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Bacterial chromosomes have a single, unique replication origin (named oriC), from which
DNA synthesis starts. This study describes methods of visualizing oriC regions and
the chromosome replication in single living bacterial cells in real-time. This review also
discusses the impact of live cell imaging techniques on understanding of chromosome
replication dynamics, particularly at the initiation step, in different species of bacteria.
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INTRODUCTION

DNA replication is an enormously intricate process, in which a few dozen enzymes catalyze a series
of reactions, including DNA unwinding and the synthesis of sister DNA strands. This process must
be highly precise and accurately timed to prevent any unnecessary loss of energy and to ensure
that DNA is faithfully and completely replicated only once per cell-division cycle (Leonard and
Grimwade, 2015). In all three domains of life, chromosomal replication is mainly regulated at the
initiation step (Nielsen and Løbner-Olesen, 2008; Aves, 2009; Skarstad and Katayama, 2013), an
important cell cycle checkpoint guaranteeing that DNA replication begins at the right place and
time.

Most bacterial genomes consist of one covalently closed chromosome (Figure 1). In a few
bacteria, however, the genetic information is distributed on two [e.g., Vibrio cholerae (Trucksis
et al., 1998)] or even more [e.g., Paracoccus denitrificans (Winterstein and Ludwig, 1998)]
chromosomes. Interestingly, some bacteria possess linear chromosomes [e.g., Streptomyces (Lin
et al., 1993)].

In contrast to eukaryotes, bacterial chromosomes have a single, unique origin of replication
(oriC) (Bird et al., 1972; Kaguni and Kornberg, 1984; Gao and Zhang, 2008; Masai et al., 2010;
Méchali, 2010; Katayama, 2017). DNA synthesis is initiated at this unique oriC, generating a single
replication eye per chromosome (Figure 1). Cooperative binding of the initiator protein, DnaA,
to multiple DnaA-recognition sites (DnaA boxes) within the oriC region triggers separation of the
DNA strands at the DNA unwinding element (DUE), providing an entry site for the machinery of
replication (replisome, Figures 1, 2A; Skarstad et al., 1986, 1990; Bach et al., 2008; Leonard and
Grimwade, 2011; Wolański et al., 2014; Richardson et al., 2016).

Enormous progress has been made in recent years toward understanding the mechanisms
of replication initiation, particularly the organization and function of oriC regions in different
bacteria (Donczew et al., 2012; Makowski et al., 2016; Jaworski et al., 2018; Midgley-Smith et al.,
2018; Samadpour and Merrikh, 2018). Less is known, however, about the subcellular localization
of replication processes during the cell cycle in various bacterial species. The development of
sophisticated cell biology techniques has allowed examination of when and where the replication
machinery is assembled within the bacterial cells, and how the initiation of replication is
coordinated with the cell cycle (Donczew et al., 2012; Harms et al., 2013; Santi and McKinney, 2015;
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FIGURE 1 | Initiation of bacterial replication. Replication of the bacterial
chromosome is initiated at a single oriC region, proceeds in both directions,
and terminates at the ter region. During slow growth, replication is initiated
once per cell cycle. In fast growers under optimal conditions, another round of
replication is initiated before the previous round has been completed, resulting
in the inheritance by daughter cells of partially replicated chromosomes.

Trojanowski et al., 2015; Böhm et al., 2017). This process
is particularly interesting in bacteria with two chromosomes
(V. cholerae) (Demarre et al., 2014; Ramachandran et al.,
2018) and in those that undergo complex cell differentiation
(Caulobacter crescentus) (Jensen et al., 2001; Toro et al., 2008)
and/or exhibit complicated life cycles, e.g., Myxococcus xanthus
(Harms et al., 2013; Lin et al., 2017) and Streptomyces species
(Kois-Ostrowska et al., 2016). In these bacteria, the regulatory
networks that control replication initiation are likely to be
intricate and require specific mechanisms that can synchronize
the initiation of chromosomal replication with developmental
processes.

The main goal of this review is to highlight imaging techniques
that allow the determination of the subcellular location of
oriC regions and the initiation of chromosome replication (i.e.,
assembly of the replication machinery) in single living bacterial
cells in real time. This review also discusses the impact of
real-time single-cell imaging on understanding of chromosome
replication dynamics, particularly at the initiation step, in
different bacteria.

VISUALIZATION OF REPLICATION
INITIATION AND REPLISOME
DYNAMICS IN LIVE CELLS

The development of live cell imaging techniques has allowed the
visualization of replisomes (Figure 2A; Jensen et al., 2001; Reyes-
Lamothe et al., 2008; Wang and Sherratt, 2010; Harms et al., 2013;
Santi and McKinney, 2015; Trojanowski et al., 2015; Mangiameli
et al., 2017) in live cells and the study of DNA replication
dynamics, including the timing and localization of replication
initiation, in real time at the single-cell level. Microscopic
analysis of live cells has several advantages over analysis of fixed
samples. Fixing the cells, a process that involves dehydration

and/or intracellular cross-linking, may influence the localization
of proteins or subcellular structures of interest. Moreover, some
fusions with fluorescent proteins (FP) are sensitive to the harsh
conditions used during fixation. For example, different sample
preparation of Mycobacterium smegmatis cells results in ParA-
EGFP localizing either apically or as a cloud arising from
the new cell pole (Ginda et al., 2013, 2017). Furthermore,
permeabilization of the bacterial cell wall during immunostaining
may contribute to a loss of cytoplasmic content or, due to cellular
crowding, may generate high background noise or alter the
localization of large immunocomplexes, particularly when using
secondary antibodies for signal amplification. Although several
high quality studies of fixed samples have provided invaluable
data, the conditions found in cells fixed on a coverslip only
approximate the conditions found in live cells.

Replication is visualized primarily by the fusion of different
replisome (DNA polymerase III) subunits (Figure 2A) to a
variety of FP. The choice of subunit to create the fusion protein
should be guided by the specific application and the specific
type of bacterium. Escherichia coli is the best characterized
bacterial model for tracking live replication (Kongsuwan et al.,
2002; Bates and Kleckner, 2005; Fossum et al., 2007; Reyes-
Lamothe et al., 2008, 2010; Su’etsugu and Errington, 2011;
Wang et al., 2011; Moolman et al., 2014; Beattie et al., 2017).
However, several reports have tracked replication in other
organisms, including Bacillus subtilis (Lemon and Grossman,
1998; Migocki et al., 2004; Berkmen and Grossman, 2006;
Mangiameli et al., 2017; Li et al., 2018), C. crescentus (Jensen et al.,
2001; Fernandez-Fernandez et al., 2013; Arias-Cartin et al., 2017),
V. cholerae (Srivastava and Chattoraj, 2007; Stokke et al., 2011),
M. smegmatis (Santi et al., 2013; Santi and McKinney, 2015;
Trojanowski et al., 2015, 2017), Streptomyces coelicolor (Ruban-
Ośmiałowska et al., 2006; Wolański et al., 2011), Corynebacterium
glutamicum (Böhm et al., 2017), Pseudomonas aeruginosa (Vallet-
Gely and Boccard, 2013), M. xanthus (Harms et al., 2013),
and Streptococcus pneumoniae (Raaphorst et al., 2017). Findings
of these studies may help in the construction of fluorescent
fusions of replisome components in other bacteria. It is also
important to consider alternative N- and C-terminal fusion,
as one, or sometimes both, ends of target proteins may be
implicated in inter- or intra-molecular interactions. The sliding
clamp (Figure 2A) is the protein of choice in most studies
and both N- and C-terminal fusions proved to be functional
in a range of species (Kongsuwan et al., 2002; Reyes-Lamothe
et al., 2010; Su’etsugu and Errington, 2011; Moolman et al.,
2014; Santi and McKinney, 2015; Trojanowski et al., 2015;
Arias-Cartin et al., 2017; Böhm et al., 2017; Mangiameli et al.,
2017; Hołówka et al., 2018). However, the sliding clamp also
participates in processes other than DNA replication, including
recombination and DNA repair, possibly altering the distribution
of DnaN-FP (or FP-DnaN) foci in these cells. This is not
usually a concern in wild-type-like fluorescent reporter strains,
under both optimal and minimal conditions, but may be of
concern in knock-out/overproducing mutant strains, involving,
for example, genes engaged in DNA repair, or when studying
replication dynamics under stress-inducing conditions such
as in the presence of antibiotics, mutagenic compounds like
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FIGURE 2 | Replisome structure and localization. (A) Schematic diagram of a replisome. A replisome is a multiprotein complex involved in DNA replication.
A helicase unwinds the chromosome, separating the two single-stranded DNA strands. The leading strand is synthesized continuously, while the lagging strand is
synthesized in approximately 1 kbp fragments, starting from the short primers added by the primase. The three core polymerases are loaded into each replication
fork by the clamp loader and bind to the sliding clamp, enabling high activity of the entire replisome. (B) Schematic localization of chromosomal loci using ParB/parS
and FROS system. Under optimal conditions (a bacterial cell with a longitudinal chromosome conformation), ParB-FP binds to parS sequences (purple) in the oriC
region, while the ter region (blue) is labeled through insertion of operator arrays and subsequent binding of repressor-FP.

mitomycin, and replication inhibitors. In these experiments,
choosing another replisome component may be advisable. Beside
the siding clamp, DnaX (Lemon and Grossman, 2000; Bates
and Kleckner, 2005; Berkmen and Grossman, 2006; Vallet-Gely
and Boccard, 2013; Raaphorst et al., 2017) (particularly its
C-terminal fusion) is frequently used as a replisome localization
marker. The dnaX gene encodes two alternative proteins,
τ – the full-length protein encoded by the dnaX gene, and γ,
which originates from ribosome switching during translation,
resulting in premature termination of translation and generating
a truncated protein. Single-stranded DNA binding protein (SSB)
(Figure 2A) has also been tested in several studies (Reyes-
Lamothe et al., 2008, 2010; Harms et al., 2013; Sukumar et al.,
2014; Santi and McKinney, 2015; Mangiameli et al., 2017;
Raaphorst et al., 2017). Monitoring replisome dynamics in strains
expressing fusion proteins encoded on an episomal plasmid is not
recommended, as plasmid replication is triggered mainly by the
same protein components that trigger chromosomal replication.
Fusion with catalytic core subunits (Lemon and Grossman, 1998;
Migocki et al., 2004; Trojanowski et al., 2017) is also possible,
although additional cargo attached to core Pol-DNA III may
affect nucleotide incorporation rates and influence the kinetic
parameters of the entire replication complex. This was shown for
M. smegmatis, where the C-terminal fusion of a catalytic alpha
subunit to EYFP prolonged the C-period (Trojanowski et al.,
2017). Thus proteins other than the catalytic core complex may be
a better choice for studies of replisome dynamics. Other fusions
successfully used for replisome tracking include DnaB (DNA
helicase) (Jensen et al., 2001; Beattie et al., 2017), DnaQ (Reyes-
Lamothe et al., 2008, 2010; Wallden et al., 2016; Mangiameli
et al., 2017), and χ and δ′ subunits (Jensen et al., 2001; Reyes-
Lamothe et al., 2008). When designing a fluorescent fusion for
replisome visualization, additional features should be taken into
account, especially oligomerization status, fluorescence yield and

spectral properties. FP (especially GFP derivatives) are likely
to form low-affinity oligomers (Costantini et al., 2012), which
may influence the dynamics of the studied protein complex,
especially when the fusion protein is produced at a high level.
Thus, choosing a fluorescent variant with a lower tendency to
undergo oligomerization (e.g., mCherry, mCherry2, mCitrine,
and mScarlett) is recommended. Spectral characteristics and
brightness are essential, especially when replisomes are localized
together with other cellular components (e.g., chromosome and
membrane) (Shaner et al., 2005). Importantly, FP are sensitive
to pH and cannot be utilized to analyze anaerobic bacteria,
as maturation of the chromophore requires oxygen molecules
(Shaner et al., 2005; Landete et al., 2015). Fluorescent fusion
proteins are suitable for both qualitative long-term live cell
imaging and quantitative analysis. For example, Y-Pet fusion with
a variety of replisome subunits was used to quantify the numbers
of copies of particular proteins within a replication eye in vivo
(Reyes-Lamothe et al., 2010). However, most of these variants
lacked the properties required for super-resolution imaging.
In the latter case, proteins of interest should be fused with
photoactivated or photoconvertible proteins. Recently published
studies may provide hints regarding single-molecule resolution
microscopy of replication complexes (Georgescu et al., 2012;
Stracy et al., 2014; Liao et al., 2016; Lewis et al., 2017). The fusion
of replisome subunits with HaloTag may be an alternative to
FP. The size of HaloTag is similar to that of FP, but the ligands
that bind to HaloTag have better fluorescence yield, resulting
in a higher signal compared with standard FPs (HaloTag R©

Protein Purification System, 2018). The advantage of using direct
fluorescent ligands (e.g., dTMR and dR110) is that they do not
need to be washed out before acquisition. Halo ligands are also
suitable for high-resolution microscopy.

Replication tracking (particularly initiation of replication) is
often accompanied by localization of nascent oriCs (Figure 2B).
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The fluorescence repressor operator system (FROS) or ParB/parS
is frequently used for live cell tracking (Lau et al., 2003). The
FROS system (Figure 2B) consists of two components: operator
sequences (usually lacO or tetO arrays repeated up to several
hundred times in tandem and interspersed by oligonucleotide
spacers) and an FP-tagged repressor protein (LacI-FP or TetR-
FP), which binds to the operator sequences. FROS was efficiently
used to localize chromosomal loci, including oriC, terminus
and other specific loci on both replichores in a variety of
species (Viollier et al., 2004; Fogel and Waldor, 2005; Frunzke
et al., 2008; Liu et al., 2010; Vallet-Gely and Boccard, 2013;
Wang et al., 2014; Santi and McKinney, 2015). However, it
is often difficult to insert the large operator arrays into the
chromosome, particularly in highly transcribed regions such as
oriC (Le and Laub, 2014). Moreover, overexpression of repressor
may result in replication/transcription hold-up or alteration in
segregation of replicated regions (Possoz et al., 2006; Mettrick
and Grainge, 2016). Thus, low levels of repressor should be
produced, usually by using inducible promoters. Additionally,
tracking oriCs together with replisomes requires delivery of the
repressor-FP fusion protein from the chromosomal locus, either
as a part of an operator array construct or inserted into an
attachment site. Although FROS may provide invaluable data, its
instability is a major drawback.

The ParB-FP/parS system (which originated from naturally
existing chromosome and/or plasmid partitioning strategies)
(Figure 2B) represents an easier alternative to FROS. This system
uses an intrinsic feature of ParB, its binding to centromere-
like parS sequences (Wang et al., 2011; Reyes-Lamothe et al.,
2012; Badrinarayanan et al., 2015). Most bacterial species possess
the ParABS chromosome segregation system, except for several
well-studied Gammaproteobacteria, including E. coli. Because
most chromosomal parS sites are localized proximal to the
oriC-proximal regions (Livny et al., 2007), introduction of
fluorescent ParB, which oligomerizes within parS sequences,
addresses all of the system requirements for successful oriC
labeling. This approach has been shown effective in a number
of bacteria, including Mycobacterium, M. xanthus (Harms et al.,
2013), Streptomyces (Donczew et al., 2016; Kois-Ostrowska et al.,
2016), C. crescentus (Laloux and Jacobs-Wagner, 2013), and
C. glutamicum (Donovan et al., 2010; Böhm et al., 2017). In
bacteria lacking a chromosomal ParABS system (e.g., E. coli),
plasmid-derived partitioning components (phage P1 or Yersinia
pestis MT1ParB/parS systems) are frequently used (Youngren
et al., 2000; Li et al., 2002; Nielsen et al., 2006, 2007). The use
of plasmid-derived parS/ParB is also beneficial, as it does not
interfere with the endogenous chromosomal ParABS system or
another plasmid-derived parS/ParB system (P1/MT1), allowing
the simultaneous localization of multiple chromosomal loci. Its
major advantage compared with FROS is that insertion of only a
few copies of parS is sufficient for strong fluorescent signals after
ParB-FP binding.

Determination of the specific point (and subcellular
localization) at which replication is initiated requires long-term
imaging of living cells (from several minutes to hours, depending
on the bacterial growth rate and the conditions being tested,
e.g., rich versus minimal medium). The simplest way to analyze

replication at the single-cell level is to spread the cells of the
reporter strain on the agar pad (a thin agar layer between the
microscope slide and the cover glass) or on the bottom of solidified
medium inside culture dishes (Joyce et al., 2011; Dhar and Manina,
2015). Although simple and low-cost, this approach is not always
applicable (e.g., labeling and medium changing). Microfluidic
flow chambers are used for the latter purposes, as well as for
rapidly changing culture conditions (e.g., applying stress). Various
microfluidic chips and plates are commercially available from an
increasing number of companies, whereas custom made (usually
PDMS) chips are a cost-reducing alternative and also allow for
more personalized applications (Wang et al., 2010; Cattoni et al.,
2013; Dhar and Manina, 2015; Trojanowski et al., 2015; Wallden
et al., 2016). The architecture of microfluidic chips and plates
varies among studies and choosing the right one should be
dictated by the specific study purpose and the availability of
additional equipment, e.g., peristaltic/syringe/pressure pumps,
flow controllers, or automation.

SPATIOTEMPORAL LOCALIZATION OF
THE REPLISOME DURING REPLICATION
INITIATION

Localization of the replication machinery at the beginning of
DNA synthesis is dependent on oriC position, and is therefore
connected with the spatial arrangement of the chromosome. In
bacteria having oriC and ter regions positioned at the mid-cell,
the intervening chromosomal regions (i.e., the left and right
chromosomal arms) are stretched out toward opposite cell poles,
creating a left-ori-right pattern, whereas cells having oriC and ter
regions localized to opposite poles show an ori-ter chromosomal
arrangement (Wang and Rudner, 2014). Replisomes in the cells
exhibiting a left-ori-right configuration are assembled in the mid-
cell region of the chromosome. This pattern has been observed
in E. coli cells (Postow et al., 2004; Valens et al., 2004; Boccard
et al., 2005) and during the vegetative growth of B. subtilis (the
chromosome in B. subtilis is oscillating between left-ori-right and
ori-ter configuration) (Wang et al., 2014; Figure 3A). During
sporulation, however, the B. subtilis chromosome adopts an ori-
ter orientation to segregate an entire copy of the chromosome
within each spore. Positioning of the oriC at the mid-cell of
B. subtilis and E. coli is maintained by the condensins SMC
and MukB (a structural homolog of SMC), respectively (Niki
et al., 1992; Danilova et al., 2007; Sullivan et al., 2009). SMC
can compact large chromosomal regions, and, by interacting with
ParB protein, organizes the oriC-proximal regions in B. subtilis,
with ParB binding to parS sequences located near oriC (Gruber
and Errington, 2009). The interaction of MukB with the nucleoid
associated protein HU ensures proper oriC positioning in E. coli
cells (Lioy et al., 2018). After initiation, E. coli replisomes oscillate
near the cell center, while newly replicated oriCs are segregated
toward the cell poles (Reyes-Lamothe et al., 2008). In comparison,
B. subtilis replisomes colocalize throughout replication (Migocki
et al., 2004), and are therefore visible as a single fluorescent
focus. Replisome positioning in the cell center can be also found
in oval-shaped S. pneumoniae (Kjos and Veening, 2014; van
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FIGURE 3 | Spatial organization of the chromosome entails positioning of the site of replisome assembly. Bacteria exhibiting a left-ori-right orientation start
replication in mid-cell (A), where the oriC region is organized by the condensins SMC/MukB (marked in green) and ParB (indicated as yellow circle). Off-centered
replisome positioning (B) is associated with complex interactions between oriC and the ParABS system (M. smegmatis; ParA indicated as orange cloud, ParB in
yellow circle and DivIVA in red) or bactofilins (M. xanthus; BacNOP depicted as violet cloud). In the ori-ter organized chromosomes, replication is initiated at the cell
pole (C), at which the oriC region is anchored by specific proteins (i.e., PopZ in C. crescentus and HubP in V. cholerae indicated as blue and marine blue ovals,
respectively). (D) Subpolar positioning of replisomes has also been observed in the multiploid bacteria S. coelicolor (ParA indicated as orange cloud and polarisome
complex proteins: ParB and DivIVA interacting with Scy depicted in yellow and red, respectively) and C. glutamicum. OriC region(s) and replisome(s) are indicated as
violet and green circles, while chromosome is depicted in light blue.

Raaphorst et al., 2017), which, similar to many other bacteria
including B. subtilis, encodes an SMC homolog.

Some bacteria, such as M. smegmatis (Santi and McKinney,
2015; Trojanowski et al., 2015) and M. xanthus (Harms et al.,
2013), exhibit off-center replisome localization during the

initiation of replication (see Figure 3B). In M. smegmatis,
segregation of the newly replicated oriCs starts immediately after
initiation of replication, with one oriC remaining near the old
cell pole and the other traveling toward the opposite pole (Ginda
et al., 2017; Hołówka et al., 2018). Replisomes oscillate in the
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old-pole-proximal cell half during most of the replication process,
but localize closer to the new cell pole prior to termination
(Trojanowski et al., 2015). A slight asymmetry in mycobacterial
replisome positioning is associated with the apical growth mode
of these bacteria. Positioning of oriC region(s) in Mycobacterium
depends on the interaction of ParB with ParA protein, which in
turn interacts with the polar growth determinant, DivIVA protein
(Ginda et al., 2013).

As a result of the asymmetric location of oriC, M. xanthus
replisomes are positioned at the subpolar regions (Figure 3B;
Harms et al., 2013). Although M. xanthus contains a DivIVA
homolog, suggesting analogous interactions at the pole as
described for Mycobacterium, deletion of this homolog does
not affect cell division or chromosome segregation. Rather,
localization of the ParA and ParB-parS complexes (and thus
the oriC region) in M. xanthus is controlled by the bactofilins
BacNOP, through the direct interactions of ParA and ParB with
the scaffold created by BacNOP (Lin et al., 2017).

Bacteria exhibiting complex life cycles often show an ori-ter
chromosome orientation (Figure 3C). In C. crescentus stalked
cells, chromosome replication starts at the old cell pole (Jensen
et al., 2001). The anchorage of the chromosome at the old cell
pole is maintained by the protein PopZ (Bowman et al., 2008).
Similarly, in V. cholerae, the origin (oriI) of one of the two
chromosomes, chrI, is attached to the old pole by HubP protein
(Yamaichi et al., 2012), thereby setting the subcellular position
for assembly of the replication machinery. In contrast, the origin
(oriII) of the second, smaller chromosome (chrII) is located at
mid-cell. Replication of V. cholerae chrII starts later than that
of chrl to synchronize the termination of replication of both
chromosomes (Demarre et al., 2014; Ramachandran et al., 2018).
As a result of the subpolar localization of C. crescentus and
V. cholerae (chrI) replisomes near the old cell pole, one of the
newly replicated oriC regions travels across the chromosome to
the opposite cell pole with the assistance of the ParABS system
(Toro et al., 2008; Ramachandran et al., 2014). Interestingly,
in P. aeruginosa exhibiting ori-ter orientation, the chromosome
is apparently not anchored to the cell pole, as shown by the
cytoplasmic gap between oriC and the cell pole (Vallet-Gely and
Boccard, 2013).

The multiploid and apically growing bacterial species
S. coelicolor, exhibits another mode of spatiotemporal replisome
localization, in which replication is initiated during vegetative
growth (Figure 3D; Kois-Ostrowska et al., 2016). Replication
of multiple copies of the S. coelicolor chromosome starts
asynchronously, and newly replicated sister chromosomes follow
the extending hyphal tip. Similar to Mycobacterium, positioning
of the tip-proximal oriC (and hence the replisomes) is maintained
through ParA interactions with the polarisome complex, which
includes the proteins ParB, DivIVA, and Scy (Flärdh et al., 2012;
Ditkowski et al., 2013). In the closely related and diploid species
C. glutamicum, replisomes are assembled on each chromosome
asymmetrically, in proximity to the cell poles (Figure 3D; Böhm
et al., 2017). Fluorescently tagged ParB attaches to the cell poles,
suggesting an ori-ter-ter-ori spatial orientation of C. glutamicum
chromosomes.

Described differences among bacteria in the positioning
of oriC regions during the replication initiation reflect

the different modes of chromosome segregation. Mid-cell
replisomes location results in symmetric segregation of
oriCs toward the opposite cell poles, while polar and off-
center replisome positioning imply asymmetric segregation
of the newly replicated oriC regions. Furthermore, polar
localization requires the complex system to either anchor
oriC directly at the pole (e.g., PopZ and HubP proteins) or
to maintain the subpolar position by protein complexes (e.g.,
the interaction of ParABS system with the DivIVA or the
BacNOP). Such variety in the composition of multiprotein
complexes involved in oriC(s) positioning provides an
opportunity for the discovery of novel genus/species-specific
drug targets.

CONCLUSION

Single-cell fluorescence imaging and fluorescence tagging
techniques allow researchers to precisely visualize proteins and
their complexes inside living bacterial cells in real time. These
techniques revealed that many proteins are targeted to distinct
subcellular positions, where they participate in various cellular
processes including chromosome replication. Recent studies
using advanced live-cell imaging demonstrated that chromosome
replication is coordinated with other key steps of the cell cycle,
such as chromosome segregation and cell division. Proteins (or
protein complexes) involved in condensation (i.e., SMC/MukB),
chromosome segregation (i.e., ParAB in Gram-negative and
Gram-positive bacteria) and/or cell division (DivIVA in
Gram-positive bacteria) take part directly or indirectly in oriC
positioning, thus indicating the site of replisome assembly.
Additionally, other proteins guiding the oriC region have been
recently identified. Interestingly, they vary significantly among
different bacteria, e.g., PopZ (C. crescents), HubP (V. cholerae,
chromosome I), and bactofilins (M. xanthus). The diversity and
complexity of the systems involved in oriC (and thus replisome)
subcellular positioning suggest the possibility of developing
new antimicrobial therapies and/or altering existing treatments
(Kaguni, 2018).
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Czerwińska, J., and Jakimowicz, D. (2016). ParA and ParB coordinate
chromosome segregation with cell elongation and division during
Streptomyces sporulation. Open Biol. 6:150263. doi: 10.1098/rsob.15
0263

Donczew, R., Weigel, C., Lurz, R., Zakrzewska-Czerwińska, J., and Zawilak-
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