World Health Organization, 2010).
However, a recent study (Robson & Janssen, 2015) tells that sporadic moderate-to-vigorous
physical activity (MVPA) embedded with bouts of light-intensity physical activity is also
healthful. On the basis of this, the developed algorithm could provide not only bouts of
MVPA but also embedded MVPA, which occurs frequently for children, and could be used
by the caregivers attentive to the activities in the daily life of their children. Furthermore,
additional work on this algorithm may be used to infer high-level activities for daily life
inferences. For example, if patterns of sports such as soccer or basketball were analyzed, the
activity monitor could identify users playing soccer, rather than simply combining basic
physical activities such as walking, running, and jumping.

CONCLUSIONS
In this study, the classification of physical activity in children was performed. This study
involved algorithm development, participant recruitment, IRB approval, custom-design
of a data acquisition module, and data collection. The developed algorithm distinguished
physical activities with improved time resolution using short-time acceleration signals from
the physical activities performed by children. This algorithm could be applied to real-time
applications due to its simplicity.

When the developed CNN algorithm classified the original ten different activity classes,
acceptably accurate results were not achieved in some ambulatory related classes; however,
class coalescence lead to improved results. Devices and algorithms better able to differentiate
between multiple activity classes are able to obtain more information from everyday life;
however, merged classes are better suited to embedded systems. Preventing and managing
overweight and obesity conditions is more important at young ages, because obese children
have higher chances of obesity as adults relative to normal children. Althoughmany devices
have been developed to address the issue of weight gain and obesity, such as wrist-worn
type accessories and smartphone with software applications, they are unfortunately not
applicable to children. The activity monitor proposed in this study could, however, help
children substantially by recording how much and long they were physically active, as well
as what types of activities filled their active periods.
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