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Reconstructing a connectome from an EM dataset often requires a large effort of
proofreading automatically generated segmentations. While many tools exist to enable
tracing or proofreading, recent advances in EM imaging and segmentation quality
suggest new strategies and pose unique challenges for tool design to accelerate
proofreading. Namely, we now have access to very large multi-TB EM datasets
where (1) many segments are largely correct, (2) segments can be very large (several
GigaVoxels), and where (3) several proofreaders and scientists are expected to
collaborate simultaneously. In this paper, we introduce NeuTu as a solution to efficiently
proofread large, high-quality segmentation in a collaborative setting. NeuTu is a client
program of our high-performance, scalable image database called DVID so that it
can easily be scaled up. Besides common features of typical proofreading software,
NeuTu tames unprecedentedly large data with its distinguishing functions, including:
(1) low-latency 3D visualization of large mutable segmentations; (2) interactive splitting
of very large false merges with highly optimized semi-automatic segmentation; (3)
intuitive user operations for investigating or marking interesting points in 3D visualization;
(4) visualizing proofreading history of a segmentation; and (5) real-time collaborative
proofreading with lock-based concurrency control. These unique features have allowed
us to manage the workflow of proofreading a large dataset smoothly without dividing
them into subsets as in other segmentation-based tools. Most importantly, NeuTu
has enabled some of the largest connectome reconstructions as well as interesting
discoveries in the fly brain.
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INTRODUCTION

Building the structural connectome of a brain is widely considered as an essential step of
understanding the brain (Seung, 2012). Even if it is only a static snapshot of the brain without
functional details, the information obtained from connectomes has been expected to provide
unique and critical biological insights, as demonstrated in practice from the earliest efforts on
Caenorhabditis elegans (White et al., 1986) to recent achievements on larger animals, such as
Drosophila melanogaster (Takemura et al., 2013; Eichler et al., 2017), zebrafish (Wanner et al.,
2016), and mice (Bock et al., 2011; Briggman et al., 2011; Lee et al., 2016; Morgan et al., 2016).
Although the strategy of tracing neuronal skeletons has been widely used (Saalfeld et al., 2009;
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Boergens et al., 2017), segmentation-based reconstruction (Plaza
et al., 2014; Kasthuri et al., 2015), or labeling every voxel
in a volume, has its unique advantages. First, it is the most
reliable way to get the complete reconstruction of a circuit, or
at least it is easier to verify in dense reconstruction if some
inconsistency is caused by reconstruction errors or biological
randomness (Takemura et al., 2015). Second, it can leverage
automated segmentation methods more easily to reduce manual
work than skeleton-based sparse tracing can. Once segmentations
are available, errors can be corrected by making local decisions
without having to trace any long-range path of neuronal
branches. For example, it is common that the border between
two large segments to be merged is only a small fraction of the
segments’ overall surface area. Confirming merges by examining
small contact regions can often produce a high-quality long
segment with much less effort than manual skeleton tracing.
Third, it provides more detailed information about neuronal
morphology, which cannot only facilitate quality control, but
also play an important role in simulation (Hines and Carnevale,
1997).

The workflow of segmentation-based connectome
reconstruction typically involves EM image acquisition,
image pre-processing, automated segmentation, and manual
proofreading. While each of these steps is technically challenging,
the last step, manual proofreading, usually consumes the most
human labor, which can become extremely expensive and
time-consuming as the dataset is scaled up to the whole brain.
Even though there are significant efforts of improving automated
segmentation to reduce the work load of manual proofreading
(Beier et al., 2017; Januszewski et al., 2018), manual proofreading
is still currently the primary bottleneck. Improvement on
manual proofreading is usually generally applicable and expected
to save tremendous resources regardless of what automated
segmentation algorithm is applied in the pipeline.

Due to the necessity of manual proofreading and its
complexity, it is not surprising that various software tools,
including Raveler (Olbris et al., 2018), Knossos1, Dojo/Mojo
(Haehn et al., 2014), Eyewire2 and VAST (Berger et al.,
2018), have been developed almost in parallel for correcting
segmentation for dense or sparse reconstructions. While they
have been successfully applied to produce local connectomes,
recent advances in EM imaging (Briggman and Bock, 2012;
Eberle et al., 2015; Hayworth et al., 2015; Xu et al., 2017)
and segmentation (Beier et al., 2017; Januszewski et al.,
2018) suggest new strategies and pose unique challenges
for tool design to accelerate proofreading. For example, to
the best of our knowledge, there is a lack of tools designed
to operate on large segmented 3D objects freely without
special constraints on the data, such as separating data
into blocks (e.g., Raveler and Eyewire) or fixing errors slice
by slice (e.g., Dojo and Mojo). Modifying, or mutating
segmentation data in three dimensions is critical for
providing a scalable solution for densely proofreading a
large connectome.

1https://knossostool.org
2http://eyewire.org

Therefore, we have developed NeuTu to enable scalable
proofreading on segmented datasets. Like many other
proofreading tools, proofreading in NeuTu consists of a
series of merges or splits. But unlike those tools, NeuTu has
different approaches for scalable 3D object visualization and
splitting, enabling intuitive operations in three dimensions.
NeuTu has been used to both densely and sparsely proofread
multiple regions of the fly brain, including connectomes of seven
columns in medulla (Takemura et al., 2015) and the alpha lobe of
the mushroom body (Takemura et al., 2017a).

MATERIALS AND METHODS

Table 1 provides terminology we used to describe our
proofreading pipeline and software in this paper.

Collaborative Proofreading Workflow
Based on Segmentation
NeuTu has been designed and improved continuously based on
our current workflow of proofreading large-scale segmentation
results. Before developing NeuTu, we used Raveler to proofread
connectomes, such as the single-column medulla reconstruction
(Takemura et al., 2013). Raveler was developed to handle a
block-based workflow, in which the whole data are divided
into disjoint blocks and different proofreaders worked on these
blocks in isolation (Figure 1A). With the rapid increase of
image size and improvement of automatic segmentation, which
benefited from both advances in deep learning and innovative
imaging technologies, however, it is difficult to manage the
block-by-block workflow without a proportional increase of the
overhead cost of dividing and reintegrating the data. One major
difference resulting from these changes is that a segment can
occupy many blocks. Fixing an error in a given block, especially
a false merge error, becomes cumbersome when only a small
portion of the segment is visible in the block. Many errors
need a larger context to identify. Therefore, it is critical to
visualize or manipulate a 3D segment or body with a global
context.

For a segmentation-based workflow, the input is a set of
segments, each composed of a set of voxels, and proofreading
will output a new set of segments by reassigning voxels. Although
this basic assumption remains the same, the major change in
the current work is that the input segments are produced from
3D segmentation directly instead of a two-step process of 2D
segmentation and linking. It implies that the typical way of
fixing errors on individual planes followed by updating linkages
is no longer a suitable option. Since we are also dealing with
isotropic data, such as images acquired from focused ion beam
scanning electron microscopy (Xu et al., 2017), there should
be no predefined principal direction for a 3D segmentation.
The old pipeline relied on 2D segmentation slices with a
preferred planar direction for slicing because anisotropic data
acquired from the widely used transmission electron microscopy
often has the XY resolution one order of magnitude higher
than the Z resolution, naturally leading to data management
that uses the Z-axis as the principle direction to see image
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TABLE 1 | Terminologies used in our proofreading workflow.

Terminology Definition Comment

DVID A distributed, versioned, image-orientated dataservice
developed by the Janelia Fly EM project team.

See https://github.com/janelia-flyem/dvid for more details.

3D image/volume A function defined on a finite 3D grid:
{1,. . .,L}×{1,. . .,M}×{1,. . .,N}→I

I is usually an integer value.

(Image) Block A 3D image, when referred to as a subset of a larger 3D image.

Grayscale image/data The original image used for producing segmentation results. In practice, they are registered and contrast-adjusted images
acquired from electron microscopy.

Segment A region labeled by segmentation to represent the same object,
which is a neuron in our application.

A false merge means that a segment has voxels from different
neurons. A false split means that voxels from multiple segments
belong to the same neuron.

Body A 3D segment.

Sparse volume A volume that has been compressed by ignoring background
voxels.

Multi-scale data Data represented at different scales, in which a higher scale
representation is a downsampled form of a lower scale
representation.

A typical specification of scales is that the (n+1)th scale is
downsampled by 2 from the nth scale.

FIGURE 1 | In our old proofreading workflow (A), we partitioned image data into blocks and assigned the blocks to multiple proofreaders. The proofreading results
from the blocks were then stitched and further proofread by an expert. The new workflow (B) simplifies the procedure by supporting simultaneous proofreading on
the same dataset. Another significant improvement in the new workflow is providing visualizations and interactions in 3D space to help users view 3D segmented
objects more naturally instead of as stacks of 2D slices.

details more conveniently. A better workflow should be free of
this constraint, encouraging human proofreaders to perceive a
segment as a 3D object without worrying about its underlying
representation.

More specifically, proofreading workflows that work
on large datasets with high-quality segmentation requires
the following functions, which NeuTu implements
(Figure 1B):
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(1) Allowing multiple users to proofread the same dataset in
parallel without worrying about generating inconsistency;

(2) Efficient and high-quality 3D visualization of mutable
segments, which are subject to modification at any time;

(3) Intuitive interaction with 3D segments;
(4) Ways of marking proofreading progresses of individual

bodies as well as the overall connectome.

Architecture of NeuTu
Since NeuTu is supposed to be used on multiple computers at
the same time for proofreading a shared dataset, designing it as a
client of a data service is a natural choice. Specifically, we built it
as a client of a distributed, versioned, image-oriented dataservice
(DVID)3, which provides a fast IO access to large-scale 3D image
data. Many functions in NeuTu are tuned to exploit important
features of DVID, such as versioning, and optimized for data
formats that DVID provides. On the other hand, NeuTu is a
GUI application, which allows the user to interact with data as
intuitively as possible. To this end, we provide two visualization
modes in NeuTu. The 2D View provides a slice-based display
of image and annotation data, while the 3D View shows those
data in the 3D space. These two views can control each other
through a direct communication channel to facilitate navigation.
A command issued by the user will be passed from the front-end
view to a lower-level IO directly or through a data processing
engine. Changes in the data will be returned to update the
views accordingly. Information related to the change, such as
which bodies have been modified, may also be sent to the
Computing Service for updating non-critical but useful results
such as skeletons, which are usually expensive to compute.
Although the DVID service can receives inputs from multiple
users, it does not prevent users from interleaving merge or split
results inconsistently. Therefore, we introduced a service called
the Librarian to coordinate the workflow of multiple users. The
Librarian allows a user to lock a body to keep it from being
modified by other users, and unlock it when it is done. This
lock-based coordinating workflow is well-suited for managing
segments because each segment has a unique ID for the Librarian
to track its status. Whenever a user wants to manipulate a body
through NeuTu, the NeuTu client will ask the Librarian to lock
the body first. If the body has already been locked by another
user, the Librarian will return an error message, keeping the client
from modifying the body. The overall architecture is illustrated in
Figure 2.

Feature Highlights
Data Management and Flow via DVID
All major data, including the original EM volume images
(grayscale data) are stored in DVID. In this sense, NeuTu is a
client of the DVID server. Since NeuTu fetches data from DVID
on demand, the difficulty in handling a large connectome on the
client side can be minimized. For example, to merge two bodies,
NeuTu only needs to send DVID a request containing the IDs
of the bodies, without having to deal with actual voxels. Body
size is not a big issue for merging because the computation is

3https://github.com/janelia-flyem/dvid

FIGURE 2 | Architecture of NeuTu as a client of DVID and other remote
services, include the Librarian for coordinating body assignment and the
Computing Service for updating accessory results with data fetched from
DVID.

as trivial as assigning a new ID to all voxels to merge, which is
done by DVID and does not involve any inter-voxel relationship.
In the case of visualizing or splitting a body, where big body
size becomes a challenge for computation, we store the binary
mask of each body separately as a sparse volume (i.e., only
foreground voxels are recorded) in DVID. Each sparse volume
is further compressed with run-length encoding (RLE). When
a user wants to split a body, NeuTu can just download the
binary mask and relevant grayscale data that contains EM signals.
In DVID, images are stored as small fixed-sized blocks, with a
typical size of 32 × 32 × 32 voxels or 64 × 64 × 64 voxels, for
fast indexing. Retrieving a whole DVID block is usually faster
than retrieving the same number of voxels distributed across
multiple blocks. For optimal performance, NeuTu uses the same
kind of block structure to manage grayscale data for a body.
When a block contains voxels both inside and outside of the
body, all the grayscale data in that block will be retrieved and
stored in memory for further usage. Conforming to the block
alignment by using a little more memory space to retrieve and
store block-aligned data can lead to speedups since unnecessary
data slicing is avoided in DVID.

NeuTu takes advantage of the sparse volume representation
provided by DVID to allow manipulation of individual bodies.
For example, when a body is selected, NeuTu downloads the
binary mask of the body with RLE, which is typically much
smaller than a list of individual voxel locations, allowing it to
fit in memory. The downloaded body data can be used in two
ways that are critical for 3D body manipulation. First, surface
points can be extracted from the body data and converted
into a convenient form for 3D visualization. The user can
select any of the surface points in 3D to perform a further
operation such as exploring grayscale data at the corresponding
position or adding a bookmark at the position directly. Second,
the sparse body data can be used as a mask for constraining
the range of watershed-based split computation, thus reducing
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computational time significantly. Although the final watershed
step has to be run over the bounding box around the body
for computational efficiency, some pre- or post-processing steps
such as downsampling or connected component analysis can be
applied to the sparse form directly.

3D Body Representation and Visualization
3D visualization is the most critical component of NeuTu to
achieve the goal of intuitive operation in 3D. Showing a neuron
in 3D allows the user to examine the reconstruction much more
easily than displaying a slice. The user can click a surface point on
the reconstruction and jump to that location in the 2D view. This
is very helpful for examining problematic branches. For example,
in some dataset, a branch terminal without synapses often means
that a part of the branch is missing. The user can easily see the
point and perform more careful examination in the 2D view.

In NeuTu, besides mesh visualization, 3D visualization of a
body is also implemented by rendering 3D surface points of the
body as a set of spheres with independent shading. Compared to
other techniques such as mesh or volume rendering, rendering
surface spheres has advantages in updating speed and intuitive
interaction. Without the need to create faces and compute
normals, surface points can be extracted more quickly than
generating a mesh, so that loading a body into the 3D
visualization engine takes shorter time when pre-computation is
not an option. Overlapping spheres (Figure 3A) actually emulates
surface shading (Figure 3B) naturally, thus saving the time
of computing normals. Furthermore, the sphere representation
provides an easy and intuitive interface for the user to select

FIGURE 3 | NeuTu can render a body with a collection of surface spheres (A),
which has overall shading similar to mesh rendering (B). Any of the spheres
can be selected for further operation such as localization or size adjustment
(C).

a surface point in 3D, which only needs a click on the
corresponding sphere. Once a position is selected, the user
can then quickly navigate to grayscale image nearby or add a
bookmark directly at that position. The user can even select a
collection of spheres and adjust their sizes to highlight some
morphological features in dense arborization (Figure 3C).

Instead of using pre-computed visualization primitives,
NeuTu computes them to ensure consistency between the scene
and its underlying data, which is subject to modification at any
time. This requires fast computation of visualization data to
reduce waiting time. Even though approximating with surface
spheres helps, transferring and parsing data from the server
can still be time-consuming for a large body. Therefore, we
exploit the multi-scale data representation in DVID to allow a
multi-scale updating strategy in NeuTu. When a body is selected
for 3D visualization, its RLE data is fetched first from the lowest
resolution representation, and then to the next higher resolution,
until a certain size threshold is reached. Thanks to flexible version
control in DVID, which allows us to set any checkpoint of
proofreading results and create a new version from it, NeuTu
is able to visualize body differences from different segmentation
versions (Figure 4), which is particularly useful for tracking
proofreading progress and for training.

Fast Interactive Segmentation
NeuTu uses a seeded approach for fixing false merges
interactively. In this approach, the user needs to paint seeds on
regions belonging to different neurons with different colors. The
seeds can be painted in either the 2D view (Figure 5A) or the
3D view (Figure 5B). In the 2D view, a seed can be painted
on any slice, and in the 3D view, a seed can be painted as a
sequence of rays, each going through the target body from the
first surface point to the last surface point it encountered on its
path. The splitting results can be viewed in both views as well
(Figures 5A,C).

To improve the speed of fixing false merges, we designed an
efficient seeded splitting system on the client side. The system

FIGURE 4 | By comparing different versions of a given body stored in DVID,
NeuTu is able to show proofreading history of the body with color coded
parts. The figure shows the difference (C) between the current version (B) of
the neuron and an earlier version (A). Green sections in panel (C) show
additions from the earlier version, red sections show subtractions, and gray
sections are unchanged.
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FIGURE 5 | Splitting in NeuTu is powered by seeded watershed, which takes seeds painted by user in 2D (A) or 3D (B) as input. Note that painting a single point in
the 3D view can generate multiple seed points by ray shooting (B). Seed points outside of the body are ignored by split computing. Splitting results can be
previewed in 3D (C). The user can also paint a bounding box to accelerate computation (A). NeuTu runs connected component analysis to assemble regions
outside of the box and produce the final result (D).

is powered by a highly optimized implementation of the seeded
watershed algorithm. According to our benchmark test, our
seeded watershed implementation is about as twice fast as
that in Insight Segmentation and Registration Toolkit (ITK)4,
a widely used image processing library. Because membrane
voxels are generally darker than cytoplasm voxels, the watershed
computation is applied on grayscale data directly by assuming
that lower intensity has a higher “water level.” Although this may
not be as accurate as using boundary maps or affinity graphs,
especially when there are dark organelles near the boundary,
saving computational overhead of edge enhancement leads to a
good accuracy-speed trade-off in practice.

To further reduce computational time significantly for
splitting a sparse volume, watershed computation is constrained
to the body foreground. However, even excluding background
voxels is often not enough for a quick turn-around. Therefore,
NeuTu provides options of adding further constraints. The user
can quickly check splitting results locally by trigging a local
computation that only covers an area around the seeds. This
provides a fast feedback for the user to adjust seeds accordingly,
making less accurate segmentation more tolerable by making it
easier to correct. Even though correct local splits do not guarantee
correct global splits, it is a reasonable indicator of seed quality.
Alternatively, the user can explicitly define a bounding area for
splitting by painting a rectangle (Figure 5A). NeuTu can produce
correct results if the bounding box contains the whole merging
border, which is often constrained in a region much smaller than
the bounding box of the body. Any piece outside of the local box
will be attached back to the local split regions after connected
component analysis (Figure 5D). Although it is not common,
there may be multiple false merging spots that are far away from
each other. The user can decide to split the segment progressively
in this case.

It is possible that a body can have multiple disconnected
components. Because watershed never crosses from one

4https://itk.org

component to another, splitting such a body is the same as
running watershed on each component independently and
then joining regions that have the same watershed labels. If a
component has no seed point on it, it stays with the origin body.

Synapse Editing
Besides neuron segmentation, synapse identification is also
essential for building a connectome. Each synapse has a
pre-synaptic element and a post-synaptic element to define
a directed connection. In our system, synapses are stored in
DVID as a kind of annotation data that can be queried by their
coordinates. NeuTu reads synapses from DVID and displays
them in both 2D (Figure 6A) and 3D (Figure 6B). The user
can add a synaptic element at any position, connect/disconnect
an element from/to another, or remove/move an element.
Since synapse editing starts from automatic predictions,
NeuTu adds some special visualization hints to the glyph
of a synapse to indicate its confidence level or verification
status.

Data Annotation for Workflow Management
Like any large-scale workflow, the workflow of large-scale
proofreading should be organized to avoid duplicated work or
blind spots. NeuTu provides various data annotation tools for
such a purpose. In NeuTu, the user can annotate a body by
giving it a biologically meaningful name and/or specifying its
status. For example, the user can annotate a body with one of the
seven pre-defined statuses, including “not examined,” “traced,”
“traced in ROI,” “partially traced,” “orphan,” “hard to trace,”
and “finalized.” We can assign bodies to different proofreaders
according to the statuses. For example, if a body is annotated
as “hard to trace,” we can assign it to an expert for further
examination. The assignment is often done as a separate process
outside of NeuTu. To help examine the bodies sequentially or as
a group, NeuTu provides a table widget called the “sequencer” in
which bodies can be filtered by regular expression or sorted by
their properties such as synapse counts.
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FIGURE 6 | Synapses can be edited in either 2D (A) or 3D (B) with the assistance of informative visualization.

Those body-specific annotations do not tell where the
problematic sites are. Therefore, we added another kind of
annotations called bookmarks (Figure 7A). A bookmark is
defined as a 3D point with a type and a comment. For example,
the user can add a bookmark with a type “false merge” to
specify that the corresponding location has a potential false
merge error. A comment can be any text with more detailed
information about the site. While bookmarks are handy for
tagging interesting locations, they are only visible to their owners
and are not necessarily used in proofreading. A special kind of
location-specific annotation called reviewing marks is designed to
show potential spots to proofread. Visible to all the proofreaders,
those annotations have two statuses, to-do or done. To-do can be
further labeled as “to merge” or “to split.” They serve as a check
list in the proofreading workflow. When a user displays a body in
the 3D window, he/she is able to see all the reviewing marks in the
3D visualization (Figure 7B), with different colors to distinguish
to-do or done statuses. The user can add, delete or modify
an annotation in 3D directly. The synchronization between
annotations and body IDs is managed by DVID. Whenever a
body ID is changed by merging or splitting, all annotations

associated with the old ID will be updated automatically to use
the new ID.

Implementation
NeuTu is mainly written in C++, initially built upon the
visualization and interaction engines from neuTube, software
for tracing neurons in light microscope images (Feng et al.,
2015). Important development updates introduced in NeuTu
include replacing Qt4 with Qt5, allowing C++11 syntax to take
advantage of modern C++ features, as well as using Conda
Package Management5 for cross-platform deployment. The code
is publically available on Github6.

RESULTS

Designed to be cross platform, NeuTu has been built and
tested on several modern Linux systems (Fedora 16+, Scientific

5https://conda.io
6https://github.com/janelia-flyem/NeuTu

FIGURE 7 | NeuTu uses point-based markers to facilitate proofreading workflow. For example, bookmarks are point annotations for labeling interesting locations (A),
which can be a place assigned for a double-check. To-dos are body-associated flags for tracking the proofreading status of a body. They can be edited in either 2D
(A) or 3D (B).
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Linux 7) and Mac OS X (10.12.6+). Figure 8 shows a typical GUI
of NeuTu on Mac OS X. The user can interact with 2D and 3D
windows side by side, assisted by glyphs in the 3D view to infer
relative positions of selected bodies and the field of view in 2D.
As shown in Table 2, our focus on scalable segmentation-based
reconstruction and feedback from in-house proofreaders have
led to a combination of unique features in NeuTu compared to
other available proofreading software. More details about NeuTu
functions can be found in our online user manuals, including
a short manual for quick start7 and a long manual for full
details8.

We evaluated how particular designs and strategies in
NeuTu could help improve user experience and proofreading

7https://github.com/janelia-flyem/NeuTu/blob/master/neurolabi/doc/user_manual/
neutu/quick_start.pdf
8https://github.com/janelia-flyem/NeuTu/blob/master/neurolabi/doc/user_manual/
neutu/manual.pdf

efficiency. The testing results obtained from 27 bodies showed
that the multi-scale updating strategy described in Section
“3D Body Representation and Visualization” could greatly
improve response time (Figure 9A), which is measured by
how long it takes to convert a body in DVID into geometric
primitives for 3D rendering. Sampled from our 7-column
medulla dataset (Takemura et al., 2015), the 27 bodies have
59 × 106 voxels on average, with a range from 15 × 106

to 16 × 107 voxels. A typical body among them can be
displayed in real time (∼100 ms latency) at the lowest resolution,
which is good enough to show the overall shape. To test if
3D visualization is important for proofreading, we chose 10
incomplete bodies from a superset of the 7-column medulla
dataset (Shinomiya et al., unpublished) and asked 10 proofreaders
to trace from each body with or without 3D visualization within
2 min. Bodies were assigned randomly to each proofreader
without duplication. The results showed that 3D visualization

FIGURE 8 | Overall GUI of NeuTu on Mac OS X with 2D and 3D windows side by side to enable efficient proofreading by showing global information as well local
details. For more details, please refer to the user manual (see text footnote 8).

TABLE 2 | Feature comparison for segmentation-based proofreading tools shows that NeuTu has a unique combination of features tuned to proofread large-scale dense
connectomes.

Software Data store 3D interaction1 Fixing false
merge

Synapse editing Real time
collaboration

NeuTu Server High 3D seeded splitting Synaptic sites and links X

Raveler Local Low Supervoxel
splitting/3D seeded
splitting (limited2)

Synaptic sites and links N/A

Knossos Server Low N/A N/A N/A

Dojo Server Medium 2D splitting N/A X

Mojo Local Medium 2D splitting N/A N/A

Eyewire Server Medium N/A N/A N/A

VAST Local/Server Medium 2D splitting Synaptic sites N/A

1High: 3D visualization, bookmark, proofread directly in 3D, localization; Medium: 3D visualization, localization; Low: 3D visualization. 2Slow computation, unable to handle
large body.
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could almost double the efficiency of locating false splits
by finding 4.40 ± 1.05 false spits per minute, compared to
2.25 ± 0.80 false splits per minute (p < 0.01) without the
help of 3D visualization (Figure 9B). Note that 2D and 3D
visualizations are more complimentary than exclusive. In some
cases, such as in a severely over-segmented region, examining
the 2D view may lead to more corrections than using 3D
visualization only. 3D visualization becomes more heavily used
when false splits are more sparsely distributed because of
its advantage of showing global morphology. For example,
one important feature to identify a false split is a branch
terminal without synapses, which is difficult to miss in 3D
visualization.

We have applied NeuTu to aid in the reconstruction of
two EM datasets, the 7-column medulla dataset and the MB
dataset, acquired from an optical lobe and a mushroom body
of the fly brain, respectively. Table 3 summarizes the data
and reconstruction results. More details of data acquisition
and processing methods can be found in Takemura et al.
(2015, 2017a). Most of the work for the 7-column medulla
dataset was done in Raveler, while NeuTu was still under
development. The initial connectome was later refined by
sparsely tracing more than one hundred neurons in NeuTu,
which has significantly better 3D visualization for finding
false merges efficiently. The extra tracing made the neurons
become more complete and reliable for biological analysis,
allowing us to add seven new neurons to the NeuroMorpho

database9 along with 525 neurons proofread by Raveler
previously.

For the MB dataset, automatically computed segments and
synapses were initially proofread in Raveler, and then imported
into DVID. A second round of proofreading, which involved
real-time collaborative work of multiple proofreaders, was
performed in NeuTu to create the final connectome. We
used focused proofreading (Plaza, 2016) available in Raveler to
proofread 903,309 potential false splits and then used NeuTu
to trace 24,480 bodies potentially with false splits that were
often trickier to identify automatically than manually. NeuTu
was also used to correct false merges in 9,870 bodies, which
was challenging for Raveler. The scale of either connectome is
significantly larger than the one previously produced by Raveler
alone, which has skeleton length amount to about 105 mm and
8637 synapses (Takemura et al., 2013). The number of synapses
in each connectome is also at least one order of magnitude bigger
than any other connectome that has been published, such as 4,657
synapses in Wanner et al. (2016) and 1,700 synapses in Kasthuri
et al. (2015).

DISCUSSION

We have developed NeuTu for addressing emerging demands for
connectome proofreading, such as managing big data smoothly,

9http://neuromorpho.org

FIGURE 9 | Experimental results showed that particular designs and strategies in NeuTu could help improve user experience and proofreading efficiency: (A) the
waiting time for converting a body in DVID to geometric primitives for 3D rendering decreases exponentially as the downsampling scale increases, leading to
real-time response (109 ± 66 ms) at scale 5 (downsampled by 32 along each dimension); (B) using 3D visualization can accelerate proofreading significantly, such
as doubling the productivity in fixing false splits.

TABLE 3 | Summary of published connectomes proofread by NeuTu.

Region EM Volume
Size (µm3)

Resolution
(nm3)

Size of
segmented

region (µm3)

Skeleton
length (mm)

#Neurons #Synapses

Medulla 40 × 40 × 80 10 × 10 × 10 ∼30 × 103
∼278 11491

∼53,500 presynaptic;
∼315500 postsynaptic

Mushroom body 180× 180× 480 8 × 8 × 8 ∼176 × 103
∼256 983 89,406 presynaptic; 224,697

postsynaptic

1The number of neurons for the 7-column dataset is more than we reported in Takemura et al. (2015) because unidentified neuronal segments are also included here.
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leveraging high-quality segmentations, and simultaneous
collaborative proofreading. Our software has specific functions
tailored to these needs. For example, the highly interactive 3D
visualization provided by NeuTu allows the user to trace a
neuron quickly with terminal examination. NeuTu has helped
two large connectome reconstructions for deciphering vision
and memory, respectively, in the fly brain. Both of them are one
order of magnitude more complex than any other connectome
in the literature in terms of the number of connections. In the
connectome involved in visual processing (Takemura et al.,
2015), accurate neuronal morphologies of the T4 neurons traced
in NeuTu has revealed more details of the motion-detection
circuit (Takemura et al., 2017b) and led to accurate prediction
of motion-detection cells in in silico simulation (Gruntman et al.,
2018). The other circuit, which is located in the memory center of
the fly brain, is the most detailed connectome related to memory
and learning to date. From that highly detailed connectome, we
have not only confirmed the surprisingly random connections
in sense information encoding, but also found some new
connections that had never been observed before (Takemura
et al., 2017a).

NeuTu is mature enough to be employed as a research
proofreading tool without any further development, assuming
automatic segmentation is available along with its registered
EM data. However, some improvements may provide better
user-friendliness and efficiency. One major limitation of NeuTu
is that it is bound to DVID. This means that relevant data need
to be imported into DVID first for NeuTu to work. Currently
there is no easy plug-and-play interface for a user to proofread
their data that are commonly stored as image files or in their own
database format. This problem can be alleviated by providing a
single script for converting common data formats into a DVID
repository. Likewise, exporting proofreading data from DVID
back to the format preferred by the user will also be useful.
A more fundamental solution regarding this issue is to add an
abstract layer to separate NeuTu from the actual APIs of a specific
database. With such a layer, adding support of a new database to
NeuTu would not require changing NeuTu itself. Such flexibility
would help NeuTu scale too. For example, the number of users
working on the same dataset is limited by the capability of DVID
in our practice. Choosing more performance backends would be
a reasonable option to match specific application goals that need
to go beyond these limits.

Regarding performance on the client side, one challenge for
NeuTu, or any other similar proofreading software, is efficient
processing of big bodies (>100 M voxels). Even though we
have employed strategies such as sparse volume representation,
bounded splitting, and multi-scale updating to enable NeuTu
to manipulate big bodies smoothly in most cases, there are
some bottlenecks like data fetching and flood filling that are
proportional to the body size. In practice, we used downsampling
to limit the bounding box of a body to 1G voxels for responsive
visualization and splitting. The major side effect of downsampling
is the loss of morphological details, which can be addressed
by using hybrid resolution scales for the same body. While we
have not encountered any memory issue for common operations
such as splitting or merging, which usually involves only a small

number of big bodies, some unusual operations such as loading
many big bodies (say, hundreds) into 3D visualization can indeed
cause the machine to run out of memory. Potential solutions to
this problem include optimizing related data structures, limiting
memory usage, and automatically suggesting the user to visualize
skeletons instead.

Future work could involve adding more functions for
biological analysis, such as querying neurons and local circuits
freely and allowing the annotation of more biological details (e.g.,
synapse sizes and subcellular structures). These features would
be particularly useful at the late stage of proofreading, when
the focus is shifting from an image-guided process to extracting
biologically relevant circuits.

Being more intelligent is another important direction of
NeuTu development. This will involve significant research work,
like making suggestions based on global shape priors, as well as
some simpler tricks, such as presenting nearby orphans segments
automatically. But for most of those intelligent strategies, one
common challenge will be harnessing fast computation to create
a pleasant user experience. Tackling the challenge by optimizing
code or algorithms for real-time computation is not generally
practical because data involved are usually big. Extensive pre-
computation will be necessary. Pre-computed results should be
relatively light so that they can be uploaded into the database
quickly without taking too much bandwidth and space. The
results can be organized at different levels, such as skeletons at a
lower level and skeleton similarity at a higher level, and do not
need to be up to date. The NeuTu client should leverage such
information, which can be noisy but has meaningful statistical
patterns, to generate useful hints for the user.

Developing a proofreading tool does not only involve software
development, it is also about designing proofreading strategies
and workflows. Interestingly, this synergy between software
design and reconstruction goals resulted in NeuTu software that
can be used beyond the initial target application. For example,
the flexible annotation system in NeuTu is directly shaped by the
need of organizing collaborative proofreading, even though our
main goal is to correct segmentation errors.
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