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Targeted mass spectrometry has become the method of choice to gain absolute

quantification information of high quality, which is essential for a quantitative

understanding of biological systems. However, the design of absolute protein

quantification assays remains challenging due to variations in peptide observability and

incomplete knowledge about factors influencing peptide detectability. Here, we present

a deep learning algorithm for peptide detectability prediction, d::pPop, which allows the

informed selection of synthetic proteotypic peptides for the successful design of targeted

proteomics quantification assays. The deep neural network is able to learn a regression

model that relates the physicochemical properties of a peptide to its ion intensity detected

by mass spectrometry. The approach makes use of experimentally detected deviations

from the assumed equimolar abundance of all peptides derived from a given protein.

Trained on extensive proteomics datasets, d::pPop’s plant and non-plant specific models

can predict the quality of proteotypic peptides for not yet experimentally identified

proteins. Interrogating the deep neural network after learning from∼76,000 peptides per

model organism allows to investigate the impact of different physicochemical properties

on the observability of a peptide, thus providing insights into peptide observability as a

multifaceted process. Empirical evaluation with rank accuracy metrics showed that our

prediction approach outperforms existing algorithms. We circumvent the delicate step

of selecting positive and negative training sets and at the same time also more closely

reflect the need for selecting the top most promising peptides for targeting a protein

of interest. Further, we used an artificial QconCAT protein to experimentally validate the

observability prediction. Our proteotypic peptide prediction approach not only facilitates

the design of absolute protein quantification assays via a user-friendly web interface but

also enables the selection of proteotypic peptides for not yet observed proteins, hence

rendering the tool especially useful for plant research.
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INTRODUCTION

System-wide studies to identify and quantify the protein
components are key to understand the complex cellular
dynamics in response to system perturbations. Therefore,
mass spectrometry-based proteomics approaches have become
an integral element for biological research. While relative

quantification methods are suited to generate accurate and
comprehensive data series on changes of a cell’s protein
content, targeted proteomics approaches can provide absolute

quantification information, which are essential for biochemical
system simulations during perturbations (Kuster et al., 2005).
To quantify selected proteins of interest, a known amount
of synthetic proteotypic peptides (PTPs) that mimic peptides
produced by the proteolytic cleavage of target analyte proteins,
are spiked into a cell extract. Either the synthetic peptides or
the proteins in the extract are labeled with stable isotopes, thus
leading to light and heavy peptide pairs. After ionization, these
pairs can be separated and quantified by mass spectrometry, with
the synthetic peptide serving as calibrator (Barnidge et al., 2003;
Gerber et al., 2003).

However, the selection of PTPs suited for the absolute
quantification of the target proteins remains challenging and
cumbersome. The difficulties are due to the large variation
of observability of peptides from the same protein with
knowledge on the factors influencing the detectability being

fragmentary. Two strategies how to select appropriate surrogate
peptides for absolute quantification are commonly present in
the literature: the first is a selection process based on expert
rules. Here PTPs are chosen from previously performed mass
spectrometry experiments dedicated to identify the proteins of
interest, or this information is taken from public repositories
like PeptideAtlas (Desiere et al., 2006), Pride (Martens et al.,
2005), SRMAtlas (Picotti et al., 2008; Kusebauch et al., 2016),
Panorama (Sharma et al., 2014), and SwathAtlas (Rosenberger
et al., 2014). Experimentally gained information on the presence
of the peptides is then combined with rule-based criteria like
the existence of possible modifications, missed cleavages, and the

presence or absence of certain amino acids to select suitable PTPs
(Bereman et al., 2012; Mohammed et al., 2014; Scott et al., 2016).
However, if experimental data is incomplete, as is the case in plant
proteomics research, the observability of many peptides cannot
be assessed.

For yet unidentified proteins, the second selection strategy
relies on the accurate prediction of the observability of a
peptide for targeted quantification. It could be shown that the
computationally assisted assay design is more cost- and time-
efficient compared to unautomated expert design approaches
(Picotti et al., 2010). ChemScore is an implementation of such
a decision-based strategy in the context of MALDI-MS (Parker,
2002). In the past, several algorithms have been proposed
that challenge PTP prediction with different machine learning
methods. Those methods are general-purpose approaches to
learn relationships from data and follow the canonical workflow:

(i) data collection and defining a training set, (ii) numerical
feature extraction, (iii) fitting a predictive model, and (iv)

model evaluation. Following this generic process, the algorithms
available for PTP prediction differ regarding the definition of
the learning problem and therefore in the realization of the
respective steps regarding the canonical workflow. Most of the
approaches construct a binary classification problem and sort
the peptides into the two categories of observable (“flyers”) and
non-observable (“non-flyers”) peptides. This idea was shown to
be applicable when peptide detectability was first described in
the context of LC-MS by Tang et al. who proposed a proof-of-
concept study, training an ensemble of small neural networks
serving as the first machine learning-based predictor of peptide
detectability (Tang et al., 2006). PeptideSieve (Mallick et al.,
2007) applies a Gaussian mixture model and CONSeQuence
(Eyers et al., 2011) a combination of different machine learning
techniques on peptides that have been detected in at least 50%
of the times that their parent protein was observed in high
quality yeast data sets. STEPP (Webb-Robertson et al., 2008)
uses support vector machines (SVM) to build a model from
non-identified and identified peptides previously reported in
high quality accurate mass and elution time (AMT) proteomics
studies. ESPPredictor (Fusaro et al., 2009) uses Random Forest to
classify peptides according to their threshold-based high or low
signal peak intensity at the precursor ion level.

Here we present d::pPop, a deep learning algorithm for
peptide detectability prediction, that circumvents the binary
classification and therefore the critical distinction between
peptides that have not been observed experimentally, yet, and
those that truly are non-observable. Theoretically, proteotypic
peptides deriving from the same protein should all be present
in equimolar abundances. Experimentally observed deviations
from this can only be explained by differences in peptide
observability, that depends on ionization efficiency, variability
in signal acquisition, digestion efficiency, and the occurrence
of post-translational modifications. Therefore, we rank the
peptides within the same protein according to their measured
abundance and convert the problem to a “learning to rank”
problem. Classical learning methods like SVMLight, RankNet,
or LambdaMart, designed to solve ranking problems, are usually
used in information retrieval and web searches and were first
applied to the peptide ranking problem by the PeptideRank
algorithm (Qeli et al., 2014). Here we designed a deep learning
network structure dedicated to the specific properties of the
peptide ranking problem. d::pPop accounts for the essential
difference between peptide ranking compared to ranking web
sites, that is the relation between the query peptide’s relative
abundance within its parent protein is statistically linked to
its physicochemical features and is continuous. Therefore, we
consider the proteomics workflow as a special ranking process
where the relative deviation from the maximal detectability of a
given peptide can be explained by its physicochemical properties.
By learning from ∼150,000 peptide sequences from plant and
non-plant organisms, we can optimally capture the difference in
peptide observability. In a systematic evaluation that reflects the
peptide selection principle for targeted proteomics, our approach
outperforms previously published PTP prediction algorithms.
Further, d::pPop’s artificial intelligence can be interrogated after
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learning from themeasurement data about factors that determine
peptide observability.

MATERIALS AND METHODS

Datasets and Data Processing
The establishment of our method required the assembly of
large shotgun proteomic data sets for both model organisms,
baker’s yeast (Saccharomyces cerevisiae) and Chlamydomonas
reinhardtii (C. reinhardtii). To achieve an extensive coverage
of observable and quantifiable peptides, we blended proteomics
data from several studies into two distinct assemblies, one for
each model organism. For both assemblies, peptide spectrum
matches (PSMs) of fully tryptically digested peptides with a
MaxQuant posterior error probability of at most 0.01 were
considered. The resulting lists were subsequently filtered for
PTPs (Qeli and Ahrens, 2010). As an estimator for peptide
observability, the areas of the extracted ion chromatograms
(XIC) were chosen and peptides were ranked accordingly,
with a lower rank indicating a higher abundance. This vast
collection of peptides was then expanded by including peptides
that have not been quantified, i.e., which had an XIC value
of zero. The yeast data sets were downloaded from the
PRIDE repository (IDs: PXD000409, PXD002694, PXD004028,
PXD004028, PXD005041, and PXD005795). All data sets from
C. reinhardtii were combined from previous proteome-wide
studies (Mühlhaus et al., 2011; Hemme et al., 2014; Mettler
et al., 2014; Schmollinger et al., 2014; Werth et al., 2017). Both
data sets were subsequently filtered for single occurrence of all
proteins. If a protein was measured in more than one study,
we kept the protein with most identified peptides to maximize
the information in the data sets (Supplemental Data Sheet 1).
Subsequently, we randomly removed 20% of the proteins in
each assembly to use them as validation-data-sets to control
for sufficient generalization of trained deep neural networks
(DNNs). Thus, we obtained two training datasets consisting of
2,652 yeast and 2,732 C. reinhardtii proteins and two validation
datasets consisting of 664 yeast and 685 C. reinhardtii proteins.
An additional test dataset for the plant model was constructed
accordingly, using Arabidopsis thaliana data downloaded from
the PRIDE repository (IDs: PXD006257) containing 1,074
proteins.

Learning to Rank Algorithms
Many modern applications such as document retrieval, object
rating or product recommendation rely on the accurate ranking
of candidate entities, which led to the development of various
machine learning algorithms targeting the “learning to rank”
problem. Besides the mentioned applications, also the prediction
of observable peptides can be formulated as a ranking problem.
In proteomics experiments, a set of m proteins Pr= {pr1, pr2,. . . ,
prm} is thought to be present in the possibility space. Due to
the nature of shotgun proteomics approaches, each protein pri

is indirectly measured by a set of n possible peptides Pi = {pi1,
pi2,. . . , p

i
n}, where n results as a direct consequence of protein

sequence and selected digestion parameters. Moreover, each set
of peptides Pi is assigned to a set of n scores Si = {si1, s

i
2,. . . , s

i
n},

where sij reflects the observability of p
i
j with respect to protein pr

i.

Choosing the score sij is typically open to the researcher and can

thus take different shapes, like the logarithmic transformation
of spectral counts (Qeli et al., 2014) or, in our case, the relative
XIC intensity, obtained by grouping training set peptides by
their protein identifier and subsequent normalization by themost
abundant peptide to correct for differences in protein abundance.

Subsequently, each peptide sequence is processed using
the BioFSharp framework (available at: https://github.com/
CSBiology/BioFSharp) and converted into a feature vector
with 45 entries which represents a numerical footprint of
physicochemical peptide properties. The selected set of peptide
features is based on an initial library of 574 features of the
AAindex1 (Kawashima, 2000). From this library, amino acid
frequencies and ten general properties were chosen: molecular
weight, isoelectric point, peptide length, net charge, positively
charged residues, negatively charged residues, relative frequency
of polar amino acids, and relative frequency of hydrophobic
amino acids, and relative frequency of negatively charged
amino acids. This set is extended by subsets of features
retrieved from the AAindex1 (Kawashima, 2000), sampled,
and further optimized to contain minimal redundancy while
retaining maximum relevance. This optimization included
pairwise feature correlation followed by hierarchical clustering,
minimum spanning tree analysis, and subsequent cluster-wise
importance ranking (Qeli et al., 2014). Thereby, the list of features
was extended by Activation Gibbs energy of unfolding at pH 9.0
(Yutani et al., 1987), amino acid composition of MEM of single-
spanning proteins (Nakashima and Nishikawa, 1992), principal
component II (Sneath, 1966), hydrophobicity index (Wolfenden
et al., 1981), the Chou-Fasman parameter of coil conformation
(Charton and Charton, 1983), average number of surrounding
residues (Ponnuswamy et al., 1980), interior composition of
amino acids in intracellular proteins of mesophiles (Fukuchi
and Nishikawa, 2001), weights for coil at the window position
of −3 (Qian and Sejnowski, 1988), helix formation parameters
(delta delta G) (O’Neil and DeGrado, 1990), free energy in
alpha-helical regions (Muñoz and Serrano, 1994), average relative
fractional occurrence in EL (i) (Rackovsky and Scheraga, 1982),
and composition of amino acids in extracellular proteins (Cedano
et al., 1997). We further extended this list by the hydrophobicity
index 2, the frequency of occurrence of missed tryptic cleavage
sites in the peptide sequence, and C- and N-terminal digestion
probabilities (Kawashima, 2000; Siepen et al., 2007).

Deep Peptide Observability Predictor
(d::pPop)
The fundament of the d::pPop algorithm is a deep fully connected
feed forward neural network architecture implemented in F#
using the Microsoft Cognitive Toolkit (CNTK, available at
https://github.com/Microsoft/CNTK). The network architecture
and training parameters were applied irrespective of the
organism-specific data used for training. The basic network
architecture consists of five dense layers with 128 nodes each
(Figure 1). Neurons were modeled as rectified linear units
(ReLUs), since it was shown that DNNs with ReLUs train
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FIGURE 1 | Schematic overview of the deep learning approach d::pPop to predict the rank of peptide observability within plant and non-plant specific query proteins.

The algorithm is based on deep neural networks and is trained on experimentally observed proteins with all PTPs protein-wise normalized to the peptide with

maximum intensity to match the assumption of equal molarity. The feature vectors are computed to represent the physicochemical properties of the peptide

sequences. The deep neural network is able to learn a regression model that relates the physicochemical peptide properties to the difference in peptide intensities

within a single protein in the proteomics workflow. The plant and non-plant specific models can predict the quality of PTPs for not yet experimentally identified proteins.

several times faster and minimize the risk of problems with
vanishing gradients (Krizhevsky et al., 2017). To reduce the risk
of overfitting, we relied on the very efficient “dropout” technique,
which at a probability of 0.2 sets the output of a ReLU to zero, thus
eliminating its influence on the back propagation of the gradient
during the training phase (Hinton et al., 2012). The networks
were trained using a minibatch size of 3 for 10 epochs and a
training set of 76,117 yeast peptides and 76,962 C. reinhardtii
peptides. As a loss function, we relied on the squared error
between predicted observability and normalized peptide intensity
(see section on Learning to Rank Algorithms). The optimization
of network weights was carried out using a stochastic gradient
descent at a learning rate of 0.001.

Evaluation of Ranking Accuracy
Since the efficient design of QconCAT proteins is tied to
the selection of only a small set of peptides per protein of
interest, it is favorable to use a metric that credits a high
prediction accuracy on the top results, while being robust to
permutations of lower ranking peptides. A measure that gained
high popularity among the information retrieval community

and fulfills the aforementioned requirements is the normalized
discounted cumulative gain (nDCG) implemented as:

nDCG@k =

∑k
i = 1

log2s(pi)
log2(1+i)

∑k
i = 1

log2s(qi)
log2(1+i)

Where @k determines until which position the ranking quality is
examined, s resembles the relevance score (see section Learning
to Rank Algorithms), and pi and qi being the predicted peptide at
ith position and the observed peptide at ith position, respectively
(Järvelin and Kekäläinen, 2002).

Evaluation of Feature Importance
While the selection of features is driven by considerations of
human experts, the analysis of their contribution to the activation
potentials of the neural network nodes can give insights into the
relevance learned by the network after being confronted with
thousands of real-world examples. To do so, we analyzed the
activation potentials of ReLUs present in the first hidden layer
of our networks (Roy et al., 2015). For a feature i of a training
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example x the activation potential of a first hidden layer neuron j
is calculated as:

aij = wjixi + bj

with wj being the learned weight and bj the learned bias. The
average activation potential pij of one feature i can be estimated
across M training examples using:

pij =
1

M

M
∑

k=1

∣

∣

∣
akij

∣

∣

∣

which can then be used to calculate the relative contribution cij
of the ith input feature by:

cij =
aij

∑N
i=1 pij

Finally, summing across all first hidden layer neurons H leads to
the net positive contribution c+i of one feature as:

c+i =

H
∑

j=1

fR(cij)

with fR being the activation function of a ReLU:

fR
(

aj
)

= max(0, aj)

QconCAT Protein LC-MS/MS Analysis
The photosynthesis QconCAT protein (PS-Qprot) used to
evaluate the d::pPop PTP predictions was described by Hammel
et al. (2018) in this issue. Here, 50 µg of total C. reinhardtii
protein (corresponding to 3.87× 106 cells) were mixed with 0.25,
0.5, 2.5, and 5 µg 15N-labeled PS-Qprot, respectively. Samples
were measured using a Triple-TOF 6600 (Sciex). LC-MS/MS
run and sample preprocessing was carried out as described in
Hammel et al. (2018). BioFSharp was used for the extraction of
ion chromatograms and for the quantification of peak areas of
heavy Q-peptides and light native peptides.

RESULTS

Deep Learning to Rank Workflow
The d::pPop algorithm presented here aims to be an all-in-one
solution for the selection of PTPs to be used for absolute protein
quantification. This is achieved by the combination of a feature
extraction workflow developed using the BioFSharp toolkit with
recently developed machine learning tools (Yu et al., 2014). The
algorithm is based on the idea that peptide observability can
be interpreted as a dependent variable that can be estimated by
regression-based methods.

The whole workflow is explained best when focusing on
the retrieval of PTPs for a protein of interest. (i) As a first
step, d::pPop retrieves all tryptic peptides for a given protein

from a user-provided database. (ii) This set of peptides is then
classified (Qeli and Ahrens, 2010) and only peptides of class
1a, representing distinct peptides, are considered as PTPs and
retained for further processing steps. (iii) Remaining peptides
are analyzed and corresponding feature vectors are calculated.
The selection of peptide features represented in the vectors
includes the relative amino acid abundance as well as a set
of ten general properties (e.g., molecular weight, isoelectric
point). This set was further enlarged by a subset of properties
present in the AAindex1 (Kawashima, 2000). This subset was
created by an optimization procedure aiming to achieve minimal
redundancy while retaining maximum relevance (Qeli et al.,
2014). Each computed feature vector serves as a numerical
physicochemical footprint of a peptide and can be viewed as a set
of independent variables which, mapped by a function, provides
us with an estimated peptide observability. (iv) Consequently,
these feature vectors are then fed into a DNN assigning a
predicted observability to each peptide based on its feature
vectors. This observability is then normalized by the highest
scoring peptide to provide the user with a result list that is ranked
in descending order by score.

The formulation of peptide observability as a dependent
variable fits the capabilities of DNNs, which are theoretically
capable to approximate any bounded continuous function
(Mitchell, 1997). After training [see section Deep Peptide
Observability Predictor (d::pPop)], the neural network (with
five hidden layers and 128 neurons each) is capable of using
learned weights and biases, thereby capturing complex feature
relationships present in the training data. These act as a
multivariate function, therebymapping computed feature vectors
to peptide observabilities, which undergo further processing as
described above. To account for putatively occurring organism-
specific differences, we used two distinct training sets (see section
Datasets and Data Processing) and incorporated both trained
DNNs into d::pPop.

Comparison of Prediction Performance
In a thorough empirical evaluation, we compared d::pPop
with existing PTP predictors including the rule-based approach
ChemScore (Parker, 2002) as well as machine learning-based
approaches represented by PeptideSieve (Mallick et al., 2007),
PeptideRank (Qeli et al., 2014), CONSequence (Eyers et al.,
2011), and ESPPredictor (Fusaro et al., 2009). Since all used
data sets contain quantitative information about each peptide,
we can calculate the relative rank of each peptide within a given
protein and use the nDCG as a suitable metric for performance
evaluation. The nDCG metric credits a high prediction accuracy
according to its relevance for ranking and ranges from zero
to one, indicating random to correctly ranked top peptides
according to observed abundance (see section Evaluation of
Ranking Accuracy). This approach is well-suited for the aim
of targeted proteomics, where a small number of representative
peptides is selected to quantify a given target protein.

As most of the previously released PTP predictors have been
trained on LC-MS/MS data sets from yeast, we first analyzed
the performance of d::pPop that has been trained on 2,652
yeast proteins to predict the 664 remaining proteins of the
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FIGURE 2 | Prediction results using d::pPops non-plant model in comparison with common PTP predictors for the yeast proteome. The evaluation was performed

using a yeast proteome data set consisting of 664 proteins. (A) According to the nDCG@4 as a measure of ranking accuracy shown with box plots for the different

prediction results, all algorithms are consistently performing better than the randomized ranking of peptide queries. However, it can be observed that d::pPops ranking

accuracy is higher in average compared to the other PTP predictors. (B) The corresponding cumulative distribution representation reflects the more accurate

prediction by the line being closer to a constant nDCG@4 value of 1.

yeast proteome. In this comparison, d::pPop achieved a higher
median nDCG@4 score than the other predictors (Figure 2A).
The corresponding cumulative distribution (Figure 2B blue line)
indicates a more accurate prediction by being closer to a constant
nDCG@4 value of 1 corresponding to an ideal ranking. The data
demonstrate that d::pPop outperforms the other PTP predictors
in a rank-based comparison.

Plant Species Specificity
Previous studies suggest an organism-specific effect on the PTP
predictive power caused by organism-dependent differences in
amino acid frequencies and therefore reflected by the peptide
properties (Webb-Robertson et al., 2008; Qeli et al., 2014). To
analyze organism-specific effects, we compared the nDCG@4
cumulative distributions resulting from the d::pPop predictions
on the C. reinhardtii proteome data set based on d::pPops
non-plant (orange lines) and plant (blue lines) models. The
non-plant model was trained on yeast, the plant model was
trained on C. reinhardtii LC-MS/MS data sets. First, we evaluated
the prediction accuracy on the training data set of 2,732
proteins (dashed lines) in comparison to the test data set
consisting of 685 proteins (solid lines) (Figure 3). The small
difference in performance between training and test data for
the same model evidences that both d::pPop models do not
suffer from overfitting. The comparison of how the two models
predict peptide observability for the C. reinhardtii test data
revealed a substantial difference in prediction accuracy. This
is also true for the prediction of the A. thaliana test data
set (Supplemental Figure 1). This indicates that prediction is
organism-specific (Figure 3, solid lines).

The observed organism-specific effect calls for a comparison
of d::pPop with other PTP predictors regarding their predictive
power on the plant data set. Most predictors produced a higher
median nDCG@4 score on the plant data than on the yeast data,

FIGURE 3 | Effect of organism-specific models on PTP predictor accuracy.

Comparison of d::pPop prediction results for a Chlamydomonas reinhardtii

proteome data set using d::pPop’s non-plant (orange lines) and plant (blue

lines) model. The cumulative distributions of the nDCG@4 showed only a small

difference between predictions on training (dashed lines) and test (solid lines)

data sets. The data indicates that the models do not suffer from extensive

overfitting since the performance does not differ substantially. However, it can

be observed that the non-plant model generalizes imperfectly, which indicates

that prediction is indeed organism-specific.

thus corroborating the organism bias on the predictive power
(Figure 4). Furthermore, as was true for the yeast data set, the
median nDCG@4 scores reached by the other PTP predictors
were below that reached by d::pPop. This suggests that d::pPop
performs best in rank-based comparisons, thus recommending
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d::pPop for the prediction of peptide observability in plant
proteomics.

Experimental Validation of d::pPop
Predictions
To experimentally test the observability prediction, we applied
d::pPop to predict the observability of 32 peptides from a
QconCAT protein that was tryptically digested and analyzed
by LC-MS/MS. This QconCAT protein (PS-Qprot) targets ten
soluble and membrane-intrinsic photosynthesis proteins in C.
reinhardtii (Hammel et al., 2018). The measurement of all
PS-Qprot peptides rendered an artificial scenario that could
not be accounted for in the training dataset. A Pearson
correlation coefficient of 0.62 suggested a decent agreement
betweenmeasured and predicted normalized peptide abundances
(Figure 5). In contrast to the evaluation based on the nDCG@4
score, this result indicates that the prediction of the final rank is
possible and that the regression on the relative peptide abundance
is according to the measurement.

d::pPop Selects Optimal Signature
Peptides for Targeted Proteomics Assays
After the validation of the d::pPop observability prediction we
tested, whether the prediction can be used for signature peptide
selection in a targeted quantification assay. For this purpose,
we employed experimental data gained during the absolute
quantification of C. reinhardtii photosynthesis proteins using the
15N-labeled PS-Qprot (Hammel et al., 2018). For each protein
covered on the PS-Qprot, we performed an in silico tryptic
digestion and a d::pPop observability prediction. We sorted
each peptide within every protein according to its predicted
rank and compared the top-ranking peptides with the manually

selected and validated Q-peptides (Figure 6). For 80% of the
Q-peptides that have received a high d::pPop score, a robust
quantification of the native peptide was achieved, as judged
from a low dispersion estimate of quantification values and
positive correlations between labeled QconCat and unlabeled
C. reinhardtii cell extracts on the peptide and protein levels
(Supplemental Figures 2 and 3). The comparison indicates that
the d::pPop prediction strongly facilitates the correct selection of
suitable surrogate peptides for absolute protein quantification.

Contribution of Physicochemical
Properties
The use of deep learning neural network approaches enabled
us to interrogate our trained artificial network to estimate
the importance of individual physicochemical properties for
the observability of a given peptide. We followed a procedure
according to that described by Roy et al. (2015) to determine
the contributions of the neural network nodes to the activation
potentials. After the network has been confronted with the
training data (76,117 yeast peptides and 76,962 C. reinhardtii
peptides), the relevance of each individual physicochemical
property can be calculated from the different neuronal weights
assigned by the network during learning (Figure 7). The
small contributions to the activation potential by the different
physicochemical properties indicated that PTP prediction is a
problem that is not simply explained by a small subset of
dominant features, but rather by the complex interaction of
more homogeneous features. Especially the impact of structural
features has been shown to be uniform, suggesting that
microdomain formation, analogous to protein folding, appears
to be a common denominator (Weaver, 1982; Islam et al.,
2004). It was not surprising that the number of missed cleavages

FIGURE 4 | Prediction results for the Chlamydomonas reinhardtii proteome using d::pPop’s plant model in comparison with common PTP predictors. The evaluation

was performed using a C. reinhardtii proteome data set consisting of 685 proteins. (A) According to the nDCG@4 presented with box plots for the different prediction

results, all algorithms showed a nDCG@4 that was consistently higher in average than the randomized ranking of peptide queries. However, it can be observed that

d::pPops ranking accuracy is superior in comparison to existing PTP predictors. (B) The corresponding cumulative distribution representation reflected the more

accurate prediction by the line being closer to a constant nDCG@4 value of 1.
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FIGURE 5 | QconCAT observability prediction. The prediction of the

normalized intensities of the Q-peptides is in solid agreement with the

measured normalized intensities, showing a Pearson correlation coefficient of

0.62.

was the feature with the lowest predictive power, as it was
included as a negative control since peptides containing missed
cleavages were filtered out during the training and prediction
steps. However, the analysis revealed that some features are
slightly more important than others. Hydrophobicity showed the
strongest activation potential, which is in agreement with current
literature, explaining the effect by impacts on chromatography
and ionization (Jarnuczak et al., 2016). Peptides eluting later in
the reversed phase gradient are more hydrophobic and, hence,
are likely to ionize better simply due to improved desolvation
at the higher organic solvent concentrations required for their
elution (Tang and Smith, 2001). Additionally, hydrophobicity
may facilitate evaporation from droplets during ESI, because
hydrophobic peptides have a higher localization probability
toward the droplet’s surface (Enke, 1997; Cech and Enke, 2000).

It is also noticeable that the three phosphorylatable amino
acids threonine, serine, and tyrosine were under the top 30%
of features with a somewhat higher impact on observability.
The organism-specific prediction accuracy was consequently
manifested by differences in feature importance for both
yeast (orange dots) and C. reinhardtii (blue dots) proteomes
(Figure 7). Substantial differences were apparent regarding the
impact of peptide length, the related feature molecular weight,
and positive charge. The results further emphasize the need for
an organism-specific, or at least organism group-specific, PTP
predictor model.

Web Interface d::pPop
In order to use d::pPop to predict PTPs for their own research,
users do not have to undergo installation procedures or provide

substantial computational resources, but can retrieve ranked
PTPs via an easy-to-use web interface (http://csbweb.bio.uni-kl.
de/) (Figure 8). The complete procedure is divided into a three-
step workflow: (i) Selection of one of d::pPops DNN models, (ii)
provision of a protein database in FASTA format, (iii) retreival
of ranked peptide sequences. The web interface allows the user
to select multiple proteins of interest. This workflow therefore
allows for a rapid selection of peptides for targeted proteomics
assays based on synthetic peptides or QconCAT proteins.

DISCUSSION

The prediction of peptides suitable for the absolute quantification
of cellular proteins is no easy task. Many labs design targeted
assays by selecting peptides based on rules described in the
literature (Bereman et al., 2012; Mohammed et al., 2014; Scott
et al., 2016). From a global perspective, this results in a quasi-
random selection process and leads to a costly experimental
trial-and-error method of problem solving. Therefore, any
improvement within this workflow can be considered a success.
The deep learning-based d::pPop predictor presented in this
study proved to be a valuable and robust predictor for peptide
observability that performs substantially better than previously
described ones. Therefore, it is a valuable method to select
candidate signature peptides for targeted protein quantification,
especially if MS-based experimental data is fragmentary or
missing. In the context of machine learning, the step of
selecting positive and negative training data is critical because
it is impossible to distinguish between not yet observed (but
measurable) and non-observable peptides. In contrast to other
predictors like PeptideSieve, CONSequence, and ESPPredictor,
our approach circumvents the selection of positive and negative
training data sets and exploits the fact that peptides derived
from the same protein should all be present at equal amounts
in a measurement. Reformulating the prediction problem into a
rank regression instead of a binary classification problem might
best capture the characteristics of a proteomics workflow as a
continuous ranking machine, where differences in ranking are
not equidistant. Further, d::pPop predicts PTPs in an organism-
specific context that improves the rank prediction as illustrated
in Figure 4, and consistently obtains better results compared
to other predictors trained on yeast data sets alone (Figure 2).
A comparable gain in prediction accuracy in the context of
mass and time proteomics has been observed before for the
three prokaryotic organisms Shewanella oneidensis, Salmonella
typhimurium, and Yersinia pestis (Webb-Robertson et al., 2008).
This suggests that amino acid frequency, composition, and
sequence context that vary between organisms, are relevant and
need to be modeled to build a useful prediction tool. This
is particularly important for plant proteomics and for other
research areas, where the availability of shotgun proteomics data
is limited. Considering data only from a single study might not
provide sufficient information to select peptides that give the
desired accuracy in protein quantification.

In this study, we show that all previously published
tools perform better than random selection and that our
deep rank learning-based approach increases prediction
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FIGURE 6 | Experimental validation of d::pPop predictions. (A) Exemplary comparison between d::pPop prediction results on the rbcL (C. reinhardtii) protein query

and experimentally validated surrogate peptides (orange dots). (A) The d::pPop prediction suggested quantifiable peptides as the top hits. (B) The Q-peptide with the

lowest d::pPop score showed the biggest deviation from the three other surrogate peptides, pointing to a less accurate quantification information. The complete set of

peptides present on the PS-Qprot are presented in Supplemental Figures 2 and 3.

FIGURE 7 | Ranking the influence of physicochemical properties on peptide observability. Net positive contribution of each input dimension (feature) of d::pPops plant

(blue dots) and non-plant (orange dots) DNNs in sorted order. The plot shows the different features and their respective activation potential used for learning the

models. The learned feature importance differs when learned from yeast (orange) and C. reinhardtii (blue) training data.

performance significantly (Figures 2, 4). One could argue
that the underperformance of ChemScore, PeptideSieve,
CONSequence, and ESPPredictor compared with d::pPop
is influenced by aspects of the nDCG@4 score used here as
evaluation metric. This metric rewards accurate predictions at
the top ranks and reduces the punishment for inaccuracies in
the lower ranks. We think that this metric reflects very well
the process of selecting only few surrogate peptides to target
the protein of interest for quantification and is therefore well
suited for the comparison of different prediction performances.
Moreover, also the PeptideRank algorithm uses the nDCGmetric
for its performance evaluation. Therefore, the reasons for the
discrepancies in prediction accuracy must have another origin.

The main difference between d::pPop and the other predictors is
that d::pPop predicts the rank more indirectly. While methods
inspired by web site ranking perform a pairwise comparison
of each web site within each query, we use a deep learning
architecture to perform a regression-based estimation followed
by a transformation that converts the predicted relative peptide
intensities (scores) into ranks. We could show that this method
performs well when compared with other methods. However,
the absence of a perfect correlation between observed and
predicted peptide intensities of the QconCAT protein (Figure 5)
indicates that some factors contributing to peptide observability
are not captured by d::pPop. Reasons for this might be that the
amino acid properties ignore the amino acid sequence context
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FIGURE 8 | Screenshot of d::pPops Web-Interface. The screenshot shows the implementation of d::pPop as a user-friendly web interface (http://csbweb.bio.uni-kl.

de/), which enables researchers to integrate the predictions in their workflow to design targeted protein quantification assays.

or consider it in a weaker and more indirect manner than
covered by the organism specificity. More importantly, even
though d::pPop feature selection takes the cleavage efficiency
into account, the models to predict cleavage efficiency are helpful
but incomplete (Siepen et al., 2007; Fannes et al., 2013; Meyer,
2014). We also neglected to separate effects specific to the
measurement device, which might impact the detectability of
certain peptides. Nevertheless, it seems that our models trained
on the combined data sets from different mass spectrometers
predict the observability of the QconCAT peptides measured
on a Triple-TOF 6600 (Sciex) instrument reasonably well
(Figure 5). At last, an important factor difficult to account for are
post-translational modifications (PTMs) that change the relative
abundance of a peptide. In cases where the peptide identification
search algorithm was not configured to search for specific PTMs,

peptides containing PTMs are observed with a lower relative
peptide abundance and ranked low. This might be the reason
for the higher impact of the phosphorylatable amino acids Ser,
Thr, and Tyr on peptide observability when compared with most
other amino acids (Figure 7). In future one can include large
PTM studies to account for more diverse changes in observability
caused by PTMs. The prediction would then depend more on
the biological context of the targeted proteomics study, like
different environmental conditions or developmental stages.
Beyond designing high quality QconCAT proteins using the
d::pPop algorithm one can think of other fields of application.
Predicted peptide observability could be used to narrow the
search space either in classical identification subsequent to a data
dependent MS run or prior to a data independent MS run for the
design of a spectral library. Further, the d::pPop prediction may
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potentially aid to increase peptide and protein identification by
adding a supplementary feature to discriminate between correct
and incorrect peptide sequence assignments. Consequently, it
could extend the feature space of popular tools like Percolator
(Käll et al., 2007) or MSBayes (Li et al., 2009).

CONCLUSION

The prediction of peptide observability is a crucial step to
enable researchers to choose suitable surrogate peptides for the
design of targeted protein quantification assays. To successfully
integrate the d::pPop prediction results into the design, it is
recommendable to further prioritize the list of ranked peptides
by taking additional aspects into consideration: (i) known
PTMs under specific conditions, (ii) digestion efficiency, and
(iii) potentially interfering transitions. An accurate prediction
of the top peptides and a succeeding, thorough design of
targeted proteomics assays considering additional, method-
specific requirements is expected to decrease the cost and
the labor significantly compared to selecting wrong and weak
surrogate peptides for subsequent assay development to perform
proteome-wide studies. To facilitate the process, we here release
the non-plant and plant-specific rank models to be used by

other researchers, implemented in a user-friendly d::pPop web
interface (http://csbweb.bio.uni-kl.de/).
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