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Tensegrity offers lightweight deployable structures for use in many engineering

disciplines. Among all of the available tensegrity forms, D-Bar has a potential for

combined applications of sensing, actuation, and structural support. In this paper,

we enhance the minimal mass formulation of the D-Bar by including yielding of the

compressive members as a design constraint in contrast to the previous assumption

which considers buckling as the sole failure mechanism. In addition, we analyze the

length and force gains of a D-bar system analytically by considering the minimal mass

D-bar as the design constraint. Furthermore, we calculate the stiffness of the D-Bar

and when appropriate use as design constraints as well. To enhance the minimal mass

properties of the D-Bar, we combine T-bar and D-bar systems. The analysis shows that

these structures are the basis for effective force transducers, force-controlled actuators,

and efficient deployable compressive structures.

Keywords: tensegrity, D-bar systems, stiffness, actuators, sensors

1. INTRODUCTION

We consider tensegrity as any network of axially-loaded prestressable members (Skelton and
de Oliveira, 2009). Tensegrity structures are proven to be minimum mass for various loading
conditions (Skelton and de Oliveira, 2009). It is important to minimize the mass of structure
for space applications. Therefore, tensegrity can be used to provide solutions to many structural
problems in space, such as artificial gravity space habitats (Skelton and Longman, 2014; Goyal et al.,
2017), minimum mass structures for space (Skelton and de Oliveira, 2010; Nagase and Skelton,
2014), and impact lander for planetary explorations (SunSpiral et al., 2013; Rimoli, 2016).

Tensegrity structures offer various functions such as load-bearing, sensing, actuation, and
morphing capabilities (Skelton and de Oliveira, 2009). Moreover, by selecting different material
for each member of the network or using various combinations of materials, it is possible to create
structures with special electrical, acoustic or mechanical properties. Early tensegrity contributors
include (Snelson, 1965; Fuller et al., 1975; Pugh, 1976; Calladine, 1978; Pellegrino, 1986; Murakami
and Nishimura, 2001; Sultan and Skelton, 2004; Motro, 2011). Efficient models for tensegrity
dynamics are proposed in Skelton (2005) and Goyal and Skelton (2018) representing the dynamics
of tensegrity structures with a new matrix form and shape-changing control strategies.

Beyond minimal mass properties, there are studies showing the suitability of tensegrity
structures for sensing and actuation. Sultan and Skelton used an icosahedron tensegrity structure
to develop a 6 d.o.f sensor structure (Sultan and Skelton, 2004). They employed tendons of the
tensegrity structure as sensing members and showed that the tensegrity structure is capable of
measuring the forces and torques in all directions. Furthermore, they proved that a tensegrity
structure offers fault-tolerant, redundant architecture for more precise measurement of the
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environmental loading conditions. Hagiwara and Oda (2010)
used the tendons of the tensegrity prism as actuators to transform
a structure between different configurations. They numerically
and experimentally evaluated the capabilities of a tensegrity
prism for form-finding applications and showed its promising
structural concept for robotic applications. A recent study by
Koizumi et al. (2012) demonstrates a tensegrity robot that is
driven by soft actuators. They employed pneumatic actuators
to experimentally demonstrate the capability of the tensegrity
mechanism to perform the requested motion path on a flat
surface.

The D-bar tensegrity topology introduced in Skelton and
de Oliveira (2009) is investigated here further for its use
in sensing and actuating functions. First, the minimal mass
design for the D-Bar is extended to include the yielding as
a possible failure mechanism as the number of complexity
is increased. Then, using the minimal mass configuration, an
analytical framework is developed to utilize the D-Bar as a
sensor or actuator for either length or force under compressive
configuration using structural parameter relations. Later, as an
essential element to any sensor or actuator, formulation to
evaluate the stiffness of the structure is derived for compressive
performance. Finally, a novel structure configuration combining
T-Bar and D-Bar is proposed and a brief overview of its minimal
mass properties and parametric relations as well as its stiffness
properties are presented. For each step of derivation, detailed
examples are provided to illustrate the potential use of the
proposed structural paradigm based on tensegrity D-Bar.

The paper is organized as follows. Section 2 describes
the D-Bar, the concept of self-similarity, and reviews the
minimal mass properties of the tensegrity D-Bar under buckling
constraints. sections 3 derives the analytical relations between
structural parameters of D-bar as sensors and actuators for
planar and 3D D-Bar networks. Section 4 presents the stiffness
formulation for the planar and 3D D-Bar and section 5
determines the minimum mass to satisfy a given stiffness
requirement in the planar configuration. Section 6 describes
the novel configuration combining the planar T-Bar and D-
Bar. Section 7 gives an example to design minimal mass loaded
platform to deploy to a specified shape. Finally, section 8 provides
some conclusions.

2. MINIMAL MASS D-BAR UNDER
COMPRESSIVE LOADING FOR BUCKLING
CONSTRAINTS

Figure 1 illustrates a D-bar structure of complexity 1. There are
4 compressive members (bars) and 1 tensile member (string) in
the structure, where L is the length of the D-Bar, lb is the bar
length and s is the string length. It has been shown Skelton and
de Oliveira (2009) that, for complexity q = 1, and any given
applied force F, the normalized mass ratio (µ) under buckling
constraints is given by:

µ = (2 cos5 α)−1/2 + ǫ(tan2 α), (1)

FIGURE 1 | Configuration of the planar D-bar (Complexity q = 1).

FIGURE 2 | Planar D-Bar (Complexity q = 2. tq and sq are the tension and

the length of the strings at level q. lb represents bar length).

where µ is the ratio of the mass of the D-bar system and the
minimal mass of a solid bar that could take the same external
load. The term ǫ includes the material properties, the magnitude
of the compressive force, and overall length of the structure and
is defined as:

ǫ =
√

π

2

ρs

σs

√
Eb

ρb

√
F

L
, (2)

where ρs and ρb are mass densities of the string and bar materials,
respectively. Eb is the elastic modulus of the bar material, σs is
the yield stress of the string material and L is the length of the
D-Bar. Whenµ < 1, the D-bar system has less mass than a single
bar that could take the same load. The necessary condition for

mass ratio to be less than 1 is
√
2 cos

5
2 α > 1 or equivalently

α < 29.477◦. Therefore, for µ < 1, one can replace any bar in
a structure with this D-bar, where, each bar is replaced with yet
another D-bar. This procedure is called self-similar iteration. A
structure obtained after q self-similar iterations is called a D-bar
system of complexity q.

Figure 2 shows a D-bar system of complexity q = 2, where
a different α is used for 2nd iteration. The strings of the D-Bar
fail due to yielding, but the bars may fail due to either yielding or
buckling. For a complexity q planar D-bar, with different choices
for α at each self-similar iteration, the normalized mass at the
buckling constraint is given in Skelton and de Oliveira (2009) as:

µ = 22q
( 1

∏q
i=1(2 cosαi)

)5/2
+ ǫ

q
∑

i=1

22i−2 tan2 αi

[
∏i−1

j=1(2 cosαj)]2
. (3)

Figure 3 shows a special case of the D-Bar structures where
angles are equal on each complexity level (∀αi = α). Note that
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FIGURE 3 | Configurations of the planar D-Bar Self-Similar structure with constant α = 10◦.

FIGURE 4 | 3D D-Bar Under Compressive Load F (Complexity q = 1).

to ensure the same angle for each self-similar iteration during the
application, the duplicate members can be combined into a single
member.

When the same angle α is used for self-similarity, the
normalized mass from Equation (3) for any complexity q reduces
to:

µ = (2 cos5 α)−q/2 + ǫ(cos−2q α − 1). (4)

For the three dimensional (3D) D-Bar shown in Figure 4, for the
special case ∀αi = α, Equation (4) is modified as follows:

µN
3D =

(4 cos5 α

N

)−q/2
+ ǫ(cos−2q α − 1), (5)

where subscript is used to represent the 3D configuration. The
term N appearing in Equation (5) stands for maximum number
of bars connected to the same point when q = 1. For example,
N = 3 for the D-Bar configuration shown in Figure 4.

As previously stated, the mode of failure in the bars can be
yielding or buckling depending on the configuration or the force
applied. For any D-Bar system of complexity q, yielding becomes
themode of failure if the following inequality is satisfied as shown
in the Skelton and de Oliveira (2009):

F

L2
>

4σ 2
b

πEb(2 cosα)
q
. (6)

For the 3D D-Bar, following the same procedure for the
derivation of Equation (6) as described in Skelton and de Oliveira

TABLE 1 | Material properties.

Aluminum UHMWPE

ρ ( kg
m3 ) 2,700 970

E ( N
m2 ) 60 × 109 120 × 109

σyield ( N
m2 ) 110× 106 2.7 × 109

(2009) the same condition changes to:

F

L2
>

4σ 2
b

πEb(
4
N cosα)q

. (7)

Clearly, these equations show that yielding becomes the mode of
failure if complexity q is large enough.

Example 1: Consider the material properties given in
Table 1 for bars and strings (Aluminum for bars and Ultra
High Molecular Weight Polyethylene (UHMWPE) for strings).
Figures 5A,B show the limit values of F

L2
for planar and

3D D-Bars, respectively, by considering 3 different angular
configurations α = 10◦, 15◦ and 20◦. The shaded region indicates
the area satisfying the inequalities (6) and (7). The primary mode
of failure changes from buckling to yielding when the F

L2
is greater

than value of the line specific to each angular configuration.
Planar D-Bar changes its primary mode of failure for lower

values of F
L2

than the 3D D-Bar. On the other hand, the higher

the angle, the higher the value of F
L2

before the mode of failure
changes from buckling to yielding.

3. STRUCTURAL PARAMETER RELATIONS
OF D-BAR AS SENSOR AND ACTUATOR

This section provides the relationship between the structural
parameters of the D-Bar. For the remainder of the paper, it is
assumed that bars are rigid, strings are elastic, and the mass of
the joints is negligible. Figures 2, 4 shows the general form of the
D-bar under compressive loading.
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FIGURE 5 | Buckling and yielding regions with α = 10◦, 15◦, and 20◦. The ordinate shows F
L2

and the abscissa shows complexity q. (A) Planar D-Bar. (B) 3D D-Bar.

3.1. Length Gain : 1L/1Sq
The length of the D-Bar is specified by the configuration of
its structural members. Given that the overall length L of the
D-Bar changes with the compression, it is possible to quantify
the overall length change by tracking the length change over
the strings of the D-Bar. The strings of the D-Bar undergo
the same length change in the same complexity level. Since
there are more than one strings when the complexity level is
bigger than 1, it is possible to measure the same quantity using
multiple structural members.This property of the D-Bar makes
it suitable displacement sensor with many equivalent outputs.
Therefore, the sensor configuration is robust because it is possible
to measure the displacement even when one or more sensor
structural members fail. Furthermore, the versatility of the D-Bar
ensures the actuation performance governed by exactly the same
relations for displacement.

Theorem 1: The Gain G1(q), defined as the ratio of change in
length of the D-bar to change in length of the shortest string at
complexity q, is given by:

G1(q) =
1L

1Sq
=

4 − 40

2(sin(αq)− sin(αq0))
, (8)

where 4 =
∏q

i=1 2 cos(αi), 40 =
∏q

i=1 2 cos(αi0), αi0 is the
initial angle at complexity level i and αi is the final angle at
complexity level i after the D-Bar is statically balanced. The
extension of the same relation to the 3D D-Bar, G3D

1 is given as:

G3D
1 (q) =

1L3D

1S3Dq
=

43D − 43D
0

2(sin(α3D
q )− sin(α3D

q0 ))(cos(
Nπ−2π

2N ))
, (9)

where the superscript 3D indicates that the relations are derived
for the three dimensional case.

Proof: Recalling the rigid bar assumption, we can formulate
the geometrical relations between the bar length lb, initial length
of the D-bar L0, final length of the D-bar L and angles αi,αi0 as:

lb =
L0

∏q
i=1 2 cos(αi0)

=
L

∏q
i=1 2 cos(αi)

(10)

which leads to L = L0
4
40

. The change in the length of the D-Bar
can be written as:

1L = L0

( 4

40
− 1

)

. (11)

The relation between 1Sq and lb can be written as:

1Sq = 2lb(sin(αq)− sin(αq0)) =
2L0

40
(sin(αq)− sin(αq0)),

(12)

Substituting from Equations (11) and (12) into G1(q) = 1L
1Sq

,

we get back Equation (8). The same approach is followed to get
Equation (9) for the geometrical relations of the 3D D-Bar.

Example 2: Consider a D-bar structure where ∀αi = α,
substituting α to αi in Equation (8), we get:

G1(q) =
2q−1(cosq α − cosq(α − h))

sinα − sin(α − h)
, (13)

where h = α−α0. Taking the limit as h approaches zero, Equation
(13) yields:

G1(q) ≈ lim
h→0

G1(q) = −2q−1q cosq−2 α sinα. (14)

Similarly, G3D
1 (q) for N = 3, can be written as:

G3D
1 (q) ≈

−2q−1q cosq−2 α3D sinα3D

cos(π
6 )

. (15)

Note that the − sign in Equations (14) and (15) suggests that if
length of the D-bar reduces, length of the string at complexity
level q increases. Figure 6 shows the magnitude of the gain G1(q)
and G3D

1 (q) for various angle and complexity configurations. The
angle α is evaluated for the values of 5◦, 10◦, and 15◦. From
Figure 6, it is clear that the increasing complexity and increasing
angle lead to higher ratios of 1L and 1Sq. To summarize,
if the structure is employed for length related parametric
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FIGURE 6 | Gains G1(Equation 14) and G3D
1 (Equation 15) for complexity q and angle α combinations. (A) Planar D-Bar. (B) 3D D-Bar.

modifications, the angle and complexity should be selected as
high as possible to relate the higher level of displacements to a
smaller amount of length change for the strings at level q. This
observation is valid for both planar and 3D versions with values
of the G3D

1 (q) being greater than the G1(q).

3.2. Force Gain : F/tq
By tracking the tension over the strings of the D-Bar at higher
complexities, it is possible to estimate the compressive force
F. Therefore, it is possible to create a configuration with
inherent force sensing properties. Furthermore, similar to the
configuration for length gain, the sensing capability is robust to
the structural failures within the D-Bar itself due to the presence
of multiple members with the same contribution to the load-
bearing configuration. In other words, the presence of multiple
strings leads to a successful force sensor even when one or more
strings malfunction. In addition, similar to the length gain, it is
also possible to use the D-Bar as actuator governed by the same
relations observed for the sensor.

Theorem 2:TheGainG2(q), defined as the ratio of the external
force applied to the tension in the shortest string at complexity q
level, is given by:

G2(q) =
F

tq
=

∏q
i=1 2 cos(αi)

2 sin(αq)
. (16)

Extension of the planar relation to the 3D yields:

G3D
2 (q) =

F

t3Dq
=

(
∏q

i=1 N cos(α3D
i )) cos(Nπ−2π

2N )

(sin(α3D
q ))

. (17)

Proof: We can write the equation of static balance by looking at
the node in Figure 7 as:

tq = 2fb sin(αq) (18)

where fb is force on the bar. The bar force is related to the
compressive force F as:

fb =
F

∏q
i=1 2 cos(αi)

. (19)

FIGURE 7 | The bar-string connection at complexity level q.

Combining Equations (18) and (19), Equation (16) is found.
Adopting the same method, it is straightforward to derive the
relation given in Equation (17).

Example 3: In this example consider the special case of the
D-Bar for both planar and 3D versions introduced in example 2.
Substituting α to αi in Equation (16) leads to the gain relation as:

G2(q) =
(2 cosα)q−1

tanα
. (20)

For 3D configuration, the gain G3D
2 (q) becomes:

G3D
2 (q) =

F

t3Dq
=

(3 cosα3D)q cos(Nπ−2π
2N )

(sin(α3D
q ))

. (21)

Figure 8 shows the relation between the F and the tq for both
planar and 3D versions. From Figure 8, it is concluded that
the value of the G2(q) increases with the increasing number of
complexity q and decreases with the increasing angle of the D-
bar angle α. It is also worth stating that the gains G1(q) and G2(q)
show opposite behavior with respect to the D-bar angle α.

3.3. Length to Force Gain : F/1Sq
Using the Hooke’s law and the length changes over the strings
of the D-Bar at higher complexities, it is possible to estimate the
compressive force F. Therefore, it is possible to track the force
change using the length changes over the strings of the sensor.
Similar to the configuration for length gain and force gain, the
sensor configuration is also robust to the structural failures.
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FIGURE 8 | Gains G2(q) (Equation 20) and G3D
2 (q) (Equation 21) for complexity q and angle α combinations. (A) Planar D-Bar. (B) 3D D-Bar.

Lemma 1: Let the extensional stiffness kq be given. The Force
to Length Gain G3(q), defined as the ratio of the applied force to
the change in length of the shortest string in a D-bar system of
complexity q, is given by:

G3(q) =
F

1Sq
= kqG2(q). (22)

The extension of the expression given in Equation (22) yields:

G3D
3 (q) =

F

1S3Dq
= kqG

3D
2 (q). (23)

Proof: Using the assumption 2 and replacing the tq with the
expression tq = kq1Sq in Equation (16), it is straightforward
to see the relation in Equation (22). The gain G3(q) is related to
the gain G2(q) by the linear relationship G3(q) = kqG2(q). The
relations between the G3D

2 (q) and G3D
3 (q) are exactly the same as

explained for the planar configuration.
Example 4: This example presents a minimal mass sensor

design. Consider the minimal mass formulation of the planar and
3D versions of D-Bar when ∀αi = α as given in Equations (4)
and (6) where i denotes the each self-similar iteration such that
i = 1q. The materials are selected as given in Table 1. Given the
data: L = 0.25m, α = 10◦, F = 1000N, we find ǫ = 0.0039.
The normalized mass of the structure vs. complexity q is shown
in Figure 9.

Using the relation shown in Equation (6), it is possible to find
the complexity at which yielding becomes the mode of failure.
In this example, if the complexity q is greater than 3 for the
planar configuration, yielding becomes the mode of failure. On
the other hand, for the 3D configuration, the mode of failure
becomes yielding when q is greater than 9. Such a difference is
due to the fact that the 3DD-bar shares the compressive load with
more members. In order to find the optimal complexity of the D-
bar for the minimal mass configuration, the bar masses should
be incorporated for yielding conditions after the corresponding
complexity levels. The mass ratios given in Equations (4) and
(5) are no longer valid if the yielding is the mode of failure. The

modified versions of the µ and µN
3D for yielding are given by:

µ = µN
3D =

τ

cosq α
+ ǫ(cos−2q α − 1), (24)

where τ is similar to ǫ and is given by:

τ =
√

π

2

√
Eb

σb

√
F

L
, (25)

where σb is the yield stress of the bar material.
Figures 9A,B show the normalized mass of the planar and 3D

configurations. Optimal complexity in terms of minimal mass is
achieved when q = 4 for the planar D-Bar and q = 10 for the 3D
D-Bar. For those complexities normalized mass ratios µ and µ3D

become 0.30 and 0.36, corresponding to a mass savings of 70%
and 64%, respectively. For the selected α and the complexities
of the two configurations the gain G1(q) becomes G1(4) = −5.
Evaluation of theG2(q) yields the value ofG2(4) = 43. If the gains
for the 3D version are evaluated the resultant value of the gains
become G3D

1 (10) = −908 and G3D
2 (10) = 25× 104. For G3(q) we

need to have the string stiffness kq at the complexity level q. The
length of the string at the complexity level i for a planar D-Bar is
given by:

Si =
2L sinα

(2 cosα)i
. (26)

The stiffness of the string on complexity level i can be calculated
as:

ki =
EsAi

Si
, (27)

where Es is the elastic modulus of the strings at complexity level
i, and Ai is the cross sectional area of the string. Substituting for

Ai = ti
σy

and ti = F (2 cosα)i−1

tanα
leads to:

ki =
EsF

Lσy
. (28)
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FIGURE 9 | Mass ratio (Equation 4) and Mass ratio (Equation 5) for parameters given in Example 4. (A) Planar D-Bar. (B) 3D D-Bar.

Equation (28) indicates that the minimal mass planar D-Bar
has the same string stiffness for every complexity level i. Then,
the G3(q) can be written as:

G3(q) =
EsFG2

Lσy
= 7700N/mm. (29)

Now for the evaluation of the gain G3D
3 (q), the string stiffness for

the complexity qmust be known. The string stiffness of the 3DD-
Bar when ∀α3D

i = α3D, and the string length for any complexity
q becomes:

S3D(q) =
2L sinα3D cos

(

Nπ−2π
2N

)

(2 cosα3D)q
. (30)

Recalling the relation A3D
q = t3Dq /σy and replacing the t3Dq as:

t3Dq =
F sinα

(N cosα3D)qcos
(

Nπ−2π
2N

) , (31)

the cross sectional area of the string A3D
i becomes:

A3D
q =

F sinα3D

(N cosα3D)qcos
(

Nπ−2π
2N

)

σy

. (32)

Combining all of those expressions give the stiffness of a string at
the complexity level i as:

k3Dq =
( 2

N

)q EsF

2Lσy cos2
(

Nπ−2π
2N

) . (33)

Using the definition of the G3D
3 (q) = k3Dq G3D

2 (q) and N = 3, we

get G3D
3 (q) = 16.4× 106N/mm.

4. STIFFNESS CALCULATION OF THE
D-BAR

It is useful to quantify stiffness of a structure for a given
configuration. For this purpose, the compressive stiffness of the

D-bar is calculated. We will define stiffness as the second partial
derivative of the potential energy stored in the structure with
respect to its length, that is:

K =
∂2PE

∂L2
. (34)

4.1. Stiffness of the Planar D-Bar
The number of strings in complexity i for a planar D-Bar is given
by ns = 22i−2. As bars are rigid, strings are the only elements
of the structure which can store energy. The length of a string at
complexity level i is given as (Skelton and de Oliveira, 2009) :

si =
2L sin(αi)

∏i
n=1 2 cos(αn)

, (35)

the PE can be written as the sum of energy stored in individual
strings as:

PE =
q

∑

i=1

1

2
nski(si − s0)

2 (36)

Substituting for ns and si from above gives the equation for PE as:

PE =
q

∑

i=1

22i−3ki

[ 2L sin(αi)
∏i

n=1 2 cos(αn)
− s0

]2
. (37)

Lemma 2: If all of the D-bar angles α for any given complexity q
are equal, (∀αi = α), then the stiffness formulation becomes:

K =
1

q2

q
∑

i=1

kicsc
2αcosqα0cos

−2i−qα

[

cscα(cos4 α[q− iq+ i2.

−2i+ 1]+ cos2 α[−2i2 + 2iq+ 2i− q− 2]+ i2 − iq)
(

sinα(
cosα

cosα0
)q − sinα0(

cosα

cosα0
)i
)

+ (cos2 α[i− q− 1]

−i+ q)2(
cosα

cosα0
)q

]

. (38)

where α is the angle of the D-bar, α0 is the angle of the D-bar
when there is no application of the force, ki is the stiffness of the
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individual strings at complexity level i.

Proof: If we recall Equation (37) and replace all of the αi

with α, the potential energy equation becomes:

PE =
q

∑

i=1

22i−3ki

( 2L sinα

(2 cosα)i
− s0

)2
. (39)

Using the relation between L and bar length lb, we get:

PE =
q

∑

i=1

22i−3ki(2lb(2 cosα)
(q−i) sinα − s0)

2, (40)

and then substituting for cosα and sinα as:

cosα =
1

2
(
L

lb
)1/q, sinα =

√

1−
1

4
(
L

lb
)2/q, (41)

we get:

PE =
q

∑

i=1

22i−3ki

[

2lb

(

1−
1

4

( L

lb

)
2
q
)

1
2
( L

lb

)

q−i
q − s0i

]2
. (42)

Notice that PE is a function of the structural parameter L. If we
take the second partial derivative of the potential energy with
respect to L and substitute the relations L = lb(2 cosα)

q and
s0i = 2lb sinα0(2 cosα0)

q−i back to the final expression, we get
Equation (38).

It is possible to approximate Equation (38) by assuming that
the D-bar operates around α ≈ α0. For this we replace α0 =
α − h. Then, Equation (38) becomes:

K = lim
h→0

[ 1

q2

q
∑

i=1

kicsc
2αcosq(α − h)cos−2i−qα

[

cscα

(

cos4 α

[q− iq+ i2 − 2i+ 1]+ cos2 α[−2i2 + 2iq+ 2i− q− 2]

+i2 − iq
)(

sinα(
cosα

cos(α − h)
)q − sin(α − h)(

cosα

cos(α − h)
)i
)

+(cos2 α[i− q− 1]− i+ q)2(
cosα

cos(α − h)
)q

]]

. (43)

The stiffness of the structure K, as h approaches zero, becomes:

K =
1

q2

q
∑

i=1

kicsc
2αcos−2iα[(cos2 α[i− q− 1]− i+ q)2]. (44)

Choosing the stiffness value of the strings at each complexity i as
equal (minimal mass case, as proved above) yields the stiffness as:

K = k
cot2 α csc2 α(sec2q α − 1)− q2

q2
(45)

4.2. Stiffness of the 3D D-Bar
It is straightforward to extend the stiffness calculation to the 3D
D-Bar version. The number of strings in a 3D D-bar for each
complexity level i are nNs = Ni2i−1. The length of a string
at complexity level i for a 3D D-Bar is given as (Skelton and
de Oliveira, 2009) :

s3Di =
2L sin(αi)

∏i
n=1 2 cos(αn)

cos
(Nπ − 2

2N

)

, (46)

the PE can be written as the sum of energy stored in individual
strings as:

PE =
q

∑

i=1

1

2
nNs ki(s

3D
i − s0)

2 (47)

Substituting for nNs and s3Di from above gives the equation for
PE3D as:

PE3D =
q

∑

i=1

Ni2i−2ki

[ 2L sin(αi)
∏i

n=1 2 cos(αn)
cos

(Nπ − 2

2N

)

− s0i

]2
.

(48)

Substituting for s0i in Equation (48) leads to:

PE3D =
q

∑

i=1

Ni2i−2ki

[ 2L sin(αi)
∏i

n=1 2 cos(αn)
cos

(Nπ − 2π

2N

)

−
2L0 sin(αi0)

∏i
n=1 2 cos(αn0)

cos
(Nπ − 2π

2N

)]2
. (49)

The potential energy stored on complexity level i can be written
as:

PE3Di =
(N

2

)i
cos2

(Nπ − 2π

2N

)

PE2Di . (50)

Adding potential energies on all complexity levels, we get:

PE3D = 2 cos2
(Nπ − 2π

2N

)

q
∑

i=1

(N

2

)i
PE2Di . (51)

Selecting all angles of the D-Bar to be equal and adopt themethod
presented for planar D-Bar, the relation presented in Equation
(51) reduces to:

K3D =
2

q2
cos2

(Nπ − 2π

2N

)

q
∑

i=1

(N

2

)i
kicsc

2αcos−2i

α[(cos2 α[i− q− 1]− i+ q)2]. (52)

Example 5: In this example, the stiffness of the planar and 3D
tensegrity D-Bar configurations are evaluated for various angle
and complexity combinations. Assuming that all the strings have
unit stiffness ki = 1 and N = 3, the variation in the stiffness of
the structure is shown in Figure 10.

From Figure 10A, it can be seen that the stiffness of the planar
D-Bar increases as the complexity, q, and angle α decreases. This
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FIGURE 10 | Stiffness of the planar and 3D versions of the D-Bar. (A) Planar D-Bar. (B) 3D D-Bar.

is reasonable since as the angle and complexity decreases, the bars
participate more and more in the load bearing. Thus the rigidity
of the bars increases the stiffness of the structure in the horizontal
direction.

From Figure 10B, similar to the planar D-Bar, the stiffness of
the 3D configuration increases as angle α decreases. However,
in contrast to the planar D-bar, the stiffness K of the structure
decreases for the first few self-similar iterations then starts to
increase again. Such behavior difference is due to the number
of the strings added to the structure. In contrast to the planar
tensegrity structure, the number of the strings in the 3D case

increases as
(

3
2

)i
times more for each iteration step compared

to the planar D-Bar.
Example 6: In this example, we calculate the stiffness values of

the planar and 3D D-Bar structures presented in example 4. The
stiffness of a string is given by Equation (28). If all the parameters
given in example 4 are substituted back to Equation (28), the
stiffness of one string is found as k = 177N/mm. Given the
minimal mass design q = 4 and α = 10◦ with µ = 0.30, the
value of the K is found as 1366N/mm. Evaluation of the K3D is
also similar to the planar configuration. The string stiffnesses for
the 3D D-Bar are calculated by substituting i instead of q for each
complexity level i and substituting ki in Equation (52), we get:

K3D =
EsF[cot

2 α csc2 α(sec2q α − 1)− q2]

Lσyq2
. (53)

Substituting for the force F = 1000N, α = 10◦, L = 0.25m,
and minimal mass complexity q = 10 where µ3D = 0.36, the
resultant stiffness becomes K = 501N/mm. The minimal mass
planar D-Bar has 3 times the stiffness of the minimal mass 3D
D-Bar.

Lemma 3: Let angle α and complexity q be equal for planar
and 3D D-Bar. The minimum mass design of the planar and 3D
D-Bars lead to same global stiffnesses K and K3D formulated as:

K = K3D =
EsF[cot

2 α csc2 α(sec2q α − 1)− q2]

Lσyq2
. (54)

Proof: Equation (53) gives the global stiffness K3D of the 3D D-
Bar. Recalling the global stiffness formula given in Equation (45)

and substituting the individual string stiffness kwith the minimal
string stiffness given in Equation (28) expression presented in
Equation (54) is found. This concludes the proof.

5. MASS OF THE D-BAR SUBJECT TO
STIFFNESS CONSTRAINT

In this section, mass calculation of the planar D-bar subject to
stiffness requirement, when ∀αi = α and ∀ki = k, is presented.
The mass of a string at complexity level i is given by:

mi = ρsAisi =
ρss

2
i k

Es
, (55)

where cross sectional area Ai = sik
Es

and Es is the elastic modulus
of the string material. From Equation (45), we can write:

mi =
ρss

2
i Kq

2

Es[cot2 α csc2 α(sec2q α − 1)− q2]
. (56)

Thus, total string massmst can be written as:

mst =
q

∑

i=1

4i−1mi

=
ρsKq

2L2(sec2q α − 1)

Es[cot2 α csc2 α(sec2q α − 1)− q2]
.

(57)

The bar masses should be calculated by checking the primary
mode of failure. Inequality (6) is used to evaluate if buckling
or yielding is the primary mode of failure. Equations (58) and
(59) present mass of the bars for buckling condition and yielding
condition, respectively.

mbar =
2ρbL

2

2
q
2 cos

5q
2 α

√

F

Ebπ
(58)

mbar =
ρb

σb

FL

cos2q α
(59)

The total mass of the structure is given asm = mbar +mst .
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TABLE 2 | Mass of the D-Bar satisfying K = 500N/mm.

Complexity Angle(α) Bar failure Total mass

q = 1 No solution No solution No solution

q = 2 22.14◦ Buckle 16.8 gm

q = 3 18.16◦ Buckle 11.9 gm

q = 4 15.77◦ Buckle 8.45 gm

q = 5 14.12◦ Yield 8.37 gm

q = 6 12.91◦ Yield 8.37 gm

q = 7 11.95◦ Yield 8.37 gm

Example 7: This example shows a procedure to design a
minimal mass planar D-Bar for a fixed global stiffness K =
500N/mm. The materials, force, and size are picked exactly as
given in example 4.

Equation (28) gives the minimum stiffness, kmin of strings to
avoid yielding. To find the minimal mass solution to satisfy the
required K value a search algorithm is summarized below.

We start with complexity one and search for all the α values
in small increment till α = 29.477◦. We choose the angle to get
closest possible k > kmin to get the string mass and check for the
failure mode for bars and design them accordingly.We repeat the
procedure for the higher complexities till we get the minimum
possible mass.

Table 2 gives the complexity, corresponding angle, mode of
failure and the mass of the D-Bar which satisfies the desired
global stiffness value K = 500N/mm. We observe that the
primary mode of failure changes from buckling to yielding after
complexity q = 4. The minimum mass design is complexity
q = 5 with an angle of α = 14.12◦.

6. COMBINATION OF PLANAR T-BAR AND
D-BAR

Applications of the D-Bar can be extended by combining the D-
Bar with other tensegrity structures such as T-Bar. T-Bar offers
better mass efficiency than the D-Bar (Skelton and de Oliveira,
2009) and D-bar provides deployability. Hence by combining
the D-Bar and T-Bar, it is possible to generate a tensegrity
configuration where T-Bar contributes to the mass efficiency
and D-Bar contributes to deployability. Figure 11 shows a T-bar
under compressive load. This structure has proven to be more
mass efficient than D-bar (Skelton and de Oliveira, 2009).
The strings in T-bar structure are prestressed to avoid global
buckling.

Self-similarity can also be used for T-bars to minimize the
mass. If the self-similarity approach is implemented n times,
and at the nth iteration instead of the T-Bar, a D-bar unit is
used for the self-similar step, the new structure would have
complexity q = n + 1 with n level of T-bar units and 1 level
of D-bar unit. We name such structure as TnD1 Bar which
combines the mass efficiency of T-Bar with the deployability
of D-Bar. Figure 12 shows the structural configuration for
complexity 4, T3D1 Bar structure with T-Bar angle of αti for

FIGURE 11 | T-bar configuration.

each complexity level of i = 1 to n and the D-Bar angle of
the αd.

For the TnD1 Bar, the serially connected D-Bars are the
structural members which resist the compressive loading and the
strings inherited from the T-Bar iterations provide global stiffness
to the structure.

The structure under the compressive loading is, in fact,
nothing but a 2n complexity 1 D-Bar units connected in series
and the vertical bars of the T-Bar fractals support the connection
between two serially connected D-Bars. Following the approach
presented in Skelton and de Oliveira (2009), the minimal mass
formulation of the TnD1 bar under the buckling condition
becomes:

µTD =
n

∑

i=1

( tan5/2 αti

2i
+ ǫ(1+ tan2 αti)

)

+ ǫ tan2 αd

+
1

2n+
1
2 cos

5
2 αd

, (60)

where ǫ is defined in Equation (2) and if ∀αti = αt , then Equation
(60) gives:

µTD =
2n − 1

2n
tan

5
2 αt + nǫ(1+ tan2 αt)+ ǫ tan2 αd

+
1

2n+
1
2 cos

5
2 αd

. (61)

As explained in section 2, the primary mode of the failure for
the minimal mass design should be checked as the number of
self-similar iterations increase. With a simple modification of
Equation (6), the condition from buckling to yielding failure for
the D-Bars of the TnD1 is found as:

F

L2
>

4σ 2
b

22n+1πEb cosαd
. (62)

The same condition for the vertical bars of TnD1 configuration at
the ith complexity level is given as:

F

L2
>

σ 2
b
tanαti

22i−2πEb
. (63)

If the failure mode of the bars become yielding, the normalized
mass ratio (µTD) given in Equations (60) and (61) are no longer
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FIGURE 12 | TD-bar configuration.

FIGURE 13 | Mass ratio of the configuration vs. the complexity of the structure.

valid. Let iy represent the complexity level of the T − Bar fractals
for which vertical bars yield and let qy represent the complexity
where bars of the D-Bars yield. For a given complexity q, if q < qy
but q ≥ iy + 1, the mass ratio becomes:

µTD =
iy−1
∑

i=1

( tan5/2 αti

2i

)

+ τ

n
∑

j=iy

tan2 αtj +
n

∑

i=1

ǫ(1+ tan2 αti)

+ǫ tan2 αd +
1

2n+
1
2 cos

5
2 αd

. (64)

In addition, if q > qy, the normalized mass ratio becomes:

µTD =
iy−1
∑

i=1

( tan5/2 αti

2i

)

+ τ

n
∑

j=iy

tan2 αtj +
n

∑

i=1

ǫ(1+ tan2 αti)

+ǫ tan2 αd + τ
1

cos2 αd
. (65)

Similarly, ∀αti = αt , Equations (64) and (65) give:

µTD =
2iy − 2

2iy
tan

5
2 αt + (n− iy + 1)τ tan2 αt + nǫ(1+ tan2 αt)

+ǫ tan2 αd +
1

2n+
1
2 cos

5
2 αd

, (66)

µTD =
2iy − 2

2iy
tan

5
2 αt + (n− iy + 1)τ tan2 αt + nǫ(1+ tan2 αt)

+ǫ tan2 αd + τ
1

cos2 αd
. (67)

Practical design of the 3D TD-Bar requires delicate handling of
the angles of self-similar T-Bar and D-Bar components due to
the possibility of entanglement. This can be avoided by setting
the angles at each self-similar level strictly less or equal to that of
the previous self-similar iterations at the cost of minimum mass.

Example 8: Consider a TnD1 bar which has a length of
L = 10m, angles of ∀αti = αd = 10◦ and a compressive load
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FIGURE 14 | Problem Description for the deployable support structure.

FIGURE 15 | Mass of ith D-Bar changing with complexity.

of F = 1000N. The materials are selected as given in Table 1.
Figure 13 shows the mass ratio of the configuration as the
complexity of the structure increases.

Two vertical lines in the graph represent the change in the
primary mode of failure from buckling to yielding. As shown
in the figure above T7D1 turned out to be the optimum mass
configuration for the given load and length of the structure.

Besides the normalizedmass ratio, the gain relations described
in section 2 are modified for TnD1 bar as:

GTD
1 = 2n

cosαd − cosαd0

sinαd − sinαd0
, (68)

GTD
2 =

1

tanαd
, (69)

GTD
3 =

kd

tanαd
. (70)

Furthermore, the stiffness of the TnD1 bar is also given as

KTD ≈
kd

2n tan2 αd
. (71)

TABLE 3 | Optimal Complexities (qi ), angles(α0i ), and masses(mi ) of ith D-Bar.

i = 1 i = 2 i = 3

qi 4 4 6

α0i 10◦ 15.3◦ 20.2◦

m(kg) 6.8× 10−3 8.2× 10−3 6.5× 10−3

Equation (71) is the equivalent stiffness of the 2n serially
connected D-Bars with the approximated stiffness formulation
derived in Equation (45).

It is possible to simplify GTD
1 further if αd ≈ αd0. Using the

procedure described in section 4 for αd = αd0 + h, the GTD
1

reduces to

GTD
1 = −2n tanαd. (72)

Example 9: For the TnD1 bar designed in example 8, the gains are
GTD
1 = −22.5 andGTD

2 is 5.6. For theGTD
3 calculation the stiffness

of the string, kd must be known. Adopting the similar approach
as presented for the derivation of Equation (28), kd is given by:

kd = 2n
EsF

Lσy
, (73)

and for this example, it takes the value of kd = 569N/mm leading
to GTD

3 = 3226N/mm. Stiffness of the TnD1 bar is also calculated
as KTD = 143N/mm.

7. DESIGNING A MINIMAL MASS LOADED
PLATFORM TO DEPLOY TO A SPECIFIED
SHAPE AND STIFFNESS

Consider a deployable support structure composed of D-Bars
to orient a host with 4 different segments, S1, S2, S3, and S4
as depicted in Figure 14. In this example, there are 5 discrete
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FIGURE 16 | Deployable support structure. (A) Initial configuration, (B) Deployed configuration.

segments and 5 D-Bars are used to support and orient them. Each
segment has a mass of m = 100kg and a length of Ls = 0.25m.
The initial length l0 of all D-Bars are equal to 0.25m as shown in
Figure 14. The materials selected are as given in Table 1.

When the final configuration is achieved by deploying all the
D-Bars to their desired positions, the angle α of all D-Bars are
10◦. When deployed, edges of each segment are required to trace
the curve y = Kx2. The origin of the coordinate system is
chosen as the symmetry axis of the parabolic surface function
and the weights of each segment are shared by D-Bars attached
to their edges. The purpose is to minimize the masses of the all
D-Bars considering the weight of the platform and design them
to generate enough 1L to satisfy the final shape requirement.

Section 2 shows the mass ratio µ for the minimal mass D-
Bar for buckling condition. In this example, each D-Bar would
have their own optimal configuration in terms of mass efficiency
to satisfy the extension requirement 1L. Thus, the complexities
and angles of each D-Bar may be different. The symmetry of the
structure allows to focus on the design of D-Bars for one half and
extend the analysis to cover the whole. Thus, by defining a queue
number i where i is 1 at the center and goes to i = 3 at the corner,
minimal mass of a D-Bar satisfying buckling constraint is given
by:

mi
b =

2l20ρb

(2 cos5 α0)
qi
2

√

Fi

πEb
+

ρs

σs
Fil0(cos

−2qi α0i − 1). (74)

If the bar lengths get small and yielding becomes the primary
mode of failure, then the mass of D-Bar becomes:

mi
y =

ρb

σb
Fil0(cos

−2qi α0i)+
ρs

σs
Fil0(cos

−2qi α0i − 1), (75)

where angle α0i is the initial angle of the ith D-Bar. Using the
geometrical relations, it is possible to relate cosα0i to final desired
configuration angle α as:

cosα0i =
( l0

1Li + l0

)
1
qi cosα. (76)

The1Li in Equation (76) is the length change requirement on the
ith D-Bar and is a function of the corresponding xi coordinate.
Since the length Ls should be conserved, the xi of the ith D-
Bar becomes the real positive root of the following polynomial
satisfying the inequality xi > xi−1:

x4i +
(1− 2K2x2i−1

K2

)

x2i −
(2xi−1

K2

)

xi +
(x2i−1 + K2x4i−1 − L2s

K2

)

= 0.

(77)

After the xi for the ithD-Bar is substituted to the parabolic shape
equation y = Kx2, the 1Li of the ith D-Bar becomes 1Li = Kx2i .
Substituting Equation (76) back to Equations (74) and (75), we
get:

mi
b =

2l20ρb

(2 cos5 α)
qi
2

√

Fi

πEb

(1Li + l0

l0

)5/2

+
ρs

σs
Fil0

[

cos−2qi α

(1Li + l0

l0

)2
− 1

]

, (78)

mi
y =

ρb

σb
Fil0(cos

−2qi α)
(1Li + l0

l0

)2

+
ρs

σs
Fil0

[

cos−2qi α

(1Li + l0

l0

)2
− 1

]

. (79)
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TABLE 4 | Values of the gains and stiffness of the D-Bars for initial and final

configurations.

G1 G2 G3 (N/mm) K(N/mm)

Initial i = 1 −5.4 43.3 7, 560 1, 340

i = 2 −7.8 26.1 4, 570 524

i = 3 −51.4 63.1 5, 500 83

Final i = 1 −5.4 43.3 7, 560 1, 340

i = 2 −5.4 43.3 7, 560 1, 340

i = 3 −31.36 168.1 14, 660 433

Total mass of all the D-Bars is found as

m = 2

3
∑

i=1

max(mi
b,m

i
y)−max(m1

b,m
1
y) (80)

Substituting for K = 0.35 and i = 1, 2, and 3, the masses of each
individual D-Bar are evaluated for the complexity span between
q = 1 · · · 10. Figure 15 shows the variation in mass of each
individual D-Bar with increasing complexity.

From Figure 15, the optimal complexities for the 1st and 2nd
D-Bars are same whereas the optimal complexity of the 3rd D-
Bar is higher. Please note that themass values are not same for the
same complexity D-Bars because of the different α0i. The optimal
complexities, angles and the masses of each D-Bar are shown in
the Table 3.

Note that as the D-Bar is located toward the edge, the angles
of the initial position becomes higher and higher. This is due
to the fact that, as previously described in the theorem 1, the
longer length changes require higher values of initial angles. The
total mass using the formula given in Equation (80) becomes 36.2
grams. Figure 16 shows the final configuration of the structure
after the D-Bars generate 1L.

The gain and stiffness values of the D-Bars supporting the
structure are calculated for the angle and complexity information
given in Table 3. Table 4 shows those values for the initial and
final configurations of ith D-Bar.

It should be noticed from Table 4 that since there is no
deformation on the D-Bar at the center, it will keep its gain
relations and stiffness constant. The gain and stiffness change
between initial and final configurations gets higher as the D-
Bar gets closer to the edges. This is due to increasing angular
change during deployment. As explained before, the gains and
stiffness values are nonlinear functions of the complexity and
angles. Thus, during the design phase, if gains and stiffness values
should have a specific value or range, careful evaluation of the
problem to satisfy such requirements is necessary.

8. DISCUSSION AND CONCLUSION

This paper designs tensegrity D-Bar systems that can serve either
of these functions: (i) sensors to measure displacements, (ii)

sensors to measure force, (iii) actuators to control displacement,
(iv) actuators to control force applied, (v) minimal mass
compressive structures subject to a stiffness requirement, and (vi)
deployable structures that are efficient in compressive loads. To
facilitate such designs, new analytical formulas are derived to give
the system a specified displacement gain or force gain, or stiffness
requirement.

First, an approach is developed to use the D-Bar for
sensing applications. In this case, three different gain relations
between the environment and the structural parameters are
defined. It is shown that by using the self-similarity approach,
it is possible to increase the gain value of the structure
leading to the lower tensions and displacements on the strings.
Furthermore, by changing the angle of the D-Bar, it is possible
to increase or decrease the magnitude of the gains for the
D-Bar. It is also shown that for displacement measurement,
the angle α should be high whereas the force measurement
case requires lower angle α for the higher magnitude of the
gain.

Second, the stiffness analysis for the planar and 3D D-
Bar systems are analyzed separately for their global stiffness
under compressive loading condition. It is shown that as the
angle α decreases, the stiffness increases for any complexity.
This observation is valid for both the planar and 3D
configurations. However, the stiffness behavior of the 3D D-
bar system differs from the planar case for the increasing
complexity. The increase in the number of the strings for
3D configuration dominates the stiffness formulation after a
few self-similar steps and the stiffness tends to increase with
the complexity in contrast to the planar configuration. Third,
the mass of the planar D-Bar is derived subject to global
stiffness requirements. However, checking the stiffness is not
enough for this case. The yield condition for the strings
should also be considered for the mass calculation of the
strings.

Finally, a structure combining the D-Bar and the T-Bar
is presented. The aim of such combination is to utilize
both the minimal mass property of the T-Bar and the
deployable property of the D-bar. The overall analysis showed
that the TnD1 system can be employed as a deployable
structure functioning as a sensor, actuator or both while
satisfying a stiffness requirement and providing an optimum
mass solution. Using these results, the paper shows how
to design loaded platforms that can deploy to a specified
shape while guaranteeing a specified stiffness and minimizing
mass.
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