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of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, 4 College of Agronomy, Jilin
Agricultural University, Changchun, China

Protein content (PC), an important trait in soybean (Glycine max) breeding, is controlled
by multiple genes with relatively small effects. To identify the quantitative trait nucleotides
(QTNs) controlling PC, we conducted a multi-locus genome-wide association study
(GWAS) for PC in 144 four-way recombinant inbred lines (FW-RILs). All the FW-RILs
were phenotyped for PC in 20 environments, including four locations over 4 years
with different experimental treatments. Meanwhile, all the FW-RILs were genotyped
using SoySNP660k BeadChip, producing genotype data for 109,676 non-redundant
single-nucleotide polymorphisms. A total of 129 significant QTNs were identified by five
multi-locus GWAS methods. Based on the 22 common QTNs detected by multiple
GWAS methods or in multiple environments, pathway analysis identified 8 potential
candidate genes that are likely to be involved in protein synthesis and metabolism in
soybean seeds. Using superior allele information for 22 common QTNs in 22 elite and
7 inferior lines, we found higher superior allele percentages in the elite lines and lower
percentages in the inferior lines. These findings will contribute to the discovery of the
polygenic networks controlling PC in soybean, increase our understanding of the genetic
foundation and regulation of PC, and be useful for molecular breeding of high-protein
soybean varieties.

Keywords: protein content, soybean, multi-locus GWAS, QTNs, four-way recombinant inbred lines

INTRODUCTION

Soybean [Glycine max (L.) Merr.] is a globally important high-protein crop, with protein
accounting for about 40% of the seed’s dry weight. Soybean is one of humans’ main sources of
dietary protein; therefore, breeding high-protein varieties of soybean is an ongoing, important
objective of plant breeders. The efficiency of plant breeding has been greatly accelerated by the
emergence of molecular markers and molecular technology, such as random amplified polymorphic
DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, simple
sequence repeats, specific-locus amplified fragment, and single-nucleotide polymorphism (SNP).
For genome-wide association studies (GWAS) in soybean, the acquisition of a large number of
molecular markers is extremely important (Song et al., 2013), and SNPs are well suited for such
analyses because of their high densities throughout the genome (Gaur et al., 2012).
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Breeders and molecular geneticists have routinely used
populations derived from biparental crosses for development of
new varieties and mapping quantitative trait loci (QTLs) for
traits of interest. However, the richness of allelic and phenotypic
variation in biparental inter-mated populations is somewhat
limited. To overcome this limitation, animal breeders have
developed the multi-parental inter-mated population design, for
example by using a population descended from eight mouse
strains (Yalcin et al., 2005). Recently, multi-parent advanced
generation inter-cross (MAGIC) lines have also been developed
in plants, including wheat (Triticum aestivum; Huang et al.,
2012; Mackay et al., 2014), maize (Zea mays; Dell’Acqua et al.,
2015), Arabidopsis thaliana (Kover et al., 2009), barley (Hordeum
vulgare; Sannemann et al., 2015), tomato (Solanum lycopersicum;
Pascual et al., 2015), and rice (Oryza sativa; Bandillo et al., 2013;
Meng et al., 2016a,b). MAGIC populations have more diverse
alleles than bi-parental populations, which increases genetic
variation. However, obtaining a MAGIC population is labor
intensive because of the repeated crossing and requires large
population sizes to include recombinants for all the desirable
traits. An intermediate design, the four-way cross population, is
easier to obtain while providing some of the same benefits as an
eight-way cross population.

In recent years, GWAS with high-density SNPs have emerged
as very powerful tools for dissecting the genetic basis of complex
traits. This approach has been applied to MAGIC populations
of many crop plants (Bandillo et al., 2013; Pascual et al., 2015;
Meng et al., 2016a,b) but not, as of yet, to soybean. As in soybean,
either biparental populations or natural populations have been
used in all previous QTL mapping studies (Li et al., 2018; Wang
et al., 2018). This previous research indicates that PC in soybean
is a typical quantitative trait controlled by multiple genes with
relatively small genetic effects, whose identification will require
a more efficient method to detected QTLs. Multi-locus GWAS is
a suitable method for identifying significant QTNs, especially for
relatively small effects; it also has a low false positive rate, and has
been used in many studies (Liu et al., 2016; Wang et al., 2016;
Tamba et al., 2017; Zhang Y. et al., 2017; Wen et al., 2018).

In this study, we used 144 recombinant inbred lines
(FW-RILs) from a four-way cross, which were genotyped by
SNPs and phenotyped seed protein content (PC) in different
environments. We then combined these data to identify
significant QTNs for PC in soybean using multi-locus GWAS
methods. The objective was to find common QTNs that were
identified by multiple methods or in multiple environments and
then deduce potential candidate genes and identify elite lines
in the FW-RIL population, as a means to accelerate molecular
breeding to increase PC in soybean.

MATERIALS AND METHODS

Plant Materials
Four soybean varieties, Kenfeng14 (PC 41.08%), Kenfeng15
(PC 41.42%), Kenfeng19 (PC 43.06%), and Heinong48 (PC
43.55%), were used to construct a four-way recombinant
inbred line (FW-RIL) population. Among these, Kenfeng14,

Kenfeng15, and Kenfeng19 were bred by the Heilongjiang
Academy of Agricultural Reclamation and derived from the
crosses Suinong 10× Changnong 5, Suinong 14× Kenjiao 9307,
and Hefeng 25 × (Kenfeng 4 × Gong 8861-0), respectively; and
Heinong48 was bred by Heilongjiang Academy of Agricultural
Science and derived from the cross Ha 90-6719 × Sui
90-5888.

First, two single crosses, Kengfeng14 × Kenfeng15 and
Kenfeng19 × Heinong48, were carried out in Harbin
(45.75◦N, 126.63◦E), Heilongjiang Province, China,
and the F1 seeds were harvested in 2008. Second, a
cross was conducted between two sets of single-cross
F1 seeds, and F1 seeds of the resulting four-way cross
(Kengfeng14 × Kenfeng15) × (Kenfeng19 × Heinong48)
were harvested in 2009. Third, the four-way cross F1 seeds were
self-crossed for six generations continuously by alternate sowing
in Yacheng (17.5◦N, 109.00◦E), Hainan Province, China, in the
winter and in Harbin in the summer from 2010 to 2014, using the
single-seed descent method to select single seeds from individual
plants in each generation. Finally, a total of 144 FW-RILs were
obtained for this study.

Field Experiment and Phenotype Data
Collection
The four parental lines and 144 FW-RILs were planted in 20
environments with different locations, years, seedling densities,
fertilizers, and sowing dates. The detailed planting schedule is
summarized in Supplementary Table S1. All plant materials
in each environment were grown in three-row 5 m × 0.7 m
plots in a completely randomized block design with three
replications. The experimental plots were managed identically
to local soybean crops. Ten plants from the middle of the
plots for each line (four parents and 144 FW-RILs) were
harvested and the seeds threshed separately for each of the
20 environments. The total PC of seeds (dry seeds, with
water content of about 10%) was determined in three random
samples from mixed seed of each line by the near-infrared
analyzer (Infratec 1241, Foss, Denmark) at the Key Laboratory
of Soybean Biology of the Chinese Education Ministry at the
Northeast Agricultural University in China. The calibration
regression technique was Partial Least Square (PLS), which
involved combining spectral data with laboratory data (Kjeldahl
method) to calculate seed PC, described by the percentage of
seed weight. The phenotypic values given for each parental and
FW-RIL used in this study were all the mean values of three
repetitions.

Statistical Analyses of Phenotypic Data
Mean, standard deviation, minimum, maximum, range,
skewness, kurtosis, and coefficient of variation (CV)
for FW-RILs in each environment were calculated.
A correlation analysis between each pair of environments
was performed. Analysis of variance (ANOVA) for single
environment and jointly multiple environments was
conducted with “varietal effect model of genotype” and
“environment + genotype + environment × genotype
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interaction,” respectively, and the broad-sense heritability
(h2) was estimated by the following equation:

h2
= σ2

G/(σ2
G + σ2

GE/e+ σ2/er)

where σ2
G is the genotypic variance, σ2

GE is the variance due to the
genotype× environment interaction, σ2 is the error variance, e is
the number of environments, and r is the number of replications
within an environment. The statistical analysis was implemented
by SAS 9.2 (SAS Institute, Cary, NC, United States).

Genotyping
Juvenile leaves from parents and FW-RIL plants were collected,
frozen in liquid nitrogen, and immediately ground into powder.
Total genomic DNA was extracted using the CTAB method
(Doyle et al., 1990) and eluted in 50 µl deionized water.
The DNA concentration was determined using a UV752N
spectrophotometer (Shanghai Jingke Science Instrument Co.
Ltd.) and was diluted to 100 ng ± 1 ng in deionized water.
SNP genotyping was performed at Beijing Boao Biotechnology
Co. Ltd, using the SoySNP660K BeadChip. A total of 109,676
SNPs across 20 chromosomes remained after quality filtering; the
SNP markers identified were filtered for minor allele frequency
(MAF > 0.05), and the maximum missing sites per SNP
was < 10% (Belamkar et al., 2016). Heterozygous loci were then
marked as missing to obtain better estimates of marker effects,
and the SNP markers were re-filtered using the same filtering
criteria and used for the next analysis of population structure,
kinship, and GWAS.

Analysis of Population Structure and
Linkage Disequilibrium
The analysis of population structure was performed with the
software STRUCTURE 2.3.4 (Pritchard et al., 2000). For each
run, the number of burn-in iterations was 10,000, followed by
2000 Markov chain Monte Carlo (MCMC) replications after
burn-in. The admixture and allele frequencies correlated models
were considered in the analysis. Ten impended iterations were
used in the STRUCTURE analysis. The hypothetical number
of subpopulations (K) ranged from 1 to 10. The best K was
identified according to Evanno et al. (2005) using STRUCTURE
HARVESTER (Earl and Vonholdt, 2012).

TASSEL 5.0 was utilized to analyze linkage disequilibrium
(LD) (Bradbury et al., 2007) by analyzing r2 values of all pairs
of SNPs located within 10 Mb physical distance, the LD decay
trend was found following regression of the negative natural
logarithm, and the physical distance of LD decay was estimated
as the position where r2 dropped to half of its maximum value.

Genome-Wide Association Studies
The software mrMLM.GUI (version 3.0) was used to perform the
GWAS. Five multi-locus GWAS methods within mrMLM.GUI
were used to identify significant QTNs, including mrMLM
(Wang et al., 2016), FASTmrMLM (Tamba et al., 2017),
FASTmrEMMA (Wen et al., 2018), pLARmEB (Zhang J. et al.,
2017), and ISIS EM-BLASSO (Tamba et al., 2017). The critical
P-value parameters for these methods at the first stage were set

to 0.01 except for FASTmrEMMA, where the critical P-value
was set to 0.005, and the critical LOD score was set to 3
for significant QTN at the last stage. All these five methods
involved the population structure and kinship matrices in this
study, and the kinship matrix was calculated with the software
mrMLM.GUI 3.0.

Superior Allele Analysis
We considered the QTNs we detected from multiple
environments or by multiple methods as common QTNs.
Based on the effect values of each common QTN and the
genotype for code 1, we could determine the superior alleles of
each QTN. If the effect value of the QTN is positive, the genotype
for code 1 is the superior allele; if the effect value is negative,
another genotype is the superior allele. For each QTN, the
superior allele percentage in the 144 FW-RILs was equal to the
number of lines containing the superior allele divided by the total
number of lines. For each line, the proportion of superior alleles
in these QTNs was calculated as the number of superior alleles
divided by the total number of QTNs. A heat map visualizing the
percentage of superior alleles was obtained in the R (heatmap
package) program (Mellbye and Schuster, 2014).

Identification of Potential Candidate
Genes
The search for potential candidate genes based on the common
QTNs detected by multiple methods or in multiple environments
was performed using four steps. First, the intervals that include
each common QTN were selected on the Phytozome website1.
These intervals were determined by the rate of LD decay.
Second, genes highly expressed in the form process of seed
protein through the Bio-Analytic Resource for Plant Biology
(BAR) website2 were identified. Third, based on the experimental
data in the Plant Expression Database (PLEXdb) website3, the
differentially expressed genes among high and low protein lines
were identified from the above high expression genes. Finally, all
the differentially expressed genes were put together for analysis
of pathways on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) website4, and potential candidate genes were identified
by the result of pathway analysis.

RESULTS

Protein Content Phenotype
We measured the PC phenotypes of the parents and the
144 FW-RILs in 20 environments, which are presented in
Supplementary Table S2 and Supplementary Figure S1.
Graphing the average value for PC of each line in 20
environments revealed that the 144 lines show extensive
variation in PC (Supplementary Figure S1). Examination
of the values (Supplementary Table S2) showed that the

1https://phytozome.jgi.doe.gov
2http://www.bar.utoronto.ca
3http://www.plexdb.org
4http://www.kegg.jp
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FIGURE 1 | Frequency distribution of seed protein content under 20 environments.

parental lines Kenfeng14 and Kenfeng15 had lower PC than
Kenfeng19 and Heinong48 in all 20 environments. And the
“Range” (Range = PCMax – PCMin) of the four parents in 20
environments was from 1.70 to 4.04%; the “Range” of FW-RILs
was 5.20–11.56%, representing a large difference in PC, especially
in FW-RILs. Kurtosis and skewness (absolute value) were less
than 1, indicating the continuous normal distribution of the PC
values (Supplementary Table S2 and Figure 1). We found a
high coefficient of variation in PC across all the environments.
The ANOVA results of parents and FW-RILs both indicated that
extremely significant variation exists in genotype, environment,
and genotype-by-environment (Tables 1, 2). The mean square
values for the genotype-by-environment interaction were all less
than the mean square values of genotype, and the estimated
broad-based heritability was high, being 85.46%. The correlation
coefficients between each pair of environments were almost
all positive, and many were significant or extremely significant
(Supplementary Table S3), indicating high consistency across
various environments.

Population Structure and LD
To define the subpopulations within the panel of 144 lines, as
described by Pritchard et al. (2009), we selected 5375 of the
109,676 SNPs that had better polymorphisms and were randomly
distributed across the 20 soybean chromosomes. Delta K (1K)
was calculated using STRUCTURE 2.3.4 (Figure 2A; K = 1–10),

TABLE 1 | Joint ANOVA of PC of parent lines in multiple environments.

Source DF SS MS F Pr > F

Replication 2 5.55 2.77 6.59 0.0018

Environment 19 155.86 8.20 19.49 < 0.0001

Genotype 3 271.22 90.41 214.80 < 0.0001

Genotype ∗ Environment 57 50.02 0.877 2.08 0.0002

Error 158 66.50 0.42

revealing the presence of two subpopulations (selected K = 2)
based on 1K values (Figure 2B). These two subgroups contained
53 (36.81%) and 91 (63.19%) lines.

We analyzed the r2 values of all pairs of SNPs located
within 10 Mb of each other and determined the LD decay
trend based on regression to the negative natural logarithm. As
shown in Supplementary Figure S2, r2 decreased gradually with
increased distance, and the LD decay distance was estimated
at 1.2 Mb, where r2 dropped to half of its maximum value
(0.45). Because the population used in this study is derived
from parents, the speed of LD decay is slower and the
LD decay distance is much longer than that of a natural
population.

QTNs Detected by Multi-Locus GWAS
Methods
We identified 19, 18, 12, 37, and 43 significant QTNs for PC using
mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and ISIS
EM-BLASSO, respectively, and 10, 11, 10, 2, 1, 2, 3, 6, 11, 10,
0, 8, 4, 9, 9, 7, 1, 5, 12, and 8 significant QTNs, respectively, in
the 20 environments (Figure 3 and Supplementary Table S4).
No significant QTN was detected in the eleventh environment
(E11).

We further checked the common QTNs across multiple
environments. As discussed above, only one such common QTN
was identified in three environments (Table 3). The single QTN
(AX-157298785) was located on chromosome 18, with the LOD
values ranging from 4.02 to 5.33 (Table 3). The proportion
of phenotypic variance explained (PVE) by the QTN ranged
from 8.40 to 11.02%, and the QTN direction of effect (positive
or negative) was consistent across different environments and
different methods (Table 3).

Comparing the results across the different approaches, we
found that 22 common QTNs (including AX-157298785) were
identified simultaneously by at least two approaches (Table 4);
these were located on chromosomes 1, 2, 3, 4, 6, 7, 9, 10,
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TABLE 2 | Joint ANOVA of PC of FW-RILs in multiple environments and heritability.

Source DF SS MS F Pr > F Variance component

Replication 2 1, 304.62 652.31 11, 639.60 < 0.0001 0.25

Environment 19 1, 893.98 99.681 1, 778.72 < 0.0001 0.23

Genotype 143 4, 565.61 31.93 569.70 < 0.0001 0.50

Genotype ∗ Environment 2,436 12, 408.82 5.09 90.89 < 0.0001 1.68

Error 5,196 291.19 0.06 0.06

h2 0.85

FIGURE 2 | Population structure based on 5375 SNPs distributed across 20 chromosomes. (A) Plot of 1K calculated for K = 1–10. (B) Population structure (K = 2);
the areas of the two colors (green and red) illustrate the proportion of each subgroup.

12, 14, 16, and 18. Their LOD values ranged from 3.06 to
6.90, the proportion of PVE by each QTN ranged from 3.84
to 19.21%, and the direction of effect (positive or negative)

of each QTN was also consistent across the different methods
(Table 4). Of the 22 common QTNs, 12, 5, and 5 were
identified simultaneously by 2, 3, and 4 approaches, respectively.
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FIGURE 3 | (A) The total numbers of significant QTNs detected in 20 environments across 5 methods. (B) The total numbers of significant QTNs detected using
each of 5 multi-locus GWAS methods in 20 environments.

TABLE 3 | Stable expressed QTNs identified in multiple environments and by multiple methods.

Methoda Env Marker Chr Marker position QTN effect LOD score r2(%)b

1,1 E14,E20, AX-157298785 18 6,620,851 −0.39, −0.40, 4.21, 4.02, 10.78, 11.02,

2,3 E14,E14, −0.29, −0.67, 4.32, 4.43, 5.86, 7.78,

5,5 E14,E16 −0.34, −0.39 4.56, 5.33 8.40, 10.48

amrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO were indicated by 1 to 5, respectively. br2 (%), proportion of total phenotypic variation explained
by each QTN.

Among the five methods, ISIS EM-BLASSO detected the highest
number of common QTNs (Figure 4A), and among the
combinations of two methods, FASTmrMLM combined with
pLARmEB detected the highest number of common QTNs
(Figure 4B).

We found only one stable QTN that was identified not
only in multiple environments but also by multiple methods
(Table 3): AX-157298785, located on chromosome 18, which was
detected by mrMLM, FASTmrMLM, FASTmrEMMA, and ISIS
EM-BLASSO in environments E14, E16, and E20, with LOD

values ranging from 4.02 to 5.33 and PVE values ranging from
5.86 to 11.02% (Table 3).

Distribution of Superior Alleles in the
FW-RILs
Based on the PC averages in 20 environments for each
FW-RIL, we found that 22 lines had higher phenotypic
values (43.07–44.21%) and 7 lines had lower phenotypic values
(40.60–40.98%) (Table 5). For each of the 22 elite lines,
the percentages of superior alleles (PSA) across 22 common
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TABLE 4 | Common QTNs for seed protein content in soybean across different multi-methods.

Methoda Marker Chr Position (bp) QTN effect LOD score r2 (%)b

2,3 AX-157088197 1 2,142,538 0.24,0.51 3.06,3.15 5.41,5.50

2,5 AX-157514742 1 5,244,469 0.41,0.44 4.76,4.76 8.58,9.99

2,4 AX-157393800 1 36,630,129 0.53,0.61 4.17,5.49 6.39,8.57

2,3,4 AX-157197609 2 19,981,350 −0.34,−0.65,−0.38 3.38,3.36,3.81 8.06,6.14,9.58

3,5 AX-157074676 2 43,036,996 −0.64,−0.30 3.65,3.10 5.59,4.83

2,4 AX-157487767 3 28,963,194 0.45,0.47 4.72,3.90 4.74,5.30

2,3,4,5 AX-157594705 4 47,793,555 −0.35,−0.65,−0.42,−0.35 3.94,3.24,5.26,4.40 6.97,5.61,9.85,6.96

1,2,4,5 AX-157397239 4 47,801,472 −0.32,−0.27,−0.23,−0.25 3.13,3.07,3.43,3.73 9.42,6.54,4.75,5.88

1,2,4,5 AX-157489326 6 48,361,864 0.43,0.34,0.42,0.31 3.78,4.26,6.53,3.37 11.81,7.50,11.14,6.19

1,4 AX-157083233 6 49,396,770 −0.78,−0.51 3.20,3.65 19.21,6.67

1,3,4,5 AX-157462104 7 20,724,011 0.82,1.35,0.65,0.50 4.64,4.97,5.90,3.21 15.18,9.83,9.58,5.78

1,2,5 AX-157506141 9 34,120,396 −0.56,−0.44,−0.41 4.02,4.03,3.63 12.36,7.81,6.79

3,5 AX-157570733 10 43,785,659 0.75,0.34 5.09,3.88 9.27,7.63

4,5 AX-157566978 12 1,258,280 −0.24,−0.36 3.65,4.52 3.84,8.50

3,5 AX-157069070 12 10,655,900 0.83,0.42 4.24,5.50 8.30,8.67

4,5 AX-157357710 12 11,111,913 −0.61,−0.62 6.90,5.32 9.83,12.74

2,4,5 AX-157217990 14 7,160,557 −0.23,−0.24,−0.23 3.42,3.22,3.63 4.79,5.45,4.92

1,4 AX-157512649 16 24,057,874 0.31,0.24 3.16,3.44 7.00,4.09

1,5 AX-157168337 16 28,693,806 0.64,0.37 4.66,3.94 14.20,5.23

1,3,5 AX-157333937 18 2,064,407 0.56,0.96,0.48 3.56,4.33,4.23 11.90,8.54,8.58

1,2,4 AX-157443296 18 6,597,875 −0.49,−0.36,−0.38 3.83,4.26,5.12 15.96,8.71,9.88

1,2,3,5 AX-157298785 18 6,620,851 −0.39(−0.40),−0.29,
−0.67,−0.34 (−0.39)

4.21 (4.02),4.32,
4.43,4.56,(5.33)

10.78(11.02),5.86,
7.78,8.40 (10.48)

amrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO were indicated by 1–5, respectively. br2 (%), proportion of total phenotypic variation explained
by each QTN. Bold text indicates the QTNs appeared to be near QTLs associated with protein content in soybean that had been mapped in earlier studies.

FIGURE 4 | (A) The number of common QTNs detected by different methods and (B) different combinations of methods. Method numbers correspond to (1)
mrMLM, (2) FASTmrMLM, (3) FASTmrEMMA, (4) pLARmEB, and (5) ISIS EM-BLASSO.

QTNs ranged from 36 to 82% (Table 5), 91% (20 of the
22 lines) showed PSAs of ≥50%, and only 9% showed PSAs
of <50%. For each of the 7 lines with lower phenotypic
values, the PSAs ranged from 32 to 50% (Table 5), only 2
lines (28%) had PSAs of ≥50%, and the remaining 5 (71%)
had PSAs of <50%. Thus, the elite lines with higher PC
have more superior alleles than the lines with lower PC
(Figure 5).

Based on the superior allele information for the 22 common
QTNs in 29 lines, the PSAs for each QTN ranged from 36 to 95%
in the 22 elite lines, with 16 QTNs showing≥ 50% superior alleles
while the remaining 6 QTNs showed < 50%. The range of PSAs
for each QTN was 0–71% in the 7 lines with lower phenotypic

values; 8 of the QTNs had PSAs ≥ 50% and the remaining 14
QTNs had PSAs < 50% (Table 6 and Figure 6). The number of
QTNs with ≥50% superior alleles was higher in the 22 elite lines
than in the 7 inferior lines. Based on these results, we can easily
find elite lines by identifying superior alleles for application in
breeding higher PC soybean.

In addition, we found some common superior alleles in
multiple elite lines: for example, the seven lines HN54, HN37,
HN46, HN47, HN40, HN45, and HN103 all contained the
superior alleles AX-157506141, AX-157168337, AX-157514742,
AX-157397239, AX-157570733, and AX-15719760 (Figure 6),
and the superior allele AX-157506141 occurred in 21 of the 22
elite lines. We suspect that common superior alleles may have a
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TABLE 5 | Phenotypic averages of seed protein content and proportion of
superior alleles in 29 lines across 22 common QTNs.

Line PC (%) PSA (%) Line PC (%) PSA (%)

HN54 44.21 82 HN67 44.19 55

HN37 43.26 77 HN98 43.01 55

HN46 44.01 77 HN41 43.10 50

HN47 43.27 77 HN48 43.55 50

HN40 43.40 73 HN58 43.13 50

HN45 43.54 73 HN93 43.03 45

HN103 44.20 68 HN20 43.34 36

HN24 43.07 64 HN2 40.69 50

HN74 43.42 64 HN112 40.60 50

HN118 43.11 64 HN65 40.98 45

HN142 43.14 64 HN17 40.66 36

HN60 43.06 59 HN32 40.81 36

HN69 43.43 59 HN75 40.60 36

HN91 43.20 59 HN106 40.71 32

HN35 43.43 55

Bold font indicates the 7 lines with lower protein contents, and non-bold font
indicates the 22 lines with higher protein contents.

particularly strong influence on PC. In further research, we hope
to make use of this information to breed better soybean using
marker-assisted selection.

Potential Candidate Genes Determined
Based on Common QTNs
We used the LD decay distance to select potential candidate genes
within a specific distance of each common QTN. Because of the

nature of the population (i.e., derived from parents), the LD
decay distance is large, so we determined the range of potential
candidate genes according to the position of the fastest decay
rate. In Supplementary Figure S2B, we can see that LD decays
fastest before 200 kb, and then tends to flatten, so we searched for
potential candidate genes in the interval of 100 kb on either side
of each QTN. Following the four steps described in the Materials
and Methods, a total of 288 genes were found in these intervals
and 96 genes were expressed highly in seed at the form process
of seed protein. Among the 96 genes, 34 genes were differentially
expressed among high and low protein lines, and these 34 genes
were used to do pathway analysis.

From the annotation data, we found that 17 of 34 genes
(51.4% of the genes we submitted) were previously annotated
in 14 pathways and 3 protein families in the KEGG database
(Supplementary Tables S5, S6 and Figure 7). Of these, 8 were
considered potential candidate genes based on the information
of their annotation and functions in metabolic pathways (Table 7
bold text).

DISCUSSION

In this study, we employed multi-locus GWAS with an FW-RIL
population of the MAGIC population type to identify QTNs
related to PC of soybean. Twenty-two common QTNs were
detected by multiple methods or in multiple environments
(Tables 3, 4). Based on the SoyBase database and the results
of recent studies, 12 of the 22 common QTNs appeared to
be near QTLs associated with PC in soybean that had been
mapped in earlier studies (Lee et al., 1996; Brummer et al.,

FIGURE 5 | Distribution of superior allele percentages and the PC in the 29 high- and low-PC lines.
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TABLE 6 | Superior alleles and their proportions of 22 common QTNs in 22 elite and 7 inferior lines.

QTN Superior allele PSA (%)a PSA (%)b QTN Superior allele PSA (%)a PSA (%)b

AX-157506141 CC 95 71 AX-157074676 GG 64 71

AX-157514742 CC 82 29 AX-157489326 TT 59 57

AX-157168337 TT 77 57 AX-157594705 GG 59 29

AX-157393800 AA 77 43 AX-157487767 AA 50 57

AX-157462104 GG 77 43 AX-157570733 TT 50 29

AX-157298785 GG 73 43 AX-157512649 GG 45 71

AX-157397239 AA 73 29 AX-157197609 AA 45 14

AX-157443296 CC 68 57 AX-157069070 TT 41 57

AX-157088197 GG 68 43 AX-157333937 CC 41 14

AX-157566978 AA 68 43 AX-157083233 TT 36 29

AX-157217990 TT 68 14 AX-157357710 AA 36 0

a Indicates the percentage of superior allele of each common QTN in 22 elite lines. b Indicates the percentage of superior allele of each common QTN in 7 inferior lines.

FIGURE 6 | Heat map of the superior allele distribution for the 22 common QTNs in the 29 high- and low-PC lines. Blue and white colors represent superior and
inferior alleles, respectively.

1997; Csanádi et al., 2001; Jun et al., 2008; Lu et al., 2013;
Mao et al., 2013; Pathan et al., 2013; Hwang et al., 2014; Qi
et al., 2014; Vaughn et al., 2014; Warrington et al., 2015): AX-
157074676, AX-157594705, AX-157397239, AX-157489326, AX-
157462104, AX-157506141, AX-157069070, AX-157357710, AX-
157217990, AX-157570733, AX-157566978, and AX-157168337
(Table 4, bold text). This indirectly confirmed the accuracy of
our QTN detection. The remaining ten QTNs in this study
were new (Table 4, non-bold text). For this population, the
detection of significant QTNs is not only a way to identify the
genes related to PC, but can also identify good lines based on
the superior allele information to support breeding high PC
soybean.

Based on the 22 common QTNs detected here and
their pathway annotation, we have identified 8 genes that
may be related to protein anabolism (Table 7, bold text).
Glyma.03G100800 is intimately involved in the biosynthesis

of amino acids, and the pentose phosphate pathway which
it is involved in also indirectly affects the biosynthesis of
proteins (Xu et al., 2018). Glyma.10G207300, Glyma.14G081600,
and Glyma.12G019300 are mainly involved in the proteasome
pathway and work as protease to degrade proteins to small
peptides and amino acids, so we think that these three genes
are closely related to protein degradation. Glyma.18G071100
may play an important role in protein anabolism; it participates
in the process of glycosylation in endoplasmic reticulum,
and the function of glycosylation is to enable proteins to
resist the digestive enzymes, so as to protect protein from
degradation (Jayaprakash and Surolia, 2017). Glyma.12G112900
is a kind of riboflavin synthase and it participates in the
biosynthesis of riboflavin, which plays an important role
in energy metabolism including carbohydrate, protein and
fat metabolism (Tuan et al., 2014; Zhao et al., 2014).
Glyma.18G071300 participates in RNA transport, and this
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FIGURE 7 | Information on pathways and orthologous protein families of 17 genes. (A) shows the information on pathway. (B) shows the information on orthologous
protein families.

process is essential in protein synthesis; as we know, it
mainly carries amino acids into ribosomes and synthesizes
proteins under the guidance of mRNA. Glyma.18G028600
is a kind of translocation protein, and it mainly works in
post-translational transport and post-translational modification
in the process of protein synthesis, so it plays an important
role in protein synthesis (Kwon et al., 1999). Based on these
8 genes, further work will be needed to determine which of
these actually significantly affect PC in soybeans, and then

to identify the target genes. This information can be used as
the basis for further exploration of the gene network for the
trait.

In recent years, GWAS has been widely applied to crop
plants such as rice (Huang et al., 2010; Ma et al., 2016), maize
(Tian et al., 2011), and soybean (Li et al., 2018), and the
model mainly used for GWAS is mixed linear model (MLM).
It belongs to single-locus GWAS, for which the screening
criterion for significance is P = 0.05/m (where m is the number
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TABLE 7 | Details of 17 genes annotated in the KEGG database.

QTN name Gene namea Chromosome Position KO
number

Annotation

AX-157088197 Glyma.01G020900 chr01 2104937..2109784 K00083 E1.1.1.195; cinnamyl-alcohol dehydrogenase [EC:1.1.1.195]

AX-157514742 Glyma.01G046000 chr01 5317206..5321170 K21734 SLD; sphingolipid 8-(E/Z)-desaturase [EC:1.14.19.29]

AX-157487767 Glyma.03G100800 chr03 28980378..28988564 K00948 PRPS; ribose-phosphate pyrophosphokinase [EC:2.7.6.1]

AX-157397239 Glyma.04G206300 chr04 47880082..47890343 K21594 GUF1; translation factor GUF1, mitochondrial [EC:3.6.5.-]

AX-157570733 Glyma.10G207100 chr10 43860713..43863694 K01373 CTSF; cathepsin F [EC:3.4.22.41]

AX-157570733 Glyma.10G207300 chr10 43879369..43883196 K16298 SCPL-IV; serine carboxypeptidase-like clade IV [EC:3.4.16.-]

AX-157566978 Glyma.12G017200 chr12 1212436..1217081 K17790 TIM22; mitochondrial import inner membrane translocase subunit TIM22

AX-157566978 Glyma.12G018000 chr12 1252709..1256330 K04683 TFDP1; transcription factor Dp-1

AX-157566978 Glyma.12G018800 chr12 1321415..1326705 K1542 PPP4R2; serine/threonine-protein phosphatase 4 regulatory subunit 2

AX-157566978 Glyma.12G019300 chr12 1354109..1356766 K11599 POMP; proteasome maturation protein

AX-157357710 Glyma.12G112900 chr12 11064160..11065437 K00793 ribE; riboflavin synthase [EC:2.5.1.9]

AX-157357710 Glyma.12G113400 chr12 11135703..11140450 K19355 MAN; mannan endo-1,4-beta-mannosidase [EC:3.2.1.78]

AX-157217990 Glyma.14G081600 chr14 7064342..7068643 K03030 PSMD14; 26S proteasome regulatory subunit N11

AX-157333937 Glyma.18G027100 chr18 2033839..2038697 K05857 PLCD; phosphatidylinositol phospholipase C, delta [EC:3.1.4.11]

AX-157333937 Glyma.18G028600 chr18 2154790..2160008 K00685 ATE1; arginyl-tRNA—protein transferase [EC:2.3.2.8]

AX-157443296 Glyma.18G071100 chr18 6667467..6671661 K12275 SEC62; translocation protein SEC62

AX-157443296 Glyma.18G071300 chr18 6687583..6692093 K12880 THOC3; THO complex subunit 3

Bold font indicates the genes which correlate with the protein anabolism in soybean according to our deduction. a Indicates the gene which correlates with the QTN
(before the gene in the same row).

of markers) (Perneger, 1998). For a large number of SNPs,
some important loci may be undetectable under this screening
criterion.

In this study, we also used MLM to carry out the GWAS of
soybean PC, with the calculation of population structure based
on STRUCTURE 2.3.4 and the calculation of kinship and GWAS
based on TASSEL 5.0. However, we did not detect any significant
SNPs using the model. We believe that this was related to the
screening criteria of single-locus GWAS and to the type of target
trait as well as the population type. In light of this negative
result, we tried changing the screening criteria, and replaced the
strict Bonferroni correction with a less stringent false discovery
rate (FDR) correction. The q-values were equal to the P-values
adjusted with the Benjamini and Hochberg (2000) procedure; we
used the cut-off of q < 0.05 and P < 0.0001as the threshold value

to identify significant QTNs. Based on these screening criteria, we
still did not find significantly associated SNP markers. To further
reduce the stringency of the screening criteria, we next tried using
a P-value of < 0.0001 directly as a cut-off without any corrections.
With this criterion, a total of 15 SNP markers were identified with
1 cluster (bold text in Table 8). The range for the one cluster was
83.40 kb.

Because of the nature of single-locus methods, even if we
identified these significant SNP markers under less stringent
screening methods, we lack confidence about our ability to
control for the false positive rate of results obtained without the
correction for multiple tests. A previous study yielded a similar
outcome to ours (Fang et al., 2017), so it seems evident that
the single-locus method is not always suitable for detecting the
genetic basis of complex traits.

TABLE 8 | Details of significant SNPs detected by MLM with screening critical P < 0.0001.

Environment Chr Physical
position (bp)

Physical
distance (kb)

P-value No. of QTNs
(MLM)a

No. of QTNs
(multi-locis

GWAS)b

E6 1 5,703,406 2.82E-05 1 1

E19 8 43,712,243 1.17E-04 1 1

E4 13 1,147,825 9.80E-05 1 0

E12 14 15,013,495 1.35E-04 1 0

E12 16 5,609,879 1.12E-04 1 0

E19 16 28,008,354 1.07E-04 1 2

E6 18 5,396,919 3.54E-05 1 0

E16 18 6,590,065 -
6,673,462

83.40 6.01E-05 - 1.35E-04 8 11

Total 15 15

aNumber of QTNs detected by MLM model. bNumber of QTNs detected by multi-locus GWAS methods.
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To make up for the shortcomings of the above methods,
multi-locus GWAS methods have recently been explored,
including the five methods we used in this study: mrMLM
(Wang et al., 2016), FASTmrMLM (Tamba et al., 2017),
FASTmrEMMA (Wen et al., 2018), pLARmEB (Zhang J. et al.,
2017), and ISIS EM-BLASSO (Tamba et al., 2017). Using the
five methods, we detected a total of 19, 18, 12, 37, and 43
significant QTNs, respectively (Figure 3B and Supplementary
Table S4). The differences in the numbers of QTNs detected
by the five methods are presumed to be due to the different
principles underlying the different methods: even though all
five are two-stage combined approaches, they differ in the
models and methods for screening and estimation. Because
the main purpose of this study required the most accurate
QTNs possible, we felt it desirable to take into consideration
the results of all five methods, and took QTNs detected by
multiple methods as the credible QTNs to use in further
experiments. This practice adds an extra screening to the multi-
locus GWAS approach and thus makes us more confident about
the results.

Based on the data from the QTNs we detected, we found that
the absolute values of QTN effects were all relatively low, in the
range of 0.17–1.35, which indirectly explained why we could not
detect significant QTNs by MLM with the standard Bonferroni
correction. Thus, the greatest advantage of the multi-locus
GWAS approach was its ability to find loci with relatively small
effects. In addition, the multi-locus GWAS method was more
suitable for the FW-RIL population used in this study than
single-locus GWAS. This is because the single-locus GWAS
method is generally based on SNPs for which there are only
two alleles at one locus, meaning that the multi-allelic variation
that exists at some genetic loci in the FW-RIL population
cannot be detected. However, the multi-locus GWAS method
overcomes this limitation: because it is based on a multi-locus
and multi-allele model, it can identify genome-wide QTNs in a
more comprehensive fashion along with the multiple alleles. This
is the other reason that we were able to detect significant QTNs
with the multi-locus GWAS method.

SUMMARY

Combining five multi-locus GWAS methods, we identified
22 common QTNs, including one stable expression QTN
AX-157298785. Around these QTNs, 8 potential candidate genes
were identified. Moreover, we selected elite lines for breeding
higher seed protein content.
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TABLE S2 | Statistical characteristics of protein content in the parents and the
FW-RIL populations grown in twenty environments.

TABLE S3 | The correlation analysis between each pair of environment.
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