
ORIGINAL RESEARCH
published: 15 November 2018

doi: 10.3389/fnhum.2018.00450

Watch, Imagine, Attempt: Motor
Cortex Single-Unit Activity Reveals
Context-Dependent Movement
Encoding in Humans With Tetraplegia
Carlos E. Vargas-Irwin1,2*†, Jessica M. Feldman1†, Brandon King1†, John D. Simeral2,3,4,
Brittany L. Sorice5, Erin M. Oakley5, Sydney S. Cash5,6, Emad N. Eskandar7,
Gerhard M. Friehs8, Leigh R. Hochberg2,3,4,5,6 and John P. Donoghue1,2,3,4

1Department of Neuroscience, Brown University, Providence, RI, United States, 2Robert J. and Nancy D. Carney Institute for
Brain Science, Brown University, Providence, RI, United States, 3Center for Neurorestoration and Neurotechnology (CfNN),
Rehabilitation R&D Service, Department of Veterans Affairs Medical Center, Providence, RI, United States, 4School of
Engineering, Brown University, Providence, RI, United States, 5Center for Neurotechnology and Neurorecovery (CNTR),
Department of Neurology, Massachusetts General Hospital, Boston, MA, United States, 6Department of Neurology, Harvard
Medical School, Boston, MA, United States, 7Department of Neurosurgery, Harvard Medical School and Massachusetts
General Hospital, Boston, MA, United States, 8Department of Neurosurgery, Rhode Island Hospital, Providence, RI,
United States

Edited by:
Mikhail Lebedev,

Duke University, United States

Reviewed by:
John E. Downey,

University of Chicago, United States
Mariella Pazzaglia,

Università degli Studi di Roma La
Sapienza, Italy

*Correspondence:
Carlos E. Vargas-Irwin

carlos_vargas_irwin@brown.edu

†These authors have contributed
equally to this work

Received: 02 July 2018
Accepted: 19 October 2018

Published: 15 November 2018

Citation:
Vargas-Irwin CE, Feldman JM,
King B, Simeral JD, Sorice BL,

Oakley EM, Cash SS, Eskandar EN,
Friehs GM, Hochberg LR and

Donoghue JP (2018) Watch, Imagine,
Attempt: Motor Cortex Single-Unit

Activity Reveals Context-Dependent
Movement Encoding in

Humans With Tetraplegia.
Front. Hum. Neurosci. 12:450.

doi: 10.3389/fnhum.2018.00450

Planning and performing volitional movement engages widespread networks in the
human brain, with motor cortex considered critical to the performance of skilled limb
actions. Motor cortex is also engaged when actions are observed or imagined, but
the manner in which ensembles of neurons represent these volitional states (VoSs) is
unknown. Here we provide direct demonstration that observing, imagining or attempting
action activates shared neural ensembles in human motor cortex. Two individuals with
tetraplegia (due to brainstem stroke or amyotrophic lateral sclerosis, ALS) were verbally
instructed to watch, imagine, or attempt reaching actions displayed on a computer
screen. Neural activity in the precentral gyrus incorporated information about both
cognitive state and movement kinematics; the three conditions presented overlapping
but unique, statistically distinct activity patterns. These findings demonstrate that
individual neurons in human motor cortex reflect information related to sensory inputs
and VoS in addition to movement features, and are a key part of a broader network
linking perception and cognition to action.

Keywords: human, motor cortex, single unit, microelectrode array, tetraplegia

INTRODUCTION

Beyond its central role in movement generation, primary motor cortex (MI) also appears
to be engaged in cognitive and sensory processes in the absence of overt movement (Sanes
and Donoghue, 2000; Hatsopoulos and Suminski, 2011). The earliest single neuron studies in
non-human primates (NHPs) identified neurons in MI that increased their firing rates well
before movement began, potentially reflecting memory or motor preparatory information
(Tanji and Evarts, 1976; Georgopoulos et al., 1989; Riehle and Requin, 1989). Experiments
in NHPs have also shown that observing an action can elicit MI activity both in local field
potentials (Waldert et al., 2015) as well as single units (Wahnoun et al., 2006; Tkach et al.,
2007; Dushanova and Donoghue, 2010; Vigneswaran et al., 2013). However, it is not possible
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to determine whether activity during action observation in NHPs
reflects a passive perceptual process or a more cognitively driven
‘‘mental rehearsal.’’ Thus, these experiments do not resolve the
issue whether motor cortex is representing action when there is
no intention to act.

Perceptual and cognitive states are easier to influence
in humans, since research participants can be specifically
instructed to observe, imagine, or perform actions. Although
fMRI studies have produced inconsistent results, there is
increasing evidence for the activation of human MI across
different perceptual or intentional states such as passive
observation, imagined action, and movement performance
(Gerardin et al., 2000; Dechent et al., 2004; Filimon et al.,
2007, 2015; Sharma et al., 2008; Munzert et al., 2009; Macuga
and Frey, 2012; Molenberghs et al., 2012). A majority of
transcranial magnetic stimulation (TMS) studies also report
that human motor cortex is more excitable during movement
observation without any intention to act, suggesting that it
is engaged during action perception and imagery (Fadiga
et al., 1995; Aziz-Zadeh et al., 2002; Urgesi et al., 2006;
Hétu et al., 2010; Naish et al., 2014). Additionally, Miller
et al. (2010) used electrocorticography to demonstrate that
the spatial distribution of high frequency field potentials
(76–100 Hz) overlapped for motor imagery and execution in
able-bodied human participants undergoing surgical treatment
for medically refractory epilepsy. However, indirect methods
cannot reliably distinguish whether these volitional state (VoS)
effects reflect global excitability changes in motor cortex or the
coordinated engagement of specific groups of neurons in MI
(Dinstein et al., 2008). Addressing this question requires single
neuron recording, which is rarely available for human motor
cortex.

For the present study, the ongoing BrainGate2 clinical trial
provided the ability to record ensembles of single neurons in
the motor cortex of two humans during observed, imagined,
and attempted reaching actions. Both participants, who had
long-standing tetraplegia (due to brainstem stroke in participant
S3 and amyotrophic lateral sclerosis (ALS) in participant T1),
had a chronically implanted 96-channel microelectrode array
(Cyberkinetics Neurotechnology Systems, Inc., and Blackrock
Microsystems, Salt Lake City, UT, USA) in the hand/arm area
of motor cortex (see ‘‘Materials and Methods’’ section for
details). Participants were instructed to watch (W), imagine
(I), or attempt (A) the actions displayed by an animated arm
performing a four-target planar reaching task presented on a
computer screen from a first-person perspective (‘‘WIA task,’’
Figure 1A). Note that the same visual stimulus was provided
across all conditions, so that the only difference was the
participant’s degree of volitional intent (passive observation,
mental rehearsal, or attempting to perform the action). Each
trial of the animated movie sequence lasted 6 s and began
with a 1 s baseline ‘‘stationary’’ epoch, during which the
arm and all possible targets were visible and the index
finger rested on the center target. One of the peripheral
targets was illuminated at the end of the baseline period
triggering the animated arm to begin a 2-s long reaching
movement following a smooth, center-out trajectory toward

the illuminated target. The index finger remained on the
target for ∼233 ms (7 frames at 30 frames/s), and then
proceeded to return to the center target over the next 2 s.
The arm remained in the final position for an additional
0.5 s after returning to the central target. The cycle was
repeated with arm movements to randomly selected targets so
that the upcoming action was unknown until the target light
appeared.

RESULTS

Volitional State and Action-Related
Information in MI Neurons
We recorded three sessions with each of the two participants.
Single units were identified using custom software (see
‘‘Materials and Methods’’ section for details). The total number
of units identified across all sessions was 587 (115 in participant
S3 and 472 in participant T1). The date (relative to array
implantation surgery) and number of sorted units identified
for each session are summarized in Table 1. Our experimental
protocol included four different actions (videos of reaching
movements aimed at four different targets) combined with three
different instructions (W, I, A).

For simplicity, we will refer to trials using the same
video as having the same ‘‘action’’ (i.e., the full center
center-out movement sequence, with distinct target goals and
corresponding kinematics), and trials with the same instruction
as having the same ‘‘VoS.’’ Note that the participants viewed
the same set of four videos across all VoS conditions.
The VoS condition varied across blocks for each session,
while the movies (actions) were presented pseudo-randomly
(see ‘‘Materials and Methods’’ section for details). Individual
neurons displayed activity patterns that varied according to
both VoS and action (Figures 1B–E). We used spike train
similarity space analysis (SSIMS) in order to quantify the
relationship between neural activity patterns observed across
experimental conditions. The SSIMS algorithm is a relational
encoding technique based on pair-wise similarity estimates
between spike trains (taking into account the precise timing
of each spike, in addition to the overall number of spikes
recorded; Vargas-Irwin et al., 2015). This approach does
not require an explicit model of the relationship between
neural activity and external variables (e.g., a cosine tuning
function for movement direction), and can detect a wider
range of patterns than standard rate-based methods. Here,
we use SSIMS to examine the relationship between different
actions and VoS conditions, starting with representations for
individual neurons, and then expanding to ensemble-wide
activity patterns. We applied SSIMS analysis to single-unit
spike trains spanning the center-out and return movements
to the four different targets (corresponding to a 4.5 s
window starting 200 ms after movement onset in the movie
viewed by the participants). A neuron was considered to
have significant action-related information if the distribution
of SSIMS distances within a category had a significantly
smaller median than those in different categories (Kruskal-Wallis
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FIGURE 1 | Single units in primary motor cortex (MI) are active during watch, imagine and attempt conditions. (A) WIA task sequence. The timeline of still frames
indicates the time course of animated arm movements viewed by the participants, with 0 indicating movement onset. Event timing was identical for all movement
directions. The same movies were utilized in different blocks paired with verbal instructions to watch, imagine, or attempt the displayed movements given before
each block. (B–E) Single-unit activity for subject S3 (B,C) and T1 (D,E). The mean waveform for each unit is shown on the top left of each panel. Classification
accuracy for each unit (% of correctly classified trials) according to volitional state (VoS) condition or action (within each VoS condition) are listed on the top left (see
“Materials and Methods” section for details). Mean firing rates across W, I and A conditions (averaged over ∼10 trials for each target in each condition) are
highlighted in black, blue and orange, respectively. Subplots are arranged spatially according to target position (indicated by filled black circle in top right corner).
Plots are aligned to center-out movement onset (time zero). Dashed lines mark peak velocities for the center-out and return to center movements. Firing rates were
calculated in 1 ms bins smoothed with a 250 ms Gaussian kernel for each neuron.
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TABLE 1 | Session information.

Participant S3 S3 S3 T1 T1 T1

Post-implant day 1443 1452 1464 54 91 138
# of single units 28 37 50 137 159 176

p < 0.05). Stated another way, action-related information was
detected if the neural data for trials with the same movie were
more similar to each other than trials with different movies.
The effects of VoS conditions were evaluated in a similar
way.

Single units displayed action, VoS and combined VoS+action
information in both participants (Figures 2A,B). Overall, about
one-half of the single units recorded displayed significant
differences between movements to the four possible targets in
at least one of the experimental conditions (S3 48%, T1 49%,
Figures 2A,B). Neurons displaying VoS-related information,
while readily evident in both participants, formed a substantially
lower proportion of all recorded neurons in T1 compared
to S3 (29%, vs. 96%), despite the fact that the total number
of action neurons was nearly identical for both participants
(Figures 2A,B). Nearly all movement-related neurons showed
VoS effects in S3. By contrast, about one-third of movement cells
showed VoS effects in T1. Units not selective for either direction
or state were uncommon in S3 (4%) but accounted for more than
one-third of neurons in T1.

Interactions Between Action and Volitional
State Information for Individual Neurons
We also evaluated whether action selectivity varied across
VoS conditions. Overlapping sets of action-selective units were
detected across W, I and A states (Figure 2C). Overall,
approximately 25% of units displayed action-related information
during W (S3 29%, T1 24%), ∼24% during I (S3 31%, T1 22%),
and ∼33% during A (S3 34%, T1 33%). Overall, 26% of action-
selective units were informative across all three VoS conditions
(S3 28%, T1 25%) and ∼22% were action selective across two
VoS conditions (S3 31%, T1 20%). Accordingly, ∼52% of action-
selective units were specific to a single VoS condition (S3 41%,
T1 55%).

We quantified information present in individual neurons
using discrete nearest neighbor classifiers to decode the four
reaching actions presented in the movies (using the same 4.5 s
windows; see ‘‘Materials and Methods’’ section for details). This
approach allowed us to test if individual neurons contributed to
action encoding to a different extent across VoSs by comparing
decoding accuracy in each VoS condition. It was possible to
classify the four action conditions above chance levels for all
three states in both participants using single-unit information
(Figures 3A–C). Neurons providing highest decoding accuracy
(>60%) tended to be informative across multiple conditions, as
shown by clustering across the diagonals in Figures 3D–F.

Ensemble Decoding
Heterogeneous ensembles of the single units described so far
were simultaneously engaged during the WIA task. We applied
ensemble-level SSIMS analysis to evaluate the information

FIGURE 2 | Actions and VoS are encoded by overlapping populations of
single units. (A,B) Percentage of neurons displaying information related to VoS
(watch, imagine, or attempt) or action (different movement) conditions in each
participant (SSIMS analysis, see “Materials and Methods” section). The
proportion of VoS related neurons is lower in T1, despite similar percentages
of action related neurons. (C) Classes of action-related neurons, depending
on engagement across W, I, A conditions (for example, yellow bars represent
AI neurons, which displayed different activity patterns for movements aimed at
different targets in both A and I). (D) Same bars and color scheme as in
(C), but with the bars stacked according to the types of neurons engaged in
each VoS (separated by participant). The height of each bar represents the
total percentage of action-related neurons recorded in each condition. Note
that some of the stacked bars are shown more than once (for example, purple
AW neurons are counted for both A and W conditions).

emerging at the population level on a trial-by-trial basis
(ensemble activity is represented by concatenating the similarity
vectors for individual neurons, as described in Vargas-Irwin
et al., 2015). This approach allows the firing pattern of the entire

Frontiers in Human Neuroscience | www.frontiersin.org 4 November 2018 | Volume 12 | Article 450

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Vargas-Irwin et al. Human MI Context-Dependent Encoding

FIGURE 3 | Single units display action-related information across volitional states. SSIMS NN classifiers were used to decode actions (reaching movements to four
different targets) using single-unit data. (A–C) Distribution of single-unit classification results across neurons for each VoS, pooled across sessions for each
participant. Gray bars correspond to participant S3, black outlines to participant T1. Black triangles on the x-axis mark the expected chance value. (D–F) Scatter
plots comparing decoding performance across pairs of conditions. In each plot, units yielding classification below the 95% confidence limit of the chance distribution
are shown in gray, units over the 95% confidence limit in only one category shown in orange, and units yielding significant decoding in two categories are shown in
black. Filled circles correspond to units from participant S3, while + signs are used for units from participant T1. The units labeled (B–E) correspond to those shown
in Figure 1.

ensemble of simultaneously recorded neurons to be projected
as a single point in the SSIMS representation. While the data
exist in high dimensional space, it is possible to visualize the
relationships between activity patterns using two-dimensional
SSIMS plots (Figures 4A,B) The relative position of individual
trials in the SSIMS projections is solely determined by the
inherent similarity in the spiking activity across all neurons. In
agreement with our single-unit results, clustering according to
VoS was most evident in participant S3, while the action category

dominated the relationships between neural activity patterns in
participant T1. In order to quantify this pattern, we performed
VoS and action classification using ensemble SSIMS projections.
Classification was performed in a 15D SSIMS space in order
to capture information not directly represented in the 2D plots
used for visualization (increasing dimensionality further did not
improve decoding accuracy). Ensemble activity patterns were
sufficiently different to reliably classify both action and VoS
above chance levels in every recorded session (Figures 4C,D).
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FIGURE 4 | Ensemble firing patterns reflect action as well as volitional states. (A,B) 2D SSIMS plots for one sample session in each participant. Each point
represents the activity of the entire simultaneously recorded ensemble during one trial. The distance between points represents the similarity between the
ensemble-level spiking patterns observed. Symbols denote W, I, A condition and colors denote reach target position, as shown in the key. Clustering of similar
symbols denotes similarity between trials in the same VoS condition, while clustering of similar colors denotes similarity between trials with the action (movie).
(C,D) Action and VoS decoding results for each session. Dashed lines represent the 95% confidence interval of the chance distribution (obtained empirically from
10,000 random shuffles of trial labels). (E,F) Similar plots to (C,D), except using 0.5 s of data recorded before the presentation of each movie (inter-trial interval, ITI).
Only VoS decoding in participant S3 was above chance levels during the ITI.

Although action decoding was similar between the two
participants, VoS decoding accuracy was substantially better for
participant S3 (61 vs. 94%).

We tested whether the different instructions affected neural
activity outside of the periods where the movies were presented
by evaluating ensemble decoding during the inter-trial interval
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FIGURE 5 | Latency of neural response does not vary across volitional states. Histogram of single-unit response latencies (occurrence of first significant change in
firing rate, see “Materials and Methods” section) for both participants (S3: A,C,E; T1: B,D,F) across the three VoS conditions (attempt: A,B; imagine: C,D; watch:
E,F). Time zero corresponds to the beginning of the movies. Circles denote the time of target illumination, triangles movement onset, × maximum velocity and
squares target acquisition. Black line shows the cumulative sum of the percentage of neurons displaying significant changes in firing rate at each time point.

(ITI, the time in between the presentation of individual movies).
Action decoding in the ITI (before any direction information
was available) was within the expected chance levels for both
participants (Figure 4E). Although VoS decoding during the
ITI was within the expected chance limits for participant T1,
we observed significant decoding in participant S3 (Figure 4F).
Given the block design used for the WIA task instructions,
the participants had advanced information about the type of
trial before action was displayed in the movie. Our results
suggest that different baseline activity patterns reflecting VoS
for participant S3 were evident even before the movies were
presented.

Neural Response Latency
The differences in spiking patterns observed between the three
VoSs could reflect variations in the overall timing of the neural
response for observed, imagined and attempted movements.
In order to test this possibility, we examined the latency
of the first significant change in firing rate for each unit

between the beginning of each movie and the end of the first
movement using a SChI (similar to Rao and Donoghue, 2014,
see ‘‘Materials and Methods’’ section). The estimated median
latencies ranged between 1.35 s and 1.45 s from the first
frame of the movie, which shows the arm at rest with the
finger on the center target (corresponding to 83–183 ms
after the first frame showing movement). There was no
significant difference in the median latencies observed for
W, I, and A conditions in either of the participants (KS
p > 0.05). However, more neurons showed significant firing
rate changes for the time period examined in A compared
to I and W (Figure 5). There was no significant difference
between the median latencies observed across participants (KS
p > 0.05).

Overall Changes in Cortical Excitability
A gradual increase in cortical excitability through time could
result in different activity patterns across blocks. This effect
could potentially account for apparent changes linked to VoS.
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FIGURE 6 | Trends in ensemble firing rate across time. Ensemble firing rates (EFRs) for each trial (mean across all simultaneously recorded neurons) are plotted
against total session time. (A–C) Sessions for participant S3. (D–F) Sessions for participant T1. Vertical dashed black lines separate VoS condition blocks, which are
labeled above each plot (note reversed order of sessions in F). Dashed blue lines represent the Theil-Sen slope estimate for the full session. Solid orange lines
represent the slope calculated for each W, I and A block separately. Only slopes significantly different form zero are shown (Kendall’s Tau). Asterisks are used to
indicate p values (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.0001).

The fact that simultaneously recorded neurons individually could
show opposite trends or no change across blocks diminishes
the likelihood of this explanation. In order to evaluate overall
changes in excitability, we tracked the total number of spikes
detected during each trial for each of the six recording sessions.
We calculated ensemble firing rates (EFRs) by taking the
average firing rate across all recorded neurons for each trial
over the 4.5 s analysis window encompassing center-out and
return movements. Although baseline EFR varied from day
to day, values were consistently higher in the A condition,
followed by I, and lastly W. We used a Theil-Sen estimator
(Wilcox, 2010) to quantify changes in EFR over time (Figure 6).
This approach is based on examining the slopes between all
pairs of points, taking the median of the distribution as the
final estimate. Kendall’s tau can then be used to determine if
the estimated slope is significantly different from zero. This
non-parametric method is robust against outliers and deals
effectively with data heteroscedasticity (in this case, changes
in the variance of firing rates across time). In five out of
the six recording sessions, there was a significant trend for
increasing firing rates from watch to imagine to attempt blocks
(Kendall’s Tau p < 0.05). Importantly, this trend in EFR
occurred even when the order of the blocks was reversed (note

negative slope in Figure 6F). We also examined trends within
each of the three blocks in each session. Seven out of the
total of 18 blocks displayed a slope significantly different from
zero. However, the changes within blocks did not correspond
to the trends observed between blocks: five out of the seven
blocks with significant slopes displayed changes in firing rate
opposite to the between-block trend. Note that the magnitudes
of the slopes were comparable across within and between
block analysis. In summary, we observed changes in firing
rate both within and across blocks. However, all significant
effects across blocks indicated an increase in activity from W
to I to A, while within block trends were not consistent. Our
findings suggest that although there were random fluctuations
in firing rates over time, these were combined with a consistent
increase in cortical activity reflecting increased volitional intent.

DISCUSSION

This study demonstrates that the firing patterns of neurons
in human motor cortex encode information related to sensory
inputs and VoS in addition to movement features. Passively
watching, mentally rehearsing, and attempting execution of
movements activate shared populations of movement-related
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neurons. However, each of these VoSs results in a unique
pattern of neural activity. Our findings go beyond indirect
methods that monitor changes in general excitability by directly
examining information present in single-unit spiking. Our
results are in agreement with studies in NHPs, where robust
activation of motor cortex during passive observation of actions
has been previously reported (Wahnoun et al., 2006; Tkach
et al., 2007; Dushanova and Donoghue, 2010; Vigneswaran
et al., 2013). Primate studies have highlighted a class of
neurons responding to both action execution and observation,
termed ‘‘mirror neurons’’ (Fabbri-Destro and Rizzolatti, 2008).
Recording from human participants allowed us to probe a
wider range of VoSs by adding the ‘‘imagine’’ condition to
‘‘watch’’ and ‘‘attempt.’’ A shared subset of action-encoding
neurons was engaged across VoS conditions. Approximately
14% of all neurons sampled displayed this property (more
than a quarter of the action selective population). While
about half of the action selective neurons were exclusively
related to one state, the most reliable decoding results were
obtained from neurons that were informative across multiple
conditions (Figure 3). Action and VoS-related information
was often combined at the level of single-units. Our results
reveal a gradient of single-unit properties combining action
and VoS information to various degrees, rather than discrete
classes of neurons engaged by specific combinations of VoSs.
This typed of ‘‘mixed selectivity’’ has also been reported for
human parietal cortex, where single units have been shown
to combine information reflecting VoS (attempt vs. imagine)
and side of the body (right/left) within the context of a
particular effector (hand squeeze or shoulder shrug; Zhang et al.,
2017).

Jeannerod (2001) coined the term simulation states
(‘‘S-states’’) to describe mental states that engage motor
areas of the brain without resulting in overt movement. He
proposed the existence of a ‘‘core’’ network that is activated
during action execution and across all S-states, including
mental rehearsal of actions (imagined actions) as well as
action observation. The recruitment of additional neural
circuitry in each case would result in distinct activity patterns
unique to each condition within partially overlapping cortical
networks. Mental imagery has been successfully used as a
motor rehabilitation strategy after stroke, supporting the
idea of overlapping cortical substrates (Page et al., 2001,
2007). Mukamel et al. (2010) have described overlapping
activation patterns for single units during action observation
and execution in human supplementary motor area, cingulate
cortex and medial temporal lobe, lending further support to
the concept of overlapping networks. Our results confirm that
changing the VoS engages partially overlapping ensembles of
neurons in human motor cortex, producing distinct activity
patterns that vary across different reaching actions while
simultaneously reflecting cognitive state. Our findings suggest
that verbal instructions specifying a desired level of volitional
engagement—the only external stimulus varied across VoS
conditions in our task—can dramatically alter motor cortical
activity. This finding provides a direct demonstration at the
single neuron and ensemble level that cognitive and sensory

signals engage motor cortex in the absence of performed
actions, even when there is knowledge that the attempted
action will not result in movement (a condition, notably, that
can only be assessed when the participant is unable to move
her limb). Our results reinforce the view that motor cortex is
not just a final summing point for cerebral motor planning
and execution, but part of a broader perception-to-action
network engaged even when movement is not performed.
These results indicate that brain computer interfaces (BCIs)
relying on motor cortex will benefit from accounting for sensory
and intentional signals that may otherwise be interpreted as
noise. The unexpected depth of information present in motor
cortex presents both a challenge and an opportunity for the
development of BCIs.

The activity of single units was modulated across different
reaching actions whether participants were instructed to watch,
imagine, or attempt the movements (Figure 1). The most
accurate decoding results were obtained during attempted
movements, but action related information was consistently
detected in all three conditions (Figure 4). Observed and
imagined movements were associated with fewer active neurons
and overall lower firing rates (Figures 2, 5, 6), in agreement
with results obtained NHPs (Vigneswaran et al., 2013). This
finding could also account for the deficits in decoding
based on action observation reported by Waldert et al.
(2015): local averaging in field potentials could result in
decreased signal to noise ratios, even if the selectivity
of individual neurons was comparable across conditions
(Figure 3).

Although about half of the neurons displayed action selective
responses in both participants, VoS-selective neurons were
more than three times as abundant in participant S3 compared
to T1. Only about one quarter of action selective neurons
in T1 showed VoS effects, while nearly all action selective
neurons showed VoS effects in S3. Participant S3 also presented
more than twice the number of VoS-selective neurons with
no action selectivity. The differences observed between the
two participants could be related to underlying neuromotor
pathology. Previous fMRI studies indicate that MI (but not
prefrontal cortex) of people with ALS displays elevated activity
during movement compared with controls with peripheral
neuromuscular syndromes and healthy volunteers (Stanton
et al., 2007; Li et al., 2015). However, these studies did
not examine movement observation or imagined movement.
Additionally, they did not include participants with brainstem
stroke, making direct comparisons with our results difficult.
Here, we observe a somewhat different pattern: our data
shows that during attempted action T1 (ALS) had average
activity levels comparable to S3 (brainstem stroke) but during
watch and imagine, average firing rates were higher in T1
(Figure 6). Increased cortical excitability during imagined
movements and passive observation could potentially mask the
differences observed between VoSs. This could account for
the increases similarity between W, I and A conditions in
participant T1. Individual variations in the ability to perform
motor imagery are an additional factor that could potentially
influence our results (Marchesotti et al., 2016). The length of
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the recording electrodes (1.0 mm electrodes in T1, 1.5 mm
electrodes in S3), and experience with BCI control (less than
2 months for T1, compared with more than 4 years for
S3 at the beginning of the sessions) also differed between
the two participants. Overall, participant S3 tended to have
more accurate closed-loop BCI control (assessed during sessions
not included in this study, see Jarosiewicz et al., 2013 for
details). Differences in movement encoding have been shown
based on the spike amplitude and quality of recorded units
(Perel et al., 2015; Oby et al., 2016). However, differences
in neural recording quality (reflected by SNR) are unlikely
to underly the lower decoding accuracy for T1, since SNR
values were actually higher in this participant (mean 2.35, SD
1.16) than for S3 (mean 1.72, SD 0.47). To determine if these
factors contribute to the differences observed will clearly require
substantially more study over a larger number of participants.
However, despite very different underlying causes of tetraplegia,
both participants showed effects of both VoS and movement
kinematics on MI neural ensemble activity, suggesting that
perceptual and cognitive contributions are a general feature of
MI activation.

MATERIALS AND METHODS

Participants
Permission for these studies was granted by the US Food
and Drug Administration (Investigational Device Exemption.
Caution: Investigational device. Limited by federal law to
investigational use). This study was carried out with informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the Partners Healthcare/Massachusetts
General Hospital Institutional Review Board. Participants who
were unable to sign their name due to tetraplegia but who can
speak may make a mark on the informed consent form that
is witnessed by a family member and/or third-party witness.
Participants who are unable to write and are unable to speak
have sufficient eye movements to ask questions by choosing
letters from an audibly recited alphabet or using an eye-gaze
based assistive technology. In these instances, consent is further
observed and attested to by a family member and third-party
witness. The two participants in this study (S3 and T1) were
enrolled in a pilot clinical trial of the BrainGate2 Neural Interface
System1, and were implanted with a 96-channel intracortical
silicon microelectrode array (Cyberkinetics Neurotechnology
Systems, Inc., now Blackrock Microsystems, Salt Lake City, UT,
USA), as previously described (Hochberg et al., 2006; Simeral
et al., 2011).

At the time of this study, participant S3 was a 58-year-
old woman with tetraplegia and anarthria (inability to speak)
resulting from a pontine stroke that occurred 9 years prior
to array implantation. She retained eye movement, some head
movement, and facial expression and breathes spontaneously.
She had bilateral upper extremity flexor spasms that occur

1www.clinicaltrials.gov/ct2/show/NCT00912041

sporadically with many intended body movements. The array,
which had electrodes 1.5 mm in length, was implanted in the
hand area of her dominant motor cortex (see Simeral et al.,
2011; Hochberg et al., 2012 for additional detail). Participant
T1 was a 48-year-old woman with tetraplegia resulting from
ALS, diagnosed 6 years prior to array implantation. She was
completely paralyzed except for some eye movement, and her
breathing was assisted by a ventilator. The array, with electrodes
1.0 mm in length, was implanted in her dominant motor
cortex.

Neural Recording
Neural activity was detected by the 96-channel microelectrode
array and monitored via a cable that was connected to a
percutaneous connector during each 2–3 h recording session.
Signals recorded at 30 KHz were filtered offline (4th order
non-causal Butterworth, low cutoff 250 Hz, high cutoff
7,500 Hz), coincident noise in the raw signal was reduced using
common-average referencing: the 80 channels with the lowest
mean root-mean-squared (RMS) voltage value were averaged
and subtracted from all channels. For each channel, 1.6 ms
spike waveforms were extracted using a 4RMS threshold with
a 1 ms lockout. Differences in spike waveform shape were
used to identify single-unit activity using custom-made software
employing template matching with spike overlap resolution
(Vargas-Irwin and Donoghue, 2007). Only units exceeding
a signal to noise ratio (SNR) of 1.2 were included in the
analysis (SNR = mean spike amplitude/95% confidence interval
for the distribution of voltages during non-spiking periods).
Note that the sets of neurons recorded from day to day
using microelectrode arrays can potentially overlap. Fraser and
Schwartz (2012) reported that ∼50% of neurons in monkey
motor cortex were stable over a period of 2 weeks. Recording
sessions for each participant should therefore be considered
as partially overlapping samples of the total pool of cortical
neurons.

Task Details
For each session, the following instructions were read prior to the
relevant block by a clinical technician:

• Watch: ‘‘You are about to be shown a series of movies of an
arm performing several different motions. Please try to watch
the arm without making any association to it. You should
remain relaxed and motionless and watch the movies as if they
are just a series of animations on the screen. Do not imagine
yourself moving and do not attempt to move as depicted, but
focus on the screen and watch the animation.’’

• Imagine: ‘‘You are about to be shown a series of movies
of an arm performing several different motions. Imagine
performing the same movement as the movie is played.
Here we are testing your ability to imagine moving without
intending tomove. You should remain relaxed and think about
how it looks to make the movement and how it feels. It is
important that you only imagine these movements, and not
attempt to actually make them. As a reminder, the example
given earlier was that you could imagine moving your eyes
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to the left or actually move them to the left. It might help
to think of imagining in this case as ‘‘mentally practicing’’
a movement. If you need to be reminded of the difference
between imagining moving and moving, please indicate so
now.’’

• Attempt: ‘‘You are about to be shown a series of movies of an
arm performing several different motions. Please try to watch
the arm and attempt to make the same movements along with
it. It is important that you actually attempt to perform the
same movements. Do your best to keep pace with the movies
regardless of your actual movements.’’

Animated movies representing center-out movements to four
peripheral targets (45◦, 135◦, 225◦ and 315◦ in the vertical
plane) from a first-person perspective were generated using Poser
software (SmithMicro). The movies were viewed on an LCD
monitor (46.26 cm). Participants are seated 57 cm away from
the center of the monitor, subtending a visual angle of ∼1◦/cm.
Each instruction block consisted of a random sequence of the
four movies (reaching in four directions) with 10 repetitions
of each (40 movies total). The same movies were used for all
instruction conditions. A block design was adopted to make it
easier for participants to shift between W, I and A conditions.
One 40-trial block of each type was presented during each of the
six sessions (three per participant). For participant S3, the order
of the blocks was alwaysW, I, A. The same order was used for the
first two sessions with participant T1, while the last session used
the reverse order (A, I, W).

S3 was observed intermittently to generate spastic flexion
movements about the elbow. These movements would occur,
at some moments but not others, when she was Attempting
movements, but not when Imagining or Watching movements.
While possible that these intermittent movements yielded
proprioceptive feedback that changed firing rates in recorded
neurons, the intermittent nature of this event would only have
affected the magnitude, but not the presence, of some of the
differences in VoS and action reported with Attempt epochs.

SSIMS
Spike train similarity is defined in terms of how much individual
spikes have to be shifted in time, added, or removed to make two
spike trains match precisely (Victor and Purpura, 1996, 1997;
Victor, 2005). Each operation is assigned a cost: 1 for addition
or deletion and ∆t∗q for shifting. The value of 1/q sets the
balance between shifting a spike in time vs. addition and deletion
operation. For the data analysis presented, the 1/q temporal
actuary setting was equivalent to 100 ms (so that shifting a
spike by more than 100 ms was equivalent to inserting/deleting
a spike). The distance between two spike trains is defined as
the (minimum) sum of the set of operations separating them.
The activity pattern recorded during a single trial is represented
in terms of similarity to all other trials in the dataset (that is
to say, as a vector of pair-wise distances). This representation
is then transformed using a form of non-linear dimensionality
reduction (van Der Maaten and Hinton, 2008), resulting in a
low dimensional representation of the differences between trials.
Thus, the distance between two points in this projection space

represents the similarity between the two activity patterns. Two
identical firing patterns correspond to the same point in this
space; the more different they are, the farther apart they are when
in the SSIMS projection.

We used SSIMS for two kinds of statistical tests. For single
units, we determined if trials within a given experimental
conditon (i.e., VoS or action) were more similar to each other
than to trials in other conditions by comparing the distributions
of pair-wise distances in the SSIMS projection (Kruskal-Wallis
p < 0.05). This approach detects whether certain types of
trials are more likely to cluster together (i.e., be more similar),
reflecting category-related information. SSIMS allowed us to
perform these comparisons over a relatively large time window
(4.5 s window starting 200 ms after movement onset) while
taking into account the timing of each spike, resulting in greater
sensitivity that rate basedmethods. For example, since each video
included movement towards a peripheral target and back to
the center (i.e., movement in opposite directions), action-related
information tended to be washed out if only the firing rate
was taken into account. Adjusting the analysis time window
could address this problem, but decreasing the ammount of data
examined ultimately resulted in fewer action-related neurons
being detected.

We also used SSIMS to generate discrete classifiers for
action and VoS conditions, using either single units (Figure 3)
or ensembles (Figure 4). Classification accuracy was used
as a way to quantify the information present in the neural
activity patterns. Classification was performed by projecting
neural activity patterns (over the full set of neurons) onto a
15-dimensional SSIMS representation generated using data from
a 4.5 s window starting 200 ms after movement onset. We
used a nearest-neighbor classifier to decode movement targets.
Decoding accuracy was evaluated using leave-one-out cross
validation: each trial was assigned to the target type of the most
similar (closest) neighbor in the SSIMS projection. The expected
value and 95% confidence interval of the chance distribution
for classification was calculated using 10,000 iterations with
randomly shuffled trial labels.

State Change Index (SChI)
To determine whether a change in firing rate occurred at time
t, we first counted the spikes in two 400 ms windows before
and after the chosen time for each trial. We then selected a
random subset of the trials (80%) and tested whether spike
counts before and after t were drawn from a statistically different
distribution (KS p < 0.01). This evaluation of subsampled sets
was repeated 1,000 times in order to test across trial reliability.
The state change index (SChI) at time t is defined as the fraction
of subsample sets in which there was a statistically significant
difference between the two bins. Under the null hypothesis
that firing rates are drawn from the same distribution, we
would expect the SChI to be less than the set alpha value of
0.01 (representing 10 out of 1,000 shuffles). SChI values >0.02
(twice the expected chance value) were considered to represent
a significant change in firing rate. We reported the latency in
the response of each unit as the time of the first window with
significant SChI.
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