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ABSTRACT: 

 

Near real time processing and feature extraction from high-resolution satellite images aids in various applications of remote sensing 

including segmentation, classification and change detection. The latest generation of satellite sensors are able to capture the data at a 

very high spatial, spectral and temporal resolution. The processing time required for such a huge data is also large. Disaster 

monitoring applications such as forest fire monitoring, earthquakes require fast/real time processing of high resolution data to enable 

response activities. In general, due to the large size of satellite data, the computational time of feature calculation and training neural 

network is found to be very high. Therefore in order to achieve the aim of near real time processing of such huge data, we developed 

a parallel implementation. The implementation is performed on NVIDIA’s Graphical Processing Unit. The performance 

improvement obtained is demonstrated by a GPU implementation on Resourcesat-1 data and compared with the traditional 

sequential implementation. The results show that the GPU implementation is found to achieve performance improvement in terms of 

execution time and speedup throughput as compared to the sequential implementation. 
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1. INTRODUCTION 

Artificial Neural Networks (ANNs) perform very well on 

pattern recognition and classification problems with a large 

amount of training data. For image classification, like optical 

character recognition, Convolutional Neural Networks (CNNs) 

deliver state-of-the-art performance (Simard et al. 2003). CNNs 

are a variant of Multilayer Perceptron (MLP) neural networks 

optimized for two-dimensional pattern recognition. CNNs are 

used in many applications including handwriting recognition 

(LeCun 1998), face, eye and license plate detection (Lam and 

Eizenman 2008; Zhao et al. 2008), and in non-vision 

applications such as semantic analysis (Collobert and Weston 

2008).The latest generation of satellite sensors are able to 

capture the data at a very high spatial, spectral and temporal 

resolution. The processing time required for such a huge data is 

also large. Disaster monitoring applications such as flood/forest 

fire monitoring, earthquakes require fast/real time processing of 

high resolution data to enable response activities. For The 

biggest drawback of CNNs, besides a complex implementation, 

is the long training time. Since CNN training is very compute- 

and memory-intensive, training with large data sets may take 

several days or weeks.  

 

Traditionally most of the programs are written in sequential 

manner. A sequential program will run on only one Central 

Processing Unit (CPU) and will not become faster than the most 

powerful CPU in use today. This is a huge obstruction for an 

application developer because they will not be able to introduce 

different and new features to their software. Most of the 

software developers have relied on the advances in hardware to 

increase the speed of their applications under the hood. This 

trend has slowed since 2003 due to energy-consumption and 

heat-dissipation issues that have limited the increase of the 

clock frequency and the level of productive activities that can 

be performed in each clock period within a single CPU (Kirk 

and Wen-mei 2012). 

 

However, the current CPU based approaches are not amenable 

for time critical applications, particularly when used on 

considerably large high-resolution imagery. There is an issue of 

scalability related to the remote sensing data. The recent 

emergence of Graphic Processing Units (GPU) provides a 

platform for such compute intensive problems and gives 

considerable performance improvement. Parallel programming 

is the only way that will give room for the performance 

improvement of applications in handling large data from 

different satellite sensors. In a parallel programming model 

multiple threads of execution cooperate to complete the work 

faster. 

 

In general, due to the large size of satellite data, the 

computational time of feature calculation and training neural 

network is found to be very high. Hence in order to achieve the 

aim of near real time processing of such huge data we 

developed a parallel implementation. The implementation is 

performed on NVIDIA’s Graphical Processing Unit. In 

particular, feature extraction and classification using neural 

networks have been explored in a GPU-based environment to 

study the significant gains achieved in their computational 

capability. 

 

The huge number of floating point operations and relatively low 

data transfer in every training step makes this task well suited 

for GPGPU (General Purpose Graphic Processing Units) 

computation on current Graphic Processing Units (GPUs). The 
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main advantage of GPUs over CPUs is the high computational 

throughput at relatively low cost, achieved through their 

massively parallel architecture. 

 

Using the GPU for general purpose applications requires some 

amount of understanding of the hardware architecture. The GPU 

programming platforms such as Compute Unified Device 

Architecture (CUDA) (NVIDIA 2009a) transforms the 

algorithms to be implemented into a graphics pipeline friendly 

format. The CUDA language bears resemblance to the C 

programming language and is therefore much simpler to 

program rather than writing the graphics API languages. 

Furthermore, unified shaders are better adapted to perform 

general computations than earlier architectures which results in 

a shorter training period, faster adoption and higher efficiency. 

     

This paper describes architecture of GPU in CNN frame work 

for remotely sensed image classification using textural analysis; 

and program pieces to study and compare process times and 

thus speed up and throughput of CPU and GPU. The program is 

written in CUDA C language and has led to more insight into 

some typical underlying architectural behavior of the GPU 

device for the application of textural segmentation of remotely 

sensed satellite images. 

  

2. METHODOLOGY 

2.1 Data Set 

The dataset is from Resourcesat-1 satellite image of Kuwait city 

with a spatial resolution of 5.8m x 5.8m, shown in Figure 1. 

This resolution is well suited for texture analysis since a spatial 

resolution of this order is not adequate to extract individual 

buildings or narrow roads but groups of them render a visible 

checked pattern in dense urban areas. For general analysis 

where multiresolution coefficients follow a mixture of 

distribution families, a natural way to carry out the analysis is 

by using lower and higher order moments of the multiresolution 

coefficients for the unknown underlying distributions. We have 

used first four moments viz. mean, variance, skewness and 

kurtosis of wavelet coefficient. Three level 9/7 biorthogonal 

wavelet is used for MRA decomposition. 

 

 
 

Figure 1. Original image covering Kuwait city (Resourcesat 

image) 

  

2.2 Feature Extraction 

Multiresolution analysis (MRA) has been successfully used in 

texture analysis of images. Texture is characterized by the 

spatial organization of gray level variations in a local area. It 

quantifies the local intensity variations in an image, observing 

properties such as fineness, coarseness and evenness. Co-

occurrence matrices are frequently used in texture analysis as 

they capture the spatial relatedness of pixel intensities in a 

neighbourhood within an image (Unser, 1986; Unser 1995; 

Murray et al., 2010). These methods are constrained by the 

analysis of spatial arrangement over relatively small 

neighbourhoods on a given single scale. An object which is 

smaller than the spatial resolution of sensor system cannot be 

identified. As a result, performance of co-occurrence matrices is 

only suitable for micro-level textures (Unser, 1995). A 

multiresolution technique provides a coarse-to-fine and scale-

invariant decomposition for interpreting the image information. 

At different scales, the details of an image vary according to the 

content of the image where, the lower resolution provides a 

global view, while the higher resolution provides the finer 

details of the scene. Texture and MRA are therefore required in 

analysis and segmentation because it is difficult to analyze the 

information content of an image directly from the pixel 

intensity. The local changes of the intensity of an image are 

more important than the gray level intensity of that image. 

Textured objects reveal different type of information as a 

function of the resolution of reference for analysis, which 

cannot optimally be observed at a single resolution for image 

analysis. Therefore, it is better to extract features of the objects 

from different segmentation levels. 

 

The wavelet transform, is extensively used to describe images in 

multiple resolutions. Wavelets can be viewed as a projection of 

the signal on a specific set of scaling ϕ(t) and wavelet basis ψ(t) 

functions in the vector space. The wavelet coefficients obtained 

represent these projection values. The discrete wavelet 

transform is realized with the help of filter banks. The basis 

functions are expressed with the help of dilation equations as 
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Where h[.] are low-pass filter coefficients, g[.] are high-pass 

filter coefficients of the filter bank, m is the scaling index, and n 

is the translating index.  

 

By decomposing the image into a series of high-pass and low-

pass filter bands, the wavelet transform extracts directional 

details that capture horizontal, vertical, and diagonal details. We 

have used moment and energy based texture features from 

wavelet coefficients as features to in the neural networks for 

classification task. 

 

2.3 Graphic Processing Unit 

The demand for very high quality real time graphics in 

computer applications has been the inspiration behind the 

advancement of graphics hardware. A graphic programmer 

writes a single thread program that draws one pixel and GPU 

runs multiple copies of this program (thread) in parallel, 
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drawing multiple pixels in parallel. Now graphic programs 

written in C or C++ with the CUDA model, scale transparently 

(Boyd 2008). Scalability has enabled GPUs to rapidly increase 

their parallelism and performance with increasing transistor 

density as GPU transistor counts are increasing exponentially 

doubling every eight months (LeCun 1998). 

 

In 2001, NVIDIA GeForce introduced General shader 

programmability there by allowing the application developer to 

work with instruction of the floating point vertex engine. These 

programmability and floating point capability, extended to the 

pixel shader stage and made texture accessible from the vertex 

shader stage, e.g. ATI Radeon (2002), featured a programmable 

24-bit floating point pixel shader processor programmed with 

DirectX9 and OpenGL. GeForce features 32-bit floating point 

pixel processors. GeForce 6800 (Kirk and Wen-mei 2012) and 

7800 series introduced separate dedicated vertex and pixel 

processors. In 2005, Xbox 360 GPU achieved unified 

processing by allowing vertex and pixel shader to execute on 

the same processor. 

 

GeForce 8800 GPU introduced in 2006, featured an array of 

unified processors. The unified processor supports dynamic 

partitioning of the array of processors to vertex shading stage, 

geometry processing (first introduced in GeForce 8800 GPU) 

and pixel processing stage. 

 

2.4 General Purpose Computing on GPU  

The GPUs were only capable to process graphic data. GPGPU 

allows the utilization of a GPU to perform computation in 

applications traditionally handled by the CPU. To access the 

computational resources the programmer had to use OpenGL or 

DirectX API calls (McReynolds 1998). The NVIDIA Tesla 

GPU architecture designers replace shader processors with fully 

programmable processors with instruction memory, cache and 

instruction sequencing control (Lindholm et al. 2008, Huang 

2009). With NVIDIA developing CUDA C/C++ compiler 

libraries also, by now programmers can easily access the GPU. 

NVIDIA introduced Fermi GPU computing architecture in 2009 

(NVIDIA 2009a). It increased double- precision performance, 

error correcting code (ECC) memory protection for large scale 

computing, 64 bit unified addressing, cached memory hierarchy 

and instruction for C, C++, Fortran, OpenCL and 

DirectCompute . 

 

In 2010 September, NVIDIA introduced Kepler architecture, 

which added new features of dynamic parallelism and Hyper Q 

(NVIDIA 2013). Dynamic parallelism allows GPU to generate 

work for itself and to schedule that work through the best 

hardware path, without involving the CPUs. Hyper Q allows 

multiple CPU cores to call single GPU thereby dramatically 

increasing GPU utilization and significantly reducing CPU idle 

times (NVIDIA 2013). 

 

2.5 Compute Unified Device Architecture 

Compute Unified Device Architecture (CUDA) is software and 

hardware architecture for supporting heterogeneous parallel 

computing. It enabled the GPU to be programmed with a variety 

of high level languages. The programmer could now write C 

programs with CUDA extensions and target a general purpose, 

massively parallel processor. 

 

CUDA describes a proprietary language by NVIDIA which is 

based on C and contains some special extensions to enable 

efficient programming of NVIDIA’s graphic processors. To a 

CUDA programmer, the computing system comprises a host 

which is a traditional CPU, such as an Intel architecture 

microprocessor in personal computers and GPU(s) which are 

massively parallel processors with large number of arithmetic 

execution units. The program section often consist of some data 

parallelism, that allow many arithmetic operations to be safely 

performed on streaming data in a simultaneous manner. 

Streaming data can be considered as a stream of data elements 

that are required to be processed by same task or instruction 

based on Single Program Multiple Data (SPMD) which is a data 

parallel model. The CUDA devices accelerate the execution of 

these applications by harvesting a large amount of data 

parallelism. Different texture classes from remotely sensed 

images at different resolution capture independent and 

simultaneous events. 

 

The kernel functions typically generate a large number of 

threads to exploit data parallelism. These CUDA threads are of 

lighter weight than the CPU threads. These threads take few 

cycles to generate and schedule which is in contrast with CPU 

threads that typically take thousands of clock cycles to generate 

and schedule. The program execution always begins with host 

(CPU) execution. The execution is moved from host to device 

(GPU) when a kernel function is called. All the threads that are 

generated due to the launch of kernel are called a grid (Kirk and 

Wen-mei 2012). When all the threads complete their execution, 

the grid formed by threads also ends for that kernel. The 

remaining non kernel part of the program is executed on host 

till the next kernel is called by host. 

 

2.6 CUDA Thread Hierarchy 

The threads on CUDA are organized into a hierarchy of threads, 

thread blocks and grid of blocks as shown in Figure 2. Once a 

kernel is called or launched, the grid corresponding to the 

threads is generated. To assign the threads to execution 

resources, they are divided into blocks. In Fermi architecture 

the execution resources are in the form of streaming 

multiprocessors abbreviated as SMs. An SM consists of 8 or 

more streaming processors (SPs) also called as cores. For e.g., 

the NVIDIA GT630M GPU used for experimentation has two 

SMs shown in Figure 3. Each SM consists of 48 cores and 1 

core processes single block. Hence both SMs can service 96 

blocks at a time in GT630M as long as sufficient resources are 

available for all the thread blocks. If the available resources do 

not suffice to the need of all 48 blocks per SM, CUDA runtime 

system automatically reduces the number of blocks per SM. The 

runtime system keeps the record of the blocks that are needed to 

be executed and as soon as the previous blocks are serviced, the 

new blocks are assigned or mapped to SMs. 

 

 
 

Figure 2. CUDA thread hierarchy 

 

In Fermi architecture, once a block is assigned to an SM, it is 

further divided into 32 threads units called warps that mean the 

execution of a thread block is divided into warp execution. The 

core in the SM services a block in warp by warp basis. 
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Every CUDA device consists of a certain number of so called 

Streaming Multiprocessor (SM). Each SM contains eight 

Shader Units (SUs), a Multithreaded  Instruction Unit and on-

chip Shared Memory that can be accessed by all eight SUs. 

Every SU can perform one multiplication and one MAD 

operation (a floating point multiplication followed by a floating 

point addition on the result) every clock cycle, but the whole 

SM can only perform the same piece of code on different data 

using multiple threads. This parallel computing architecture is 

called SIMT (Single Instruction, Multiple Threads). 

Furthermore, a SM can issue a new command only every fourth 

clock cycle of the SU, which means that the same command has 

to be executed at least 32 times in distinct threads to totally 

utilize a single SM. 

 

The CUDA programming model reflects the specific hardware 

topology of these GPUs. Figure 2 shows how threads are 

grouped and mapped to the hardware in CUDA. At start of a 

function on the GPU (also called as a kernel) the system creates 

a certain number of threads defined by the programmer. The 

entirety of all those threads is called the grid. The grid is 

composed of a specific number of thread blocks. These blocks 

are arranged in a two-dimensional manner on the grid with a 

maximum size of 65,535x65, 535 blocks in this case 

(GTM630). Each block is assigned to one SM and the threads in 

a block are arranged in a three-dimensional array. The 

maximum size of each dimension of a block is 512x512x64, but 

the maximum number of threads in a block cannot exceed 512 

threads (for performance reasons each block should contain at 

least 32 threads). Each thread has access to various kinds of 

memory with different characteristics as shown in Figure 4. 

Using the most appropriate memory in the right way (e.g. 

coalesced access to global memory, avoiding bank conflicts in 

shared memory) is one of the most effective means of 

improving performance (NVIDIA 2009b). 

 

Because of the many core structure of actual GPUs they are 

very well suited for any application with a lot of floating point 

operations that can be processed in parallel. Some important 

performance numbers and a comparison to a CPU are listed in 

Table 1. This table describes the actual hardware used for our 

experiments. Compared to the CPU the GPU numbers look 

quite impressive, but it should be considered that the peak 

performance of 1010.8GFLOPS/s promoted by NVIDIA can 

only be achieved if every SM can execute 8 multiplications and 

8 MAD operations at the same time. 

 

 
Figure 3. SM in GT630M 

 

Table 1. Technical Specification 

 

 Intel Core  

i5-3210 

GeForce  

GTX 275 

Processor core 

clock 

2.5 GHz 800  MHz 

Memory size 32GB/DDR

3 

2048MB/GDD

R5 

Bandwidth core: 

memory 

25.3 GB/s 32.0 GB/s 

Number of cores 2 96 

Number of 

threads 

4 Upto 512 

SP FLOPS / core 

and clock cycle 

4 MUL or 

ADD 

8 MUL and 8 

MAD 

Total SP FLOPS 

peak performance 

1.61GFLOP

S/s 

307.2 

GFLOPS/s 

 

 

2.7 Convolutional Neural Networks 

The general method for two-dimensional pattern recognition 

task is based on a feature extractor, the output of which is fed 

into a neural network. This feature extractor is usually static and 

independent of the neural network. It is difficult to find a 

suitable feature extractor because it is not part of the training 

procedure and therefore it can neither adapt to the network used 

nor to the parameters of the training procedure. 

 

2.7.1 Image processing layer: The image processing layer is 

an optional pre-processing layer of predefined filters that are 

kept fixed during training. Thus additional information besides 

the raw input image can be provided to the network, such as 

boundaries and gradients. CNNs make this difficult task part of 

the network and act as a trainable feature extractor with some 

degree of shift, scale, and rotation invariance (Gonalez 2007). 

They are composed of three different types of layers: 

convolutional layers, subsampling layers (optional), and fully 

connected layers. These layers are arranged in a feed-forward 

structure. The convolutional layers are responsible for the 

feature extraction (edges, corners, end points or non-visual 

features in other signals), using the two key concepts of local 

receptive fields and shared weights. The fully connected layer 

acts as a normal classifier similar to the layers in traditional 

MLP networks (Figure 4). A brief explanation of the 

composition and the mathematical model of these layers are 

described in the following sections.  

 

 
 

Figure 4. Structure of CNN (Ciresan et al. 2011) 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-5, 2018 
ISPRS TC V Mid-term Symposium “Geospatial Technology – Pixel to People”, 20–23 November 2018, Dehradun, India

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-5-383-2018 | © Authors 2018. CC BY 4.0 License.

 
386



 

2.7.2 Convolutional Layer: The convolutional layers are the 

core of any CNN. A convolutional layer consists of several two-

dimensional planes of neurons which serve as feature maps. 

Each neuron of a feature map is connected to a small subset of 

neurons inside the feature maps of the previous layer, and works 

as receptive fields. The receptive fields of neighbouring neurons 

overlap and the weights of these receptive fields are shared 

through all the neurons of the same feature map. A 

convolutional layer is parametrized by the size and the number 

of the maps, kernel sizes, skipping factors, and the connection 

table. Each layer has M maps of equal size (Mx, My). A kernel 

of size (Kx, Ky) is shifted over the valid region of the input 

image (i.e. the kernel has to be completely inside the image). 

The skipping factors Sx and Sy define how many pixels the 

filter/kernel skips in x- and y-direction between subsequent 

convolutions. The size of the output map is then defined as in 

(Ciresan et al. 2011) 
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                       (3) 

where index n indicates the layer. Each map in layer Ln is 

connected to at most Mn-1maps inlayer Ln-1. Neurons of a given 

map share their weights but have different receptive fields. 

 

The feature maps of a convolutional layer and its preceding 

layer are either fully or partially connected. First, the 

convolution between each input feature map and the respective 

kernel is computed. Corresponding to the connectivity between 

the convolutional layer and its preceding layer these 

convolution outputs are then summed up together with a 

trainable scalar, known as the bias term. Finally, the result is 

passed through a nonlinear activation function viz. sigmoidal, 

hyperbolic tangent. 

 

2.7.3 Classification layer: Kernel sizes of convolutional 

filters and max-pooling rectangles as well as skipping factors 

are chosen such that either the output maps of the last 

convolutional layer are down-sampled to 1 pixel per map, or a 

fully connected layer combines the outputs of the topmost 

convolutional layer into a 1D feature vector. The top layer is 

always fully connected, with one output unit per class label. 

 

2.8 GPU Implementation 

We implemented a high performance but still flexible library in 

CUDA to accelerate the training and classification process of 

arbitrary CNNs. Due to the fact that the ideal parameters of a 

neural network can only be determined by testing and 

evaluating, shortening the training time often leads to better 

results. We started with a straight forward implementation 

without any manual parallelization or vectorization (CPUtriv). 

To fairly compare the GPU with the CPU variant of our library, 

we optimized this implementation using functions from Intel’s 

Performance Libraries IPP(Integrated Performance Primitives, 

ver. 6.1) (Intel 2009a) and MKL (Math Kernel Library, ver. 

10.2) (Intel 2009b) (CPUopt).Those libraries take the full 

advantage of the newest Streaming SIMD Extensions (SSE) of 

the CPU. These enhancements resulted in a quite fast 

implementation. 

 

The GPU implementation (GPU) using CUDA exchanges the 

mathematical vector and matrix operations with functions either 

from NVIDIA’s CUBLAS Library (NVIDIA 2009c) if 

appropriate functions are available there or our own 

implementations otherwise. Each kernel-function performs one 

mathematical operation, e.g. a matrix-vector multiplication or 

the summation of all elements in a vector. 

 

Figure 5 shows the implementation of a routine to increment 

each element of an array of certain length.  Figure 5a shows 

sequential and Figure 5b shows parallel implementation of the 

routine to be executed on the CPU and CUDA device 

respectively. The host used for experimentation is 3rd generation 

i5-3210 processor, with 2 cores and with the memory of 4 GB 

RAM. The CUDA device used is Fermi Architecture Based 

NVIDIA GT630M and has dedicated memory of 2GB RAM. 

The overall architecture is a discrete heterogeneous architecture 

,where in CPU and GPU or any other processor are connected 

through PCI bus on different chips each with their own global 

memory. All the cores of the CPU while running task were 

active so that the performance comparison of GPU and CPU is 

fair as much as possible. CPU supports multithreading with 4 

threads and each core operates at 2.5 GHz. GPU operates at 

0.95 GHz. 

 

 
Figure 5. Host routine for CPU and Kernel of GPU 

 

The objective of this routine is to measure the process time 

taken by the CPU and the GPU and to compare their execution 

time and throughput by recording the speed up. Throughput of a 

device is the number of tasks it performs in unit time. The 

elements of array are generated in host with a simple for loop. 

The length of the array is varied. The kernel for GPU is called 

by the host (CPU). Block size is also varied to analyze the 

impact of number of threads per block on performance and 

ability of the CUDA GPU. 
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2.8.1 Forward Propagation (FP): A straight forward way of 

parallelizing FP is to assign a thread block to each map that has 

to be calculated. For maps bigger than 512 neurons, the task is 

further split into smaller blocks by assigning a block to each 

line of the map, because the number of threads per block is 

limited (512 for GT630M). A one to one correspondence 

between threads and the map's neurons is assumed. Due to 

weight sharing, threads inside a block can access data in 

parallel, in particular the same weights and inputs from the 

previous layer. Each thread computes by initializing its sum 

with the bias, then loops over all map connections, convolving 

the appropriate patch of the input map with the corresponding 

kernel. The output is obtained by passing the sum through a 

scaled nonlinear activation function, and then written to device 

memory. 

 

2.8.2 Backward Propagation (BP): The thread grid assigns 

a thread block to each map in the previous layer and a thread to 

each neuron in every map. Similar to FP, for maps with more 

than 1024 neurons, the 2D grid is further split into smaller 1D 

blocks by assigning a 2D block to each row of the map. Each 

thread computes the delta of its corresponding neuron by 

pulling deltas from the current layer. For every neuron in the 

previous layer we have to determine the list of neurons in the 

current layer which are connected to it. Let us consider neuron 

(i, j) from a map in layer Ln-1, and then assume that (x, y) are the 

coordinates of neurons in maps of Ln that contribute to the delta 

of neuron (I, j). The (x, y) neuron is connected to kernel size 

number neurons (Kx x Ky) from each connected map in the 

previous layer. The indices in Ln-1of the neurons connected 

through a kernel to the (x, y) neuron are: 

 

( 1) ( 1) 1

( 1) ( 1) 1

x x x

y y y

x S i x S K

y S j y S K
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The inequalities are computed as  
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With final inequalities computed as (x, y) is inside the map 

(Ciresan 2011); 
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     (6)               

 

These inequalities suggest that the delta of neuron (i, j) from  

Ln-1 is computed from deltas of neurons in a rectangular area in 

maps of Ln. After summing up the deltas, each thread multiplies 

the result by the derivative of the activation function. 

 

2.8.3 Adjusting weights: FP and BP have a grid on the list 

of maps, but the thread grid is on the list of kernels or filters 

between maps of two consecutive layers. The 1D grid has a 

block for each connection between two maps. Thread blocks are 

2D, with a corresponding thread for every kernel weight. The 

bias weights included as an entire row of threads, thus requiring 

thread blocks to have (Kx+1) times Ky threads. Most of the time 

these additional Ky threads will do nothing, thread (0, 0) being 

activated only for blocks that have to process the bias. 

 

3. RESULTS AND DISCUSSION 

All benchmarks in this paper were performed in single precision 

on an Intel Core i5-3210 with a GeForce GT630M running 

Windows 7. The technical specifications of these two 

processors are shown in Table I. All benchmarks consisted of 

1,000 training iterations of the networks as described above. 

Such a training iteration is composed of   one forward 

propagation (a training pattern is fed into the network and 

produces some output), one back-propagation (based on the 

difference between the actual and the desired output, a gradient 

for every single weight in the network is calculated) and the 

weights update (the gradients calculated during back-

propagation are multiplied with the learning rate and added to 

the actual weights). In case of the CUDA version the time to 

copy the training pattern to the GPU and the result to the main 

memory is also considered. For each iteration a separate input 

pattern is used.  

 

For our performance and scalability tests we performed 

measurements on two different networks: Simard et al. (2003) 

and LeCun (1998). In all benchmarks we compared the three 

different implementations explained in the previous section 

(CPUtriv, CPUopt, GPU).  

 

3.1 Tested Networks   

We have used the network proposed by Simard et al. (2003) 

which provides a fast and simple CNN implementation for 

vision applications. It consists of two convolutional and two 

fully connected layers. The convolutional layers use a step size 

of two, which makes subsampling layers superfluous. Another 

variant the LeNet5 (LeCun 1998) is used. It is composed of 

three convolutional, two subsampling and two fully connected 

layers.  

 

3.1.1 Scaling Input Size: In this benchmark we scaled the 

input size of the training patterns fed to a LeNet5. Increasing 

the input size automatically increases the number of neurons in 

the convolutional and subsampling layers and the number of 

trainable parameters (weights, biases). The input’s side length 

was increased stepwise by eight.  

 

Figure 6 shows the execution time of all three implementations 

with different input sizes. While the CPU version using Intel’s 

Performance Libraries clearly outperforms the trivial 

implementation, the CUDA versions not only the fastest one but 

it also scales best with the input size. This is underlined by 

Figure 7 which shows the speedup of the GPU version in 

comparison to the trivial CPU version (CPUtriv:=GPU) and to 

the optimized CPU version (CPUopt:=GPU). The speedup 

grows with the input size and the GPU version definitely scales 

better than the CPU versions with large input sizes. 
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Figure 6. Execution time 

 

 
 

Figure 7. Speedup performance 

 

3.2 Segmentation Result  

Figures 8 and 9 show the reference window and segmented 

image respectively. Exact re-occurring patterns of built-up areas 

and roads are very different from water bodies and open areas, 

and therefore this is a good candidate image for texture analysis. 

Here, five classes are considered; water, shallow water, built-up 

area, open area and roads. The reference image is used to 

evaluate the classification result in terms of the kappa 

coefficient for the dataset considered in this study. Class-wise 

accuracy in terms of confusion matrix and kappa coefficient are 

computed (Table 2) to demonstrate the ability of wavelet based 

features for segmentation. 

 

Table 2. Classification Accuracy 

 

  

User’s 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

Error of 

commission 

Error 

Omission 

Water  96.4 98.3 0.0353 0.0161 

Shallow 

Water 
969 93.9 0.0309 0.0605 

Built-up 

area 
82.8 81.9 0.1711 0.1803 

Open 909 91.8 0.0903 0.0815 

Road 85.0 86.2 0.1497 0.1379 

Overall 

accuracy 
90.5 Kappa 0.88 

 
 

Figure 8.Reference Image 

 

 
 

 
Figure 9. Segmented image 

 

 

4. CONCLUSION  

This article shows that GPUs work quite well for convolutional 

neural networks. The relatively low amount of data to transfer 

to the GPU for every pattern and the large matrices that have to 

be handled inside the network seem to be appropriate for 

GPGPU processing. Furthermore, our experiments 
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demonstrated that the GPU implementation scales much better 

than the CPU implementations with increasing input size. One 

single test run (training and evaluation) can take hours with the 

trivial CPU version. The GPU version will enable a faster 

execution of these tests and facilitate experiments with 

alternative data sets and larger input patterns. Another aspect to 

evaluate is the power consumption. The wattage of a system as 

the one used for testing in this paper nearly doubles when using 

the GPU instead of the CPU for computations. Because of the 

enormous speedup that can be achieved the whole training 

process consumes less power when running on the GPU. 

However, further experiments are needed for an accurate 

evaluation. 
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