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Around four decades ago, it had been observed that there were cell lines as well as

cells in the fetal liver that expressed antibody µ heavy (µH) chains in the apparent

absence of bona fide light chains. It was thus possible that these cells expressed another

molecule(s), that assembled with µH chains. The ensuing studies led to the discovery of

the pre-B cell receptor (pre-BCR), which is assembled from Ig µH and surrogate light

(SL) chains, together with the signaling molecules Igα and β. It is expressed on a fraction

of pro-B (pre-BI) cells and most large pre-B(II) cells, and has been implicated in IgH chain

allelic exclusion and down-regulation of the recombination machinery, assessment of the

expressed µH chains and shaping the IgH repertoire, transition from the pro-B to pre-B

stage, pre-B cell expansion, and cessation.
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THE GENES ENCODING SL CHAIN

In the late 70’s, it was shown that certain cell lines and cells in the fetal liver expressed antibody µ

heavy (µH) chains in the absence of bona fide light chains (1, 2) which was surprising considering
thatµH chains by themselves might be toxic to the cell. A few years thereafter, a gene termed λ5 was
cloned in mice (3), which showed homology to the constant region of Ig λL chains, Cλ1–4, hence
the fifth. However, by contrast to IgλL (and κL) chains,λ5 did not undergo recombination. Around
that time a molecule termed omega was shown to associate with µH chains in pre-B but not B cell
lines (4), and it was suggested that this might function as a “surrogate” for bona fide IgL chains, and
“may well prove to be the product of the λ5 gene.” Subsequently it was indeed found to be the case.
Anyhow, examining the λ5 gene inmore detail it was clear that exons 2 and 3 showed homology to J
and C of bona fide λ light chains whereas exon 1 did not show homology to Ig or any other known
protein (5). It was thus unclear whether a variable-like gene or gene segment was missing. Soon
thereafter, the VpreB1 and VpreB2 genes were cloned (6). The two genes are 97% identical, and did
indeed show homology to Ig V gene segments in exon 1 whereas exon 2 did not show homology
to Ig or any other known protein. It was later on shown that both VpreB genes are transcribed,
although VpreB2 is expressed at lower levels than VpreB1 (7). The human counterpart, VPREB1
was cloned soon thereafter of which there is only one in the genome (8), and it turned out that
IGLL1 (λ5) had already been cloned (14.1) (9, 10). There are two additional IGLL1, 16.1, and 16.2,
which are pseudogenes though seemingly used as templates in a process termed gene conversion
(11). The genes encoding surrogate light (SL) chain are located on the same chromosome as Ig λL
chains, on chromosome 16 and 22, in mice and humans, respectively. In mice, VpreB1 and λ5 are
located 4–5 kb apart, whereas VpreB2 is located approximately 1Mb downstream of λ5 and around
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1Mb upstream of the λL locus. The organization of these genes in
humans is quite different in that VPREB1 is located within the λL
V gene segments whereas IGLL1 (14.1, 16.1, and 16.2) is located
downstream of Cλ7. For simplicity, the genes in both mice and
humans are hereafter termed VpreB1 and λ5.

THE pre-BCR COMPLEX

That the VpreB1 and λ5 genes encode the SL chain and did
indeed form a complex with µH chains was demonstrated by
several groups, and it was also shown that the signalingmolecules
Igα and β were part of the complex and necessary for pre-B
cell receptor (pre-BCR)-mediated signaling (Figure 1) (12, 13).
As mentioned, the VpreB and λ5 genes show homology to IgL
chains, Vλ and J–Cλ, respectively, and each gene also encodes
a unique region (UR). The VpreB-UR is encoded by the second
exon and results in a tail of around 20 amino acid (aa) residues,
and the λ5-UR is encoded by the first exon and results in a tail
of ∼ 50 aa. Both URs are unusual in that they contain a high
proportion of charged residues, the VpreB-UR contains several
negatively charged and the λ5-UR several positively charged
aa residues of which most are arginine. Proper folding and
stabilization of SL chain require the URs as well as the extra
beta-strand in λ5 (14). Structure analyses of a mouse pre-BCR
using NMR suggested that the two URs meet and protrude
where the CDR3 of L chains would be located in a BCR (15)
(Figure 1). This as well as the importance of the extra beta-
strand in IGLL1 was confirmed after crystallization of a human
pre-BCR (16), although most of the two URs were removed in
order to crystallize the complex. Nevertheless, this study also
suggested that a pre-BCR resembles a BCR with the exception
of the URs that appear to protrude from the complex. The latter
has implications in that it indicates that the pre-BCR might bind
one or more ligand(s). Additional NMR studies have shown that
the human λ5-UR displays a helical structure (15) and binds to
galectin-1 (17).

A LEAKY PHENOTYPE OF SL CHAIN
DEFICIENT MICE

After the discovery of the SL proteins and genes, as discussed
above, the question was, what the function of such a SL chain
would be during B cell development. With the advent of gene
targeting in embryonic stem cells (18) and the first germline
transmission of the targeted cells to generate knockout mice (19)
gene targeting was the first choice to illuminate the function
of the SL chain in the mouse. Already in 1992, Kitamura et al.
published the analysis of the λ5 knockout (λ5T) mouse (20). The
λ5T mouse was among the first 50 knockout mice ever created,
illustrating the interest in the function of the SL chain at the time.
The phenotype of the mice was surprising to the authors as B cell
numbers and frequencies were reduced in the mutant mice but
B lymphocytes were clearly present and serum immunoglobulin
levels reached almost normal levels (20). Moreover, later on
the genes of the other component of the SL chain were
mutated, namely Vpreb1 and Vpreb2, where VpreB1/VpreB2

FIGURE 1 | The pre-B cell receptor (pre-BCR). A pre-BCR is assembled from

antibody heavy (µH) and surrogate light chains together with the signaling

molecules Igα and Igβ. The SL chain is composed of VpreB1/2 and λ5. VpreB

and λ5 each contains a unique region, depicted as tails protruding from the

respective molecule.

double-mutant mice displayed a phenotype very similar to λ5T
mice (21). Targeting the two separately demonstrated a slight
reduction in pre-B cells in mice lacking VpreB1 but not in those
lacking VpreB2, presumably due to the lower expression levels
of the latter (22, 23). The complete deletion of λ5, VpreB1, and
VpreB2 resulted in no additional phenotype regarding B cell
numbers (24).

In the year before, Kitamura et al. used a knockout mouse
model in which the membrane part of µH chain was deleted
to show that expression of a membrane bound µH chain is
absolutely essential for the development of B lymphocytes (25).
Likewise, mice with targeted mutations in the Rag-1 or Rag-
2 genes, unable to perform VDJ recombination and therefore
unable to express a µHC protein, had no detectable mature B
cells in the lymphoid organs (26, 27). This had been published
just 2 months before the publication of the λ5T mouse. As
the signaling capacity of the pre-BCR as well as the BCR was
believed to be dependent on Igα and Igβ (28, 29), it was not
surprising that B29/Igβ mutant mice also lacked B cells in the
peripheral lymphoid organs (30). In addition, it was later shown
that Igα and Igβ are not redundant in their function, as also Igα
deficient mice lack detectable B cells (31). In light of the complete
absence of B cells in these knockout mice with defects in the
formation, the membrane deposition or signaling capacity of the
preBCR, the incomplete phenotype of λ5T mice was puzzling
and the phenotype was called “leaky” (20), perhaps referring
to the leaky phenotype of scid mice (32). Clearly, much had
to be learned about B cell development at the time. Over the
next 4–5 years, several laboratories, including that of Ton Rolink
and Fritz Melchers at the Basel Institute of Immunology were
involved in unraveling the cellular and molecular processes of
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B cell development, and in particular the role of the SL chain.
During this time, the phenotype of the pre-Tα (part of the pre-T
cell receptor) knockout mice was published with an astonishingly
similar phenotype to that of the λ5T mice in the development
of α/β T cells (33). T cell development is strongly impaired but
mature α/β T cells do develop.

UNDERSTANDING THE FUNCTION OF THE
PRE-B CELL RECEPTOR IN B CELL
DEVELOPMENT

The earliest understanding of the coordinated development of
B lymphocytes according to the rearrangement status of the
immunoglobulin genes was derived from the analysis of Abelson
virus-transformed pro- and pre-B cell lines. In a seminal paper
published 1984 by Alt and colleagues the ordered rearrangement
model of B cell development was proposed (34). The positive
regulatory role of the µH chain on progression in differentiation
was directly shown in transformed B cell lines that sequentially
undergo Ig rearrangements in cell culture (35). The experiments
with transformed cell lines suggested that D to JH precede VH

to DJ rearrangements in the IgH locus and IgH rearrangement
precedes that of IgL. In addition, the experiments by Reth et al.
on transformed pre-B cell lines suggested that a successfully
rearranged IgH, i.e., encoding a µH chain protein, directly
mediates differentiation as well as recombination of the IgL loci
(35). This apparently strict dependency on µHC expression for
IgL recombination was later debated in the context of explaining
the leaky phenotype of the λ5T mouse. Ehlich et al. had shown
that the IgH and IgL loci rearrange independently at early
stages of B cell development (36). In the laboratory of Rolink
and Melchers, IgκL recombination independent of µH chain
expression was shown in IL-7-cultured pre-B cell lines and clones
(37), but IgL rearrangement only occurred after differentiation
into small pre-B cells.

Several different models for B cell development were proposed
in 1991 and used by different laboratories over the coming
years (38–40). The scheme proposed by Osmond (39) used the
expression of the TdT and µH chain proteins in combination
with B220-positivity to distinguish three µH chain negative pro-
B cell stages, large cycling and small resting pre-B cells expressing
intracellular µHC (icµHC) and resting B cells expressing surface
µH chain (IgM) (39). Hardy et al. described several early pro-
B cell subpopulations with the help of the cell surface markers
B220, CD43, BP-1(CD249), and heat-stable antigen (HSA, CD24)
(38), resulting in three fractions A, B, and C that were cµHC
negative. CD43-negative pre-B cells were termed fraction D and
surface IgM positive cells fraction E and fraction F, the latter co-
expressing IgD. The clear advantage of this characterization as
opposed to the intracellular markers used by Osmond was the
possibility to separate living cells by FACSwas possible for further
analysis, e.g., in in vitro culture systems and for RNA/DNA
analyses. The scheme proposed by Rolink and Melchers (40),
finally, focused entirely on the Ig rearrangement status of the
B cell progenitors and precursors for their nomenclature. B cell
progenitors without rearrangements in the Ig loci were named

pro-B cells, DJH-rearranged cells were named pre-BI and those
with a VHDJH-rearrangement were named pre-BII cells. SL chain
expression was found in pro-B, pre-BI and pre-BII cells but not
in IgM surface positive B cells (40). Interestingly, none of the
schemes at that time had a clear idea at which stages exactly the
pre-BCR would be expressed, which was described on the cell
surface of cell lines by Tsubata and Reth (13).

A break-through for further insights into the role of the SL
chain in B cell development was when the Rolink and Melchers
laboratory discovered two surface markers whose expression
matched the µHC-negative and µHC-positive stages of pro-B
and pre-B cells, respectively. The membrane tyrosine kinase c-
kit (CD117) is expressed on µHC-negative pro-B cells in the
BM (41) and CD25 on µH chain positive pre-B cells (42). The
latter publication has 222 citations until today. With the help of
monoclonal antibodies against the SL chain Karasuyama et al.
showed that the SL chain is expressed on cycling cells which are
µH chain negative and are also present in Rag-deficient mice, i.e.,
on pro-B cells (43). This correlated with RNA-expression data
published before, showing that λ5 and VpreB1 are expressed in
fractions B and C according to the nomenclature of Hardy (44).
Both publications agreed that SL chain expression is confined
to cycling cells at early stages of B cell development in the
mouse (43, 44). This was in contrast to findings by the group
of Max Cooper analyzing human pre-B cell development and
describing surface pre-BCR expression at late stages of pre-
B cell development (45). Whereas it was still not possible to
detect the pre-BCR on the surface in mice, in humans a weak
surface expression was inevitably shown by Lassoued et al. (45),
confirming the potential signaling function proposed by Tsubata
and Reth (13). With yet another monoclonal antibody shown to
specifically bind to an epitope formed by the µHC in complex
with the SL chain it was finally possible to detect the pre-BCR
on the cell surface of ex vivo isolated mouse bone marrow B
lymphocytes (46). Two different complexes containing the SL
chain were detected on pro- and pre-B cells isolated from the
bone marrow. One complex present on all c-kit positive pro-B
cells consisted of λ5 and VpreB1 but not µHC. As these were
pro-B cells, the complex was termed a pro-BCR, a receptor that
in addition to SL chain consists of several molecules, of which
only one has been characterized, BILL-Cadherin/cadherin-17
(47). Also, human pro-B cells express a pro-BCR (48).The other
complex, as detected by the pre-BCR specific antibody SL156 was
present on a small subpopulation of extremely large and cycling
pre-B cells at the transition of pro-B and pre-B cells. These cells
have downregulated c-kit almost entirely and express CD25 as
a marker for pre-B cells (46). These finding not only reconciled
the discrepancies between human andmouse SL chain expression
but also placed the pre-BCR expression at a heavily cycling stage
of B cell developmental at the transition from the pro-B to pre-B
cell stage.

The heavily cycling status of pre-BCR positive cells and
the detection of a significant population of cµHC-positive
CD25+ pre-B cells that apparently have downregulated SL chain
expression [(42–44), (46)] before they become small pre-B cells
led the group of Rolink and Melchers to propose the model
of proliferative expansion of pre-B cells as a major function of
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the SL chain (49). According to this model that is now widely
accepted, the pre-BCR induces the proliferative expansion of pre-
B cells that have undergone successful VHDJH recombination
and express a µHC (49) (Figure 2). This also explained the
observation that Rag-deficient mice expressing a µH chain
transgene fill up the pre-B cell compartment to normal numbers
(42). In addition, this model explains the phenotype of the
λ5 knockout mouse (Figure 2). In the absence of proliferative
expansion pre-B cells could develop further albeit with very
low efficiency to the small pre-B cell stage in which light
chain recombination is activated. Interestingly, Decker et al.
proposed already in 1991 that pre-B cells would undergo five
to six divisions subsequent to VH to DJH rearrangement (50).
A publication by Rolink et al. showed that even in culture
medium sorted pro-B become pre-B cells in vitro and divide
spontaneously up to six times (51). This cell division was not
observed, when pro-B cells from λ5 knockout mice were sorted
and cultured. Finally, Hess et al. directly demonstrated induction
of proliferation mediated by the pre-BCR using a tetracyclin-
system where µH chain expression could be switched on and off
in Rag-deficient pro-B cells (52). Using five to six cell divisions as
an assumption for cells at the pre-B stage, λ5Tmice would have a
32- to 64-fold reduced pre-B cell compartment and accordingly a
similar decrease in immature B cells. This reflects almost exactly
the reduction of the pre-B and immature B cell compartment
originally suggested (20) and also obtained by the quantitative
analysis of the λ5 knockout mice published by Rolink et al. (53).
The SL chain is necessary to generate large enough numbers
of B cells (Figure 2). Although the proliferative expansion of
pre-B cells generates cells with identical IgH rearrangements
this is not a problem for repertoire diversity, as each cell will
randomly rearrange and express a different IgL chain (Figure 2).
In addition, and discussed later, the pre-BCR considerably shapes
the VH-repertoire.

THE ROLE OF THE PRE-B CELL
RECEPTOR FOR ALLELIC EXCLUSION

The ordered rearrangement model of B cell development also
supports a regulated mechanism of IgH allelic exclusion in which
a VHDJH rearrangement, if productive, prevents an additional
VH-to-DJH rearrangement on the other allele (34). As this
feedback inhibition model predicted, the targeted disruption of
µHC membrane exon was shown to cause loss of IgH allelic
exclusion (54). Surprisingly, in the λ5T mouse allelic exclusion
was found to be perfectly normal, when analyzing mature B
cells (20). This was puzzling and suggested to the authors that
bona fide IgL chains could substitute for SL chain. Whereas, it
was consistently found that IgL recombination does not require
expression of SL chain expression or µH chain (36, 37), it was
vividly discussed at the International Titisee Conference in 19941,
whether IgL rearrangement is occurring at early stages of B cell
development (36, 44, 55, 56), and hence could substitute for SL
chain in the λ5T mouse, including signaling of allelic exclusion.

1https://www.bifonds.de/titisee-conferences/past-conferences/past-conference/

items/titisee-conferences-pastitc_19941005-70itc.html

FIGURE 2 | Simplified scheme of B cell development in wild type and SL chain

knockout mice. At the pro-B cell stage, several cell divisions take place (not

shown) and both alleles of the IgH locus will finally become DJH-rearranged. A

functional VHDJH rearrangement will code for a µH chain assembling with the

SL chain. The pre-BCR induces proliferative expansion of pre-B cells, which is

missing in SL chain knockout mice. During the proliferative expansion,

expression of the genes encoding SL chain is downregulated and the SL chain

protein disappears from the cell. When pre-B cells leave the cell cycle and

become small pre-B cells, light chain genes are rearranged that encode for a

light chain protein forming a B cell receptor with the selected µH chain. Five

cell divisions at the pre-B cell stage are depicted, leading to 32-fold higher

output of B cells in wild type vs. SL knockout mice. See text for further details.

It was surprising when the new technology of single-cell
rearrangement PCR revealed that µH chain double-producing B
precursor cells are generated in λ5T mice but apparently not in
wild type mice (57). These µHC double-producing cells do not
appear as surface µH chain double-positive cells, however (57).
The most likely explanation for this conundrum was provided
by the finding that pre-B cells showing allelic inclusion display
allelic exclusion at the level of pre-BCR surface expression (58).
This study found that double-producers were present also in wild
type mice. In cells with both alleles functionally rearranged, i.e.,
allelic inclusion, only one of the µHCs is able to be expressed the
cell surface. Similar findings were published for a µHC that was
unable to pair with the SL but also with bona fide IgL chains (59).
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It was therefore proposed that one important function of the SL
chain is to test for pairing capabilities of newly formed µHCs for
later stages of development when the bona fide LC is rearranged
(60). In light of the apparently conflicting results regarding allelic
inclusion at the level of VDJ-rearrangement, this concept offers
an explanation that currently is generally agreed upon (61).

As a potential mechanism for an immediate signaling of
feedback inhibition, the complete downregulation of Rag-1 and
Rag-2 transcription in pre-BCR positive pre-B cells was described
(62). In addition, the Rag-2 protein was found to be destabilized
in the S phase of these rapidly dividing cells (62, 63). Additional
mechanisms at the chromatin level have to be operating to assure
allelic exclusion at later stages of development, when the Rag-
genes are re-expressed, at the small pre-B cell stage [reviewed in
(64, 65)]. It is interesting, however, that µH chains can reach the
cell surface and still have the capacity to signal in the absence of
SL chain, including down-regulation of the V(D)J-recombinase
machinery (21, 66, 67).

HUMORAL IMMUNODEFICIENCY IN
PATIENTS WITH MUTATED SL GENES

In humans, the SL chains and the pre-BCR are expressed at
corresponding stages (48, 68, 69). In 1998, the detailed molecular
analysis of 8 patients with sporadic agammaglobulinemia
for mutations in candidate genes revealed one patient with
mutations on both alleles of the gene for λ5 (70). In this patient,
B cell development shows a complete block of differentiation
as B cells were undetectable up to an age of 5 years. Whereas,
the maternal allele carried a stop codon in the first exon of λ5
the paternal allele demonstrated a three-base pair substitution
in exon 3. A similar, broader sequencing analysis of 33 patients
with primary immunodeficiency discovered two sisters being
homozygous for a deletion in the λ5 gene in exon 2 (71).
As no additional clinical details were provided, it remains
unclear whether also in these two sisters B lymphopoiesis is
completely blocked. It is still unknown, why the phenotype
of mutations in the SL chain in humans have a much more
complete phenotype regarding B cell development. Interestingly,
mutations in Bruton’s tyrosine kinase btk leads to an almost
complete block in B cell development in humans but only a mild
block in btk-deficient mice (72). This suggests different signaling
requirements for mouse and human pre-B cell development, as
illustrated by apparently different levels of redundancy of Tec
kinase members in humans and mice (73).

CELL AUTONOMOUS SIGNALING AND/OR
LIGAND-MEDIATED SIGNALING BY THE
PRE-BCR

Mouse pro-B cells that do not express a pre-BCR (µH−) require
stromal cells and high levels of IL-7 in order to proliferate.
This is in contrast to pre-B cells that do not require stromal
cells but do require a pre-BCR and low concentrations of IL-7
(51, 66, 74–76). The latter was interpreted as ligand-independent
cell autonomous signaling. Pre-BCR-mediated signaling in a

cell autonomous manner has been confirmed, and shown to
rely on a particular aa residue in the µH chain (N46) (77),
although whether this signal takes place between receptors
on the one and same cell, on neighboring cells or both is
unclear. Nevertheless, this does not exclude that the pre-BCR
can also interact with a ligand. Indeed, at least two ligands
have been described. Early work demonstrated the importance
of Galectin-1, produced by stromal cells, as a pre-BCR ligand in
humans, which requires the λ5-UR (78). In mice, stromal cell
associated heparan sulfate was shown to be important, which
would engage with the λ5-UR in the context of a pre-BCR
(79). A potential explanation for different ligands could be that
there are differences between mouse and human (79), that the
stromal cells that produce IL7 are not the same as those that
produce galectin-1, and are located in different BM niches (80).
As the pre-BCR mediates several signals this may also account
for different requirements. Nevertheless, whether the pre-BCR
mediates signals in a ligand-dependent or -independent manner,
cell surface levels depend on the respective UR. The λ5-UR is
required for rapid internalization and signaling; in its absence
mutant receptors with reduced signalling capacity accumulate
on the surface (81). By contrast, the absence of the VpreB1-UR
increases internalisation and hence was concluded to balance
the rate of internalization (47). Moreover, pre-BCR surface levels
are important as they seemingly regulate both proliferation and
survival (82).

THE pre-BCR SHAPES THE IgH
REPERTOIRE

In mice, there are 195 VH gene segments of which 110 are
functional and can be divided into 16 families (83). Among
the VH genes the VH1 (J558), VH2 (Q52), and VH5 (7183) are
the most studied, for several reasons. For instance, usage of the
DJH-proximal VH genes, VH2 and VH5, and especially VH5-
2 (81X), is especially high in the fetal and neonatal repertoire
(84, 85). Differentiating B cells of adult bone marrow mimic fetal
development and in adult BM VH usage changes at the pro-B to
pre-B cell transition (86, 87) whereas it is not markedly changed
at later stages. At the pre-B cell stage VH1 usage increases whilst
that of VH5 decreases. The discovery of the pre-BCR and that it
is expressed at a time during BM B cell development when the
VH repertoire changes indicated its potential involvement. This
was investigated early on in λ5T mice. The results confirmed
previous studies in wild type mice, which is quite remarkable
considering that the studies were performed by single cell PCR
analyzing 25–30 cells per population (88). The low numbers
were due to low detection levels of both alleles in each cell, and
the number of cellular fractions analyzed, hence a remarkable
accomplishment almost 25 years ago. At that time, pre-B cells
expressing intracellular µH chains and splenic follicular B cells
from λ5T mice were analyzed, which showed a more frequent
usage of the VH5 and VH2 (Q52) genes and less frequent usage of
VH1 genes among pre-B cells. Therefore, the preBCR contributes
to repertoire selection at the preB cell stage. However, VH usage
in the spleen of λ5T mice was similar to the corresponding cells
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from wild type control mice. The interpretation was that when
there was no SL chain, the change in the repertoire observed
in splenic B cells must be mediated by bona fide light chains,
although at a later stage in development.

In light of the close interactions of the VpreB chain with the
IgH chain complementarity region 3 (H-CDR3) in the crystal
structure of the preBCR (16) an influence of the preBCR on
the shaping of the antibody repertoire was postulated. Detailed
analysis indeed revealed that a particular amino acid composition
in the H-CDR3, in particular tyrosine at position 101 is positively
selected by interactions with VpreB (89). Interestingly, in the
mouse the combination of evolutionary selection of a preferred
reading frame usage in the D-elements as well as somatic
selection by the invariant SL chain together favour the presence of
tyrosine at key positions in the antigen-binding site of antibodies
(89). As this tyrosine residue is frequently found in contact with
the antigen in antibody/antigen complexes, preBCR selection
directly influences the antigen binding characteristics of the
mature antibody repertoire (90).

A ROLE FOR THE PRE-BCR IN B CELL
TOLERANCE?

Immature B cells expressing poly- and/or autoreactive BCRs
undergo negative selection in order to prevent their development
into naïve B cells. It has been suggested, however, that at the
pre-B stage poly-reactivity is a requirement for positive selection
and expansion in mice (91). The poly-/autoreactivity relates
to the λ5-UR with its high number of positively charged aa
residues. These are mainly arginine, an aa typically found in
anti-DNA and polyreactive antibodies, e.g., in the (H-CDR3)
(92). As mentioned above, pre-BCR signalling is reduced in the
absence of the λ5-UR. However, the λ5-UR can be replaced by
a polyreactive H-CDR3 (from human antibodies) resulting in a
signalling competent receptor (91). This lead to the conclusion
that the pre-BCR is “self-reactive,” and that the “autoreactivity”
is driven by the λ5-UR and is required for positive selection of
pre-B cells.

The pre-BCR appears to also counter-selects particular µH
chains, in fact those that express aH-CDR3with basic aa residues,
e.g., arginine (93, 94). In wild type control mice, this selection
takes place in pro-B cells, i.e., at the transition into the pre-B
cell stage and was based on the analyses of the VH5 family (94),
a selection that is not as evident when analyzing all VH genes
by NGS (95). Nevertheless, the absence of the entire SL chain
(SLC−/−) inmice results in pre-B cells expressingµHchains with
a much higher proportion of basic aa residues in the H-CDR3
(95).Whether this is a result of positive selection and proliferative
expansion, in line with the above-mentioned requirement for
poly-/autoreactivity is currently unclear (91), as at least some
of the expansion is likely due to signaling through the IL-7R
(66, 76). Anyhow, negative selection at the immature B cell stage
in SLC−/− mice is more prominent than in controls, inferred
from a higher proportion of cells prone to apoptosis (96), and
interpreted as a result of the expansion of “autoreactive” pre-B
cells (95). Central B-cell tolerance is despite of this incomplete.

In addition, also peripheral B-cell tolerance is incomplete, and
results in a higher proportion of splenic FO B cells expressing
µH chains with basic aa residues in their H-CDR3 (95). A
subset of the FO B cells are activated and initiates autoimmune
reactions. Whether this is due to SL chain being required for
termination of signaling earlier in development is currently
unclear (97). Nevertheless, the autoimmune reactions include
spontaneous formation of T-cell dependent germinal centers,
memory B cells and plasma cells that secrete autoantibodies,
typical of those found in lupus (SLE), e.g., anti-DNA and anti-
nuclear antibodies (ANAs) (94, 95). Whether this is unique to
mice lacking the entire SL chain is unclear, although splenic B
cells in λ5T mice are also enriched for those expressing IgH
chains with an arginine-rich H-CDR3 (98), and more recent
work has shown that also λ5T mice secrete autoantibodies (90).
In SLC−/− mice a subset of B cells resembles memory B cells
expressing low levels of CD21 (CD21−/low) (99). Memory B
cells with a CD21−/low phenotype expand under conditions of
chronic immune stimulation in humans, e.g., in patients with
autoimmune disease, SLE and RA, or pathogenic infections,
malaria, and HIV (100). CD21−/low B cells have also been
described in wild type control mice, termed age associated B
cells (ABCs) as they accumulate with age (101). However, at
least at a young age most of the ABCs in wild type control
mice are not memory B cells whereas those in SLC−/− mice are
(99). Moreover, the ABCs in SLC−/− mice are not polyreactive
but rather autoreactive producing typical lupus autoantibodies,
e.g., anti-Smith antigens. The ABCs are mainly IgM that show
signs of somatic hypermutation, and strong selection of the H-
CDR3, whereas the GC B cells are mainly IgG2c+ and likely
the source of the plasma cells that produce the serum anti-DNA
and ANAs (94, 95). Perhaps surprisingly, the small number of
ANA-reactive ABC hybridomas analyzed so far did not show any
signs of somatic hypermutations in the VH. However, whether
they express IgL chains with mutations is currently unclear.
In this context it was recently shown only that some of the
ANA-reactive hybridomas from aged mice also express germ
line encoded IgH chains, and that the autoreactivity was due
to mutations in the IgL chain (102). In fact, substitution of
one aa residue in the Igk CDR1 was sufficient to convert the
antibody to being ANA-reactive. The similarities between the
hybridomas from aged mice and the ABCs in SLC−/− mice
could be taken as an indication that aged mice are reminiscent of
young SLC−/− mice. However, whether this is the case requires
additional studies.

CONCLUSION

We conclude that pre-BCR mediated signaling has been
implicated in:

• Proliferation
• Survival
• Downregulation of the RAG recombinases
• IgH allelic exclusion
• Silencing of the genes encoding SL chain
• Selection of the IgH repertoire
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• Positive selection of pre-B cells
• Negative selection

It should be noted though that we still do not fully understand
all these events, and especially not which signals are mediated
at what stage. For instance, it has been proposed that the pre-
BCRmediates early and late signals (103). The early signals might
be those taking place in the pre-BCR+ pro-B (pre-B1) cells (c-
kit+CD25−) and the late signals in the pre-BCR+ pre-B (large
pre-BII) cells (c-kit−CD25+). In addition, the role of the SL chain
in human pre-B cell development is only partially understood.
New technologies as CRISPR/Cas9 gene editing and humanized
mice would now allow the analysis of this question.
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