
A GRAPHIC PROCESSING UNIT FRAME WORK FOR CONVOLUTIONAL NEURAL

NETWORK BASED CLASSIFICATION OF REMOTELY SENSED SATELLITE IMAGES

Rizwan Ahmed Ansari 1*, Winnie Thomas 2, Krishna Mohan Buddhiraju 1

1 Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, India - rizwan.vjti@ieee.org,

bkmohan@csre.iitb.ac.in
2 Department of Electrical Engineering, Indian Institute of Technology Bombay, India - winniethomas@ee.iitb.ac.in

Commission V, SS: Emerging Trends in Geoinformatics

KEY WORDS: GPU, GPGPU, convolutional neural networks, parallel processing, image classification

ABSTRACT:

Near real time processing and feature extraction from high-resolution satellite images aids in various applications of remote sensing

including segmentation, classification and change detection. The latest generation of satellite sensors are able to capture the data at a

very high spatial, spectral and temporal resolution. The processing time required for such a huge data is also large. Disaster

monitoring applications such as forest fire monitoring, earthquakes require fast/real time processing of high resolution data to enable

response activities. In general, due to the large size of satellite data, the computational time of feature calculation and training neural

network is found to be very high. Therefore in order to achieve the aim of near real time processing of such huge data, we developed

a parallel implementation. The implementation is performed on NVIDIA’s Graphical Processing Unit. The performance

improvement obtained is demonstrated by a GPU implementation on Resourcesat-1 data and compared with the traditional

sequential implementation. The results show that the GPU implementation is found to achieve performance improvement in terms of

execution time and speedup throughput as compared to the sequential implementation.

* Corresponding author

1. INTRODUCTION

Artificial Neural Networks (ANNs) perform very well on

pattern recognition and classification problems with a large

amount of training data. For image classification, like optical

character recognition, Convolutional Neural Networks (CNNs)

deliver state-of-the-art performance (Simard et al. 2003). CNNs

are a variant of Multilayer Perceptron (MLP) neural networks

optimized for two-dimensional pattern recognition. CNNs are

used in many applications including handwriting recognition

(LeCun 1998), face, eye and license plate detection (Lam and

Eizenman 2008; Zhao et al. 2008), and in non-vision

applications such as semantic analysis (Collobert and Weston

2008).The latest generation of satellite sensors are able to

capture the data at a very high spatial, spectral and temporal

resolution. The processing time required for such a huge data is

also large. Disaster monitoring applications such as flood/forest

fire monitoring, earthquakes require fast/real time processing of

high resolution data to enable response activities. For The

biggest drawback of CNNs, besides a complex implementation,

is the long training time. Since CNN training is very compute-

and memory-intensive, training with large data sets may take

several days or weeks.

Traditionally most of the programs are written in sequential

manner. A sequential program will run on only one Central

Processing Unit (CPU) and will not become faster than the most

powerful CPU in use today. This is a huge obstruction for an

application developer because they will not be able to introduce

different and new features to their software. Most of the

software developers have relied on the advances in hardware to

increase the speed of their applications under the hood. This

trend has slowed since 2003 due to energy-consumption and

heat-dissipation issues that have limited the increase of the

clock frequency and the level of productive activities that can

be performed in each clock period within a single CPU (Kirk

and Wen-mei 2012).

However, the current CPU based approaches are not amenable

for time critical applications, particularly when used on

considerably large high-resolution imagery. There is an issue of

scalability related to the remote sensing data. The recent

emergence of Graphic Processing Units (GPU) provides a

platform for such compute intensive problems and gives

considerable performance improvement. Parallel programming

is the only way that will give room for the performance

improvement of applications in handling large data from

different satellite sensors. In a parallel programming model

multiple threads of execution cooperate to complete the work

faster.

In general, due to the large size of satellite data, the

computational time of feature calculation and training neural

network is found to be very high. Hence in order to achieve the

aim of near real time processing of such huge data we

developed a parallel implementation. The implementation is

performed on NVIDIA’s Graphical Processing Unit. In

particular, feature extraction and classification using neural

networks have been explored in a GPU-based environment to

study the significant gains achieved in their computational

capability.

The huge number of floating point operations and relatively low

data transfer in every training step makes this task well suited

for GPGPU (General Purpose Graphic Processing Units)

computation on current Graphic Processing Units (GPUs). The

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

383

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201639134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

main advantage of GPUs over CPUs is the high computational

throughput at relatively low cost, achieved through their

massively parallel architecture.

Using the GPU for general purpose applications requires some

amount of understanding of the hardware architecture. The GPU

programming platforms such as Compute Unified Device

Architecture (CUDA) (NVIDIA 2009a) transforms the

algorithms to be implemented into a graphics pipeline friendly

format. The CUDA language bears resemblance to the C

programming language and is therefore much simpler to

program rather than writing the graphics API languages.

Furthermore, unified shaders are better adapted to perform

general computations than earlier architectures which results in

a shorter training period, faster adoption and higher efficiency.

This paper describes architecture of GPU in CNN frame work

for remotely sensed image classification using textural analysis;

and program pieces to study and compare process times and

thus speed up and throughput of CPU and GPU. The program is

written in CUDA C language and has led to more insight into

some typical underlying architectural behavior of the GPU

device for the application of textural segmentation of remotely

sensed satellite images.

2. METHODOLOGY

2.1 Data Set

The dataset is from Resourcesat-1 satellite image of Kuwait city

with a spatial resolution of 5.8m x 5.8m, shown in Figure 1.

This resolution is well suited for texture analysis since a spatial

resolution of this order is not adequate to extract individual

buildings or narrow roads but groups of them render a visible

checked pattern in dense urban areas. For general analysis

where multiresolution coefficients follow a mixture of

distribution families, a natural way to carry out the analysis is

by using lower and higher order moments of the multiresolution

coefficients for the unknown underlying distributions. We have

used first four moments viz. mean, variance, skewness and

kurtosis of wavelet coefficient. Three level 9/7 biorthogonal

wavelet is used for MRA decomposition.

Figure 1. Original image covering Kuwait city (Resourcesat

image)

2.2 Feature Extraction

Multiresolution analysis (MRA) has been successfully used in

texture analysis of images. Texture is characterized by the

spatial organization of gray level variations in a local area. It

quantifies the local intensity variations in an image, observing

properties such as fineness, coarseness and evenness. Co-

occurrence matrices are frequently used in texture analysis as

they capture the spatial relatedness of pixel intensities in a

neighbourhood within an image (Unser, 1986; Unser 1995;

Murray et al., 2010). These methods are constrained by the

analysis of spatial arrangement over relatively small

neighbourhoods on a given single scale. An object which is

smaller than the spatial resolution of sensor system cannot be

identified. As a result, performance of co-occurrence matrices is

only suitable for micro-level textures (Unser, 1995). A

multiresolution technique provides a coarse-to-fine and scale-

invariant decomposition for interpreting the image information.

At different scales, the details of an image vary according to the

content of the image where, the lower resolution provides a

global view, while the higher resolution provides the finer

details of the scene. Texture and MRA are therefore required in

analysis and segmentation because it is difficult to analyze the

information content of an image directly from the pixel

intensity. The local changes of the intensity of an image are

more important than the gray level intensity of that image.

Textured objects reveal different type of information as a

function of the resolution of reference for analysis, which

cannot optimally be observed at a single resolution for image

analysis. Therefore, it is better to extract features of the objects

from different segmentation levels.

The wavelet transform, is extensively used to describe images in

multiple resolutions. Wavelets can be viewed as a projection of

the signal on a specific set of scaling ϕ(t) and wavelet basis ψ(t)

functions in the vector space. The wavelet coefficients obtained

represent these projection values. The discrete wavelet

transform is realized with the help of filter banks. The basis

functions are expressed with the help of dilation equations as

() [] (2)
m

n

t h n t n

 (1)

() [] (2)
m

n

t g n t n

 (2)

Where h[.] are low-pass filter coefficients, g[.] are high-pass

filter coefficients of the filter bank, m is the scaling index, and n

is the translating index.

By decomposing the image into a series of high-pass and low-

pass filter bands, the wavelet transform extracts directional

details that capture horizontal, vertical, and diagonal details. We

have used moment and energy based texture features from

wavelet coefficients as features to in the neural networks for

classification task.

2.3 Graphic Processing Unit

The demand for very high quality real time graphics in

computer applications has been the inspiration behind the

advancement of graphics hardware. A graphic programmer

writes a single thread program that draws one pixel and GPU

runs multiple copies of this program (thread) in parallel,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

384

drawing multiple pixels in parallel. Now graphic programs

written in C or C++ with the CUDA model, scale transparently

(Boyd 2008). Scalability has enabled GPUs to rapidly increase

their parallelism and performance with increasing transistor

density as GPU transistor counts are increasing exponentially

doubling every eight months (LeCun 1998).

In 2001, NVIDIA GeForce introduced General shader

programmability there by allowing the application developer to

work with instruction of the floating point vertex engine. These

programmability and floating point capability, extended to the

pixel shader stage and made texture accessible from the vertex

shader stage, e.g. ATI Radeon (2002), featured a programmable

24-bit floating point pixel shader processor programmed with

DirectX9 and OpenGL. GeForce features 32-bit floating point

pixel processors. GeForce 6800 (Kirk and Wen-mei 2012) and

7800 series introduced separate dedicated vertex and pixel

processors. In 2005, Xbox 360 GPU achieved unified

processing by allowing vertex and pixel shader to execute on

the same processor.

GeForce 8800 GPU introduced in 2006, featured an array of

unified processors. The unified processor supports dynamic

partitioning of the array of processors to vertex shading stage,

geometry processing (first introduced in GeForce 8800 GPU)

and pixel processing stage.

2.4 General Purpose Computing on GPU

The GPUs were only capable to process graphic data. GPGPU

allows the utilization of a GPU to perform computation in

applications traditionally handled by the CPU. To access the

computational resources the programmer had to use OpenGL or

DirectX API calls (McReynolds 1998). The NVIDIA Tesla

GPU architecture designers replace shader processors with fully

programmable processors with instruction memory, cache and

instruction sequencing control (Lindholm et al. 2008, Huang

2009). With NVIDIA developing CUDA C/C++ compiler

libraries also, by now programmers can easily access the GPU.

NVIDIA introduced Fermi GPU computing architecture in 2009

(NVIDIA 2009a). It increased double- precision performance,

error correcting code (ECC) memory protection for large scale

computing, 64 bit unified addressing, cached memory hierarchy

and instruction for C, C++, Fortran, OpenCL and

DirectCompute .

In 2010 September, NVIDIA introduced Kepler architecture,

which added new features of dynamic parallelism and Hyper Q

(NVIDIA 2013). Dynamic parallelism allows GPU to generate

work for itself and to schedule that work through the best

hardware path, without involving the CPUs. Hyper Q allows

multiple CPU cores to call single GPU thereby dramatically

increasing GPU utilization and significantly reducing CPU idle

times (NVIDIA 2013).

2.5 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) is software and

hardware architecture for supporting heterogeneous parallel

computing. It enabled the GPU to be programmed with a variety

of high level languages. The programmer could now write C

programs with CUDA extensions and target a general purpose,

massively parallel processor.

CUDA describes a proprietary language by NVIDIA which is

based on C and contains some special extensions to enable

efficient programming of NVIDIA’s graphic processors. To a

CUDA programmer, the computing system comprises a host

which is a traditional CPU, such as an Intel architecture

microprocessor in personal computers and GPU(s) which are

massively parallel processors with large number of arithmetic

execution units. The program section often consist of some data

parallelism, that allow many arithmetic operations to be safely

performed on streaming data in a simultaneous manner.

Streaming data can be considered as a stream of data elements

that are required to be processed by same task or instruction

based on Single Program Multiple Data (SPMD) which is a data

parallel model. The CUDA devices accelerate the execution of

these applications by harvesting a large amount of data

parallelism. Different texture classes from remotely sensed

images at different resolution capture independent and

simultaneous events.

The kernel functions typically generate a large number of

threads to exploit data parallelism. These CUDA threads are of

lighter weight than the CPU threads. These threads take few

cycles to generate and schedule which is in contrast with CPU

threads that typically take thousands of clock cycles to generate

and schedule. The program execution always begins with host

(CPU) execution. The execution is moved from host to device

(GPU) when a kernel function is called. All the threads that are

generated due to the launch of kernel are called a grid (Kirk and

Wen-mei 2012). When all the threads complete their execution,

the grid formed by threads also ends for that kernel. The

remaining non kernel part of the program is executed on host

till the next kernel is called by host.

2.6 CUDA Thread Hierarchy

The threads on CUDA are organized into a hierarchy of threads,

thread blocks and grid of blocks as shown in Figure 2. Once a

kernel is called or launched, the grid corresponding to the

threads is generated. To assign the threads to execution

resources, they are divided into blocks. In Fermi architecture

the execution resources are in the form of streaming

multiprocessors abbreviated as SMs. An SM consists of 8 or

more streaming processors (SPs) also called as cores. For e.g.,

the NVIDIA GT630M GPU used for experimentation has two

SMs shown in Figure 3. Each SM consists of 48 cores and 1

core processes single block. Hence both SMs can service 96

blocks at a time in GT630M as long as sufficient resources are

available for all the thread blocks. If the available resources do

not suffice to the need of all 48 blocks per SM, CUDA runtime

system automatically reduces the number of blocks per SM. The

runtime system keeps the record of the blocks that are needed to

be executed and as soon as the previous blocks are serviced, the

new blocks are assigned or mapped to SMs.

Figure 2. CUDA thread hierarchy

In Fermi architecture, once a block is assigned to an SM, it is

further divided into 32 threads units called warps that mean the

execution of a thread block is divided into warp execution. The

core in the SM services a block in warp by warp basis.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

385

Every CUDA device consists of a certain number of so called

Streaming Multiprocessor (SM). Each SM contains eight

Shader Units (SUs), a Multithreaded Instruction Unit and on-

chip Shared Memory that can be accessed by all eight SUs.

Every SU can perform one multiplication and one MAD

operation (a floating point multiplication followed by a floating

point addition on the result) every clock cycle, but the whole

SM can only perform the same piece of code on different data

using multiple threads. This parallel computing architecture is

called SIMT (Single Instruction, Multiple Threads).

Furthermore, a SM can issue a new command only every fourth

clock cycle of the SU, which means that the same command has

to be executed at least 32 times in distinct threads to totally

utilize a single SM.

The CUDA programming model reflects the specific hardware

topology of these GPUs. Figure 2 shows how threads are

grouped and mapped to the hardware in CUDA. At start of a

function on the GPU (also called as a kernel) the system creates

a certain number of threads defined by the programmer. The

entirety of all those threads is called the grid. The grid is

composed of a specific number of thread blocks. These blocks

are arranged in a two-dimensional manner on the grid with a

maximum size of 65,535x65, 535 blocks in this case

(GTM630). Each block is assigned to one SM and the threads in

a block are arranged in a three-dimensional array. The

maximum size of each dimension of a block is 512x512x64, but

the maximum number of threads in a block cannot exceed 512

threads (for performance reasons each block should contain at

least 32 threads). Each thread has access to various kinds of

memory with different characteristics as shown in Figure 4.

Using the most appropriate memory in the right way (e.g.

coalesced access to global memory, avoiding bank conflicts in

shared memory) is one of the most effective means of

improving performance (NVIDIA 2009b).

Because of the many core structure of actual GPUs they are

very well suited for any application with a lot of floating point

operations that can be processed in parallel. Some important

performance numbers and a comparison to a CPU are listed in

Table 1. This table describes the actual hardware used for our

experiments. Compared to the CPU the GPU numbers look

quite impressive, but it should be considered that the peak

performance of 1010.8GFLOPS/s promoted by NVIDIA can

only be achieved if every SM can execute 8 multiplications and

8 MAD operations at the same time.

Figure 3. SM in GT630M

Table 1. Technical Specification

 Intel Core

i5-3210

GeForce

GTX 275

Processor core

clock

2.5 GHz 800 MHz

Memory size 32GB/DDR

3

2048MB/GDD

R5

Bandwidth core:

memory

25.3 GB/s 32.0 GB/s

Number of cores 2 96

Number of

threads

4 Upto 512

SP FLOPS / core

and clock cycle

4 MUL or

ADD

8 MUL and 8

MAD

Total SP FLOPS

peak performance

1.61GFLOP

S/s

307.2

GFLOPS/s

2.7 Convolutional Neural Networks

The general method for two-dimensional pattern recognition

task is based on a feature extractor, the output of which is fed

into a neural network. This feature extractor is usually static and

independent of the neural network. It is difficult to find a

suitable feature extractor because it is not part of the training

procedure and therefore it can neither adapt to the network used

nor to the parameters of the training procedure.

2.7.1 Image processing layer: The image processing layer is

an optional pre-processing layer of predefined filters that are

kept fixed during training. Thus additional information besides

the raw input image can be provided to the network, such as

boundaries and gradients. CNNs make this difficult task part of

the network and act as a trainable feature extractor with some

degree of shift, scale, and rotation invariance (Gonalez 2007).

They are composed of three different types of layers:

convolutional layers, subsampling layers (optional), and fully

connected layers. These layers are arranged in a feed-forward

structure. The convolutional layers are responsible for the

feature extraction (edges, corners, end points or non-visual

features in other signals), using the two key concepts of local

receptive fields and shared weights. The fully connected layer

acts as a normal classifier similar to the layers in traditional

MLP networks (Figure 4). A brief explanation of the

composition and the mathematical model of these layers are

described in the following sections.

Figure 4. Structure of CNN (Ciresan et al. 2011)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

386

2.7.2 Convolutional Layer: The convolutional layers are the

core of any CNN. A convolutional layer consists of several two-

dimensional planes of neurons which serve as feature maps.

Each neuron of a feature map is connected to a small subset of

neurons inside the feature maps of the previous layer, and works

as receptive fields. The receptive fields of neighbouring neurons

overlap and the weights of these receptive fields are shared

through all the neurons of the same feature map. A

convolutional layer is parametrized by the size and the number

of the maps, kernel sizes, skipping factors, and the connection

table. Each layer has M maps of equal size (Mx, My). A kernel

of size (Kx, Ky) is shifted over the valid region of the input

image (i.e. the kernel has to be completely inside the image).

The skipping factors Sx and Sy define how many pixels the

filter/kernel skips in x- and y-direction between subsequent

convolutions. The size of the output map is then defined as in

(Ciresan et al. 2011)

1

1

1;
1

1
1

n n

n x x

x n

x

n n

y yn

y n

y

M K
M

S

M K
M

S

 (3)

where index n indicates the layer. Each map in layer Ln is

connected to at most Mn-1maps inlayer Ln-1. Neurons of a given

map share their weights but have different receptive fields.

The feature maps of a convolutional layer and its preceding

layer are either fully or partially connected. First, the

convolution between each input feature map and the respective

kernel is computed. Corresponding to the connectivity between

the convolutional layer and its preceding layer these

convolution outputs are then summed up together with a

trainable scalar, known as the bias term. Finally, the result is

passed through a nonlinear activation function viz. sigmoidal,

hyperbolic tangent.

2.7.3 Classification layer: Kernel sizes of convolutional

filters and max-pooling rectangles as well as skipping factors

are chosen such that either the output maps of the last

convolutional layer are down-sampled to 1 pixel per map, or a

fully connected layer combines the outputs of the topmost

convolutional layer into a 1D feature vector. The top layer is

always fully connected, with one output unit per class label.

2.8 GPU Implementation

We implemented a high performance but still flexible library in

CUDA to accelerate the training and classification process of

arbitrary CNNs. Due to the fact that the ideal parameters of a

neural network can only be determined by testing and

evaluating, shortening the training time often leads to better

results. We started with a straight forward implementation

without any manual parallelization or vectorization (CPUtriv).

To fairly compare the GPU with the CPU variant of our library,

we optimized this implementation using functions from Intel’s

Performance Libraries IPP(Integrated Performance Primitives,

ver. 6.1) (Intel 2009a) and MKL (Math Kernel Library, ver.

10.2) (Intel 2009b) (CPUopt).Those libraries take the full

advantage of the newest Streaming SIMD Extensions (SSE) of

the CPU. These enhancements resulted in a quite fast

implementation.

The GPU implementation (GPU) using CUDA exchanges the

mathematical vector and matrix operations with functions either

from NVIDIA’s CUBLAS Library (NVIDIA 2009c) if

appropriate functions are available there or our own

implementations otherwise. Each kernel-function performs one

mathematical operation, e.g. a matrix-vector multiplication or

the summation of all elements in a vector.

Figure 5 shows the implementation of a routine to increment

each element of an array of certain length. Figure 5a shows

sequential and Figure 5b shows parallel implementation of the

routine to be executed on the CPU and CUDA device

respectively. The host used for experimentation is 3rd generation

i5-3210 processor, with 2 cores and with the memory of 4 GB

RAM. The CUDA device used is Fermi Architecture Based

NVIDIA GT630M and has dedicated memory of 2GB RAM.

The overall architecture is a discrete heterogeneous architecture

,where in CPU and GPU or any other processor are connected

through PCI bus on different chips each with their own global

memory. All the cores of the CPU while running task were

active so that the performance comparison of GPU and CPU is

fair as much as possible. CPU supports multithreading with 4

threads and each core operates at 2.5 GHz. GPU operates at

0.95 GHz.

Figure 5. Host routine for CPU and Kernel of GPU

The objective of this routine is to measure the process time

taken by the CPU and the GPU and to compare their execution

time and throughput by recording the speed up. Throughput of a

device is the number of tasks it performs in unit time. The

elements of array are generated in host with a simple for loop.

The length of the array is varied. The kernel for GPU is called

by the host (CPU). Block size is also varied to analyze the

impact of number of threads per block on performance and

ability of the CUDA GPU.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

387

2.8.1 Forward Propagation (FP): A straight forward way of

parallelizing FP is to assign a thread block to each map that has

to be calculated. For maps bigger than 512 neurons, the task is

further split into smaller blocks by assigning a block to each

line of the map, because the number of threads per block is

limited (512 for GT630M). A one to one correspondence

between threads and the map's neurons is assumed. Due to

weight sharing, threads inside a block can access data in

parallel, in particular the same weights and inputs from the

previous layer. Each thread computes by initializing its sum

with the bias, then loops over all map connections, convolving

the appropriate patch of the input map with the corresponding

kernel. The output is obtained by passing the sum through a

scaled nonlinear activation function, and then written to device

memory.

2.8.2 Backward Propagation (BP): The thread grid assigns

a thread block to each map in the previous layer and a thread to

each neuron in every map. Similar to FP, for maps with more

than 1024 neurons, the 2D grid is further split into smaller 1D

blocks by assigning a 2D block to each row of the map. Each

thread computes the delta of its corresponding neuron by

pulling deltas from the current layer. For every neuron in the

previous layer we have to determine the list of neurons in the

current layer which are connected to it. Let us consider neuron

(i, j) from a map in layer Ln-1, and then assume that (x, y) are the

coordinates of neurons in maps of Ln that contribute to the delta

of neuron (I, j). The (x, y) neuron is connected to kernel size

number neurons (Kx x Ky) from each connected map in the

previous layer. The indices in Ln-1of the neurons connected

through a kernel to the (x, y) neuron are:

(1) (1) 1

(1) (1) 1

x x x

y y y

x S i x S K

y S j y S K

 (4)

The inequalities are computed as

1

1 1

1

1 1

x

x x

y

y y

i K i
x

S S

j K j
y

S S

 (5)

With final inequalities computed as (x, y) is inside the map

(Ciresan 2011);

1
max , 0 min , 1

1 1

1
max , 0 min , 1

1 1

x

x

x x

y

y

y y

i K i
x M

S S

j K j
y M

S S

 (6)

These inequalities suggest that the delta of neuron (i, j) from

Ln-1 is computed from deltas of neurons in a rectangular area in

maps of Ln. After summing up the deltas, each thread multiplies

the result by the derivative of the activation function.

2.8.3 Adjusting weights: FP and BP have a grid on the list

of maps, but the thread grid is on the list of kernels or filters

between maps of two consecutive layers. The 1D grid has a

block for each connection between two maps. Thread blocks are

2D, with a corresponding thread for every kernel weight. The

bias weights included as an entire row of threads, thus requiring

thread blocks to have (Kx+1) times Ky threads. Most of the time

these additional Ky threads will do nothing, thread (0, 0) being

activated only for blocks that have to process the bias.

3. RESULTS AND DISCUSSION

All benchmarks in this paper were performed in single precision

on an Intel Core i5-3210 with a GeForce GT630M running

Windows 7. The technical specifications of these two

processors are shown in Table I. All benchmarks consisted of

1,000 training iterations of the networks as described above.

Such a training iteration is composed of one forward

propagation (a training pattern is fed into the network and

produces some output), one back-propagation (based on the

difference between the actual and the desired output, a gradient

for every single weight in the network is calculated) and the

weights update (the gradients calculated during back-

propagation are multiplied with the learning rate and added to

the actual weights). In case of the CUDA version the time to

copy the training pattern to the GPU and the result to the main

memory is also considered. For each iteration a separate input

pattern is used.

For our performance and scalability tests we performed

measurements on two different networks: Simard et al. (2003)

and LeCun (1998). In all benchmarks we compared the three

different implementations explained in the previous section

(CPUtriv, CPUopt, GPU).

3.1 Tested Networks

We have used the network proposed by Simard et al. (2003)

which provides a fast and simple CNN implementation for

vision applications. It consists of two convolutional and two

fully connected layers. The convolutional layers use a step size

of two, which makes subsampling layers superfluous. Another

variant the LeNet5 (LeCun 1998) is used. It is composed of

three convolutional, two subsampling and two fully connected

layers.

3.1.1 Scaling Input Size: In this benchmark we scaled the

input size of the training patterns fed to a LeNet5. Increasing

the input size automatically increases the number of neurons in

the convolutional and subsampling layers and the number of

trainable parameters (weights, biases). The input’s side length

was increased stepwise by eight.

Figure 6 shows the execution time of all three implementations

with different input sizes. While the CPU version using Intel’s

Performance Libraries clearly outperforms the trivial

implementation, the CUDA versions not only the fastest one but

it also scales best with the input size. This is underlined by

Figure 7 which shows the speedup of the GPU version in

comparison to the trivial CPU version (CPUtriv:=GPU) and to

the optimized CPU version (CPUopt:=GPU). The speedup

grows with the input size and the GPU version definitely scales

better than the CPU versions with large input sizes.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

388

Figure 6. Execution time

Figure 7. Speedup performance

3.2 Segmentation Result

Figures 8 and 9 show the reference window and segmented

image respectively. Exact re-occurring patterns of built-up areas

and roads are very different from water bodies and open areas,

and therefore this is a good candidate image for texture analysis.

Here, five classes are considered; water, shallow water, built-up

area, open area and roads. The reference image is used to

evaluate the classification result in terms of the kappa

coefficient for the dataset considered in this study. Class-wise

accuracy in terms of confusion matrix and kappa coefficient are

computed (Table 2) to demonstrate the ability of wavelet based

features for segmentation.

Table 2. Classification Accuracy

User’s

Accuracy

(%)

Producer’s

Accuracy

(%)

Error of

commission

Error

Omission

Water 96.4 98.3 0.0353 0.0161

Shallow

Water
969 93.9 0.0309 0.0605

Built-up

area
82.8 81.9 0.1711 0.1803

Open 909 91.8 0.0903 0.0815

Road 85.0 86.2 0.1497 0.1379

Overall

accuracy
90.5 Kappa 0.88

Figure 8.Reference Image

Figure 9. Segmented image

4. CONCLUSION

This article shows that GPUs work quite well for convolutional

neural networks. The relatively low amount of data to transfer

to the GPU for every pattern and the large matrices that have to

be handled inside the network seem to be appropriate for

GPGPU processing. Furthermore, our experiments

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

389

demonstrated that the GPU implementation scales much better

than the CPU implementations with increasing input size. One

single test run (training and evaluation) can take hours with the

trivial CPU version. The GPU version will enable a faster

execution of these tests and facilitate experiments with

alternative data sets and larger input patterns. Another aspect to

evaluate is the power consumption. The wattage of a system as

the one used for testing in this paper nearly doubles when using

the GPU instead of the CPU for computations. Because of the

enormous speedup that can be achieved the whole training

process consumes less power when running on the GPU.

However, further experiments are needed for an accurate

evaluation.

REFERENCES

C. Boyd, “DirectX 11 Compute Shader,” 2008, in The 35th Int.

Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH 2008), http://s08.idav.ucdavis.edu/boyd-dx11-

compute-shader.pdf.

Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M. and

Schmidhuber, J., 2011. High-performance neural networks for

visual object classification. arXiv preprint arXiv:1102.0183.

E. Lindholm et al., 2008, NVIDIA Tesla: A Unified Graphics

and Computing Architecture, IEEE Micro, vol. 28, no. 2, pp.

39-55.

Gonzalez, Rafael C and Woods, Richard E., 2007, Digital

Image Processing, 3ed, Prentice Hall, India.

Intel, 2009a “Intel Integrated Performance Primitives (IPP),”

http://software.intel.com/en-us/intel-ipp, August

Intel, 2009b “Intel Math Kernel Library (MKL),”

http://software. intel.com/en-us/intel-mkl, August.

J. C. L. Lam and M. Eizenman, 2008, Convolutional Neural

Networks for Eye Detection in Remote Gaze Estimation

Systems, in Proc. of the Int. MultiConference of Engineers and

Computer Scientists, vol. 1, 2008, pp. 601–606.

J.H. Huang, 2009: The GPU Computing Tipping Point, Proc.

IEEE Hot Chips 21, http://www.hotchips.org/archives/hc21

Kirk, David B., and Wen-mei W. Hwu, 2012, Programming

Massively Parallel Processors: A Hands-on Approach,

Amsterdam: Elsevier/Morgan Kaufmann.

McReynolds, Tom and Blythe, David and Grantham, Brad and

Nelson, Scott, 1998, Advanced Graphics Programming

Techniques Using OpenGL." Siggraph 1998 Course Notes.

Citeseer.

Murray, H., Lucieer, A. and Williams, R., 2010. Texture-based

classification of sub-Antarctic vegetation communities on Heard

Island. International Journal of Applied Earth Observation and

Geoinformation, 12(3), pp.138-149.

NVIDIA 2013, NVIDIA’s Next Generation CUDATM

Compute Architecture: Kepler TM K110, http://

www.nvidia.com/ content/ PDF/kepler/ NVIDIA-Kepler-

GK110- Architecture-Whitepaper.pdf Web. 07 July. 2013.

NVIDIA, 2009a, Unveils next Generation CUDA GPU

Architecture--codenamed 'Fermi'. In Advanced Imaging, Oct. 2

2009.

NVIDIA, 2009b, NVIDIA CUDA – Programming Guide,” http:

//www.nvidia.com/object/cuda home.html, August 2009b.

NVIDIA, 2009c, NVIDIA CUBLAS Library,”

http://www.nvidia. com/object/cuda home.html, August 2009c.

P. Y. Simard, D. Steinkraus, and J. C. Platt, 2003, Best

Practices for Convolutional Neural Networks Applied to Visual

Document Analysis,” in Proc. of the 7th Int. Conference on

Document Analysis and Recognition, pp. 958–962.

R. Collobert and J. Weston, 2008, A Unified Architecture for

Natural Language Processing: Deep Neural Networks with

Multitask Learning,” in Proc. of the 25th Int. Conference on

Machine Learning, vol. 307, pp. 160–167.

Unser M., 1995. Texture classification and segmentation using

wavelet frames, IEEE Trans. Image Process. 4, 1549–1560.

Unser, M., 1986. Local linear transforms for texture

measurements. Signal Process. 11, 61–79.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998,

Gradient- Based Learning Applied to Document Recognition,”

in Proc. of the IEEE, vol. 86, no. 11, pp. 2278–2324.

Z. Zhao, S. Yang, and X. Ma, 2008, Chinese License Plate

Recognition Using a Convolutional Neural Network,” in Proc.

of the Pacific-Asia Workshop on Computational Intelligence,

Vol. 1, pp. 27-30.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

390

