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Abstract 
Conventional sandwich panels are one of the cheapest and easiest solutions for forming the thermal building envelope of industrial 
buildings. They are pre-fabricated façade elements, of which millions of square metres have been produced and mounted every year. 
There is great potential to reduce the consumption of fossil fuels and CO2 emissions through the solar thermal activation of such a 
sandwich panel. In the course of the research project ABS-Network SIAT 125, a Solar Thermal Activated Façade (STAF) panel was de-
signed which is to be optimised both thermally and structurally. This study shows a first version of a so-called ‘one way coupled’ ther-
mal and structural analysis of a conventional sandwich panel compared to the STAF panel. For this purpose, the numerical methods of 
Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) are used together in one simulation environment. Furthermore, 
results from an outdoor test facility are presented where a first version of a STAF panel is tested under real climate conditions. The CFD 
model was positively evaluated by comparing measured and computed temperatures. 
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1	 INTRODUCTION OF THE STAF PANEL

  1.1	 DEVELOPMENT APPROACH

Conventional sandwich panels are some of the cheapest and easiest solutions for forming the 

thermal building envelope of industrial buildings (BKI 2018). They are pre-fabricated façade 

elements, of which millions of square metres have been produced and mounted every year 

(Koschade, 2011; IC Market Tracking, 2016). Sandwich panels consist of both an interior as and 

exterior metal plate (steel and aluminium are widely used) with thermal insulation (for example 

expanded polystyrene “EPS” or mineral wool “MW”) in between (EN 14509).

The basic idea of the Interreg project “ABS-Network SIAT 125” is the solar thermal activation of 

a conventional sandwich panel. In this case, thermal activation means the conversion of solar 

energy to provide energy for the production of domestic hot water and/or heating and cooling 

applications. Thanks to a functionally convincing and creatively sophisticated revision of sandwich 

panels, the field of application can be extended to office buildings, residential buildings, buildings 

for education, etc. In the field of research, studies were more focused on the variation of different 

compositions as thermal insulation, in order to improve both the static and the thermal behaviours. 

Authors presented studies using foam core as thermal insulation (Missoum, Lacaze, Amabili, & 

Alijani, 2017; Qintana & Mower, 2017), honeycomb structure (Ebrahimi, Someh, Norato, & Vaziri, 

2018) and different filling materials like aluminium (Li, Zheng, Yu, & Lu, 2017), blockboard and 

batternboard (Haseli, Layeghi, & Hosseinabadi, 2018), ceramic, silicon, or carbon (Yuan et al., 2018), 

cellulose (Yazdani Sarvestani, Akbarzadeh, Niknam, & Hermenean, 2018) or even concrete (Hashemi, 

Razzaghi, Moghadam, & Lourenço, 2018). The approach of using a solar thermally activated sandwich 

panel has not yet been found in the actual state of the science.

  1.2	 PRODUCTION CONCEPT AND WORKING 
PRINCIPLE OF THE STAF-PANEL

The metal sheets of the so-called ‘Solar Thermal Activated Façade’ (STAF) panel have integrated fluid 

pipes that can be produced by the so-called ‘Roll-Bonding’ fabrication method (Eizadjou, Manesh, & 

Janghorban, 2009). With this special metal-forming technique, two sheets are combined to one steel 

plate whereby the fluid pipes are produced by inflation (one-sided or double-sided inflation). In the 

case of the one-sided inflation method, only one metal sheet is deformed, whereas an equilateral 

deformation is realised in the double-sided inflation method. The exterior plate acts as an absorber of 

a solar thermal collector for the conversion of solar energy into hot water, whereas the interior plate 

can be used for heating and cooling of the interior rooms. The company Talum d.d. (Talum, 1942) 

is using this technology in order to produce absorber plates for evaporators of refrigerators. Fig. 

1 shows a photo of a STAF panel which is equipped with double side inflated aluminium absorbers. 

The absorbers were produced by Talum d.d. in Kidricevo Slovenia, and the sandwich panel was 

finalised at the company Brucha Ges.m.b.H. in Michelhausen Austria (Brucha, 1948), where the 

thermal insulation was filled between the interior and exterior absorber plate. This STAF panel, 

with dimensions of 1.75 x 0.5 x 0.15m, was used in the outdoor measurements presented in Chapter 

2. The actual state of the science reveals a number of studies in which two main applications 

for roll-bonded plates were found. One application is the use of roll-bond heat exchangers used 

as evaporators in cooling systems and refrigerators (Ravi, Krishnaiah, Akella, & Azizuddin, 2015; 
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Hermes, Melo, & Negrão, 2008; Righetti, Zilio, & Longo, 2014), while the other application is the use 

of a roll-bonded thermal absorber for conversion of solar energy and hot water production (Sun 

,Wu, Dai, & Wang, 2014; Del Col, Padovan, Bortolato, Dai Prè, & Zambolin, 2013) or for the cooling 

of photovoltaic modules in order to improve efficiency (Brötje, Kirchner, & Giovannetti, 2018). 

Studies concerning roll-bonded absorbers that form a sandwich panel are not yet available in the 

state of the science.

Fig. 1  Photos of a STAF panel equipped with blank aluminium absorbers and a honeycomb pipework

  1.3	 THERMAL AND STRUCTURAL ANALYSIS METHOD

The first of the two main objectives of this study is the analysis of the thermal behaviour of exterior 

absorber plates with the CFD (Computational Fluid Dynamics) method in order to optimise the fluid 

pipe design with regard to solar energy conversion. The second objective is to find an adequate 

structural analysis method to evaluate different installation situations of a STAF panel, considering 

the detailed thermal behaviour as boundary condition. In a first approach (Schober & Brandl, 2016) 

the thermal behaviour was determined with the help of the Software Fluent (ANSYS 18.2 release); 

the results were extracted at certain points of the exterior and interior absorber plates and used 

as boundary conditions in a FEM (Finite Element Method) model using the software Abaqus FEA 

(SIMULIA 6.14 release). Because these results were not accurate enough, another method is used 

in this study whereby the thermal behaviour and the resulting deformations are simulated with a 

so-called ‘one-way coupled’ simulation model (Feenstra, Hofmeyer, Van Herpen, & Mahendran, 2018). 

Literature shows some interesting findings concerning both numerical methods. For the paper of 

Ahmed, Leithner, Kosyna, and Wulff (2009), a coupled fluid dynamics and structural analysis for a 

boiler feed water pump was performed by the authors in order to predict its hydraulic and thermo-

mechanical behaviour. In the study of Feenstra et al. (2018), two coupling approaches between CFD 

and FEM were used to perform CFD fire simulations as well as structural simulations of a room in 

a building. A one-way coupled CFD-FEM was also used for the analysis of the behaviour of a steel 

structure under natural fire by Malendowski and Glema (2017). There are a few more studies in 

which a coupled CFD-FEM simulation method was used (Fritsch et al. 2017; Zhang & Lu 2017; Liang, 

Luo, & Li, 2018; Kim, Choi, Park, Choi, & Lee, 2012; Peksen, 2015), but none dealt with the thermal 

and structural behaviour of sandwich panels. For the coupled simulation of this study, the software 



	 119	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 6 / NUMBER 3 / 2018

platform ANSYS Workbench (ANSYS 18.2 release) is used, which includes CAD and meshing software 

as well as CFD and FEM simulation tools. The flow chart in Fig. 2 shows the setup of the one-way 

coupled CFD-FEM simulation.

Fig. 2  Flow chart with the simulation setup of the one-way coupled CFD-FEM simulation

Usually, the CFD mesh must be much finer than the FEM mesh in order to consider the complex 

fluid characteristics, especially for the regions near walls. With the help of the CFD software Fluent, 

the flow characteristics and temperature distribution of the involved solid and fluid components 

is calculated. Furthermore, results from the CFD simulation can be used to determine the 

thermal output and the efficiency of the STAF panel´s exterior absorber. Afterwards, the resulting 

temperature characteristic of each solid from the CFD simulation serves as thermal boundary 

condition in the structural simulation (FEM model). With the FEM software from ANSYS, a structural 

analysis is performed under the influence of thermal deformations as well as deformations that are 

caused by external wind loads. The results from both simulations are transferred to the ANSYS Post 

Processing software where all results are evaluated and diagrams, contour plots etc. are created.

2	 MEASUREMENTS IN AN OUTDOOR TEST FACILITY

  2.1	 DESCRIPTION OF THE MEASUREMENT SETUP

Over the course of the research project UNAB, an outdoor test facility was designed and assembled 

(Hörtenhuber, 2017) in order to use the monitored temperature data for the evaluation of the CFD 

model (Fig. 3). Furthermore, in the measurements, the comparison between a thermally activated 

and a non-activated STAF panel (= reference panel) can be observed. The reference panel is 

representative of a conventional sandwich panel forming the façade of an industrial building; for 

example, the STAF panel (shown in Fig. 1) consists of two equal absorber plates with the dimensions 

of 1.75 x 0.5m. The absorber with double-sided inflated fluid pipes has two aluminium plates with a 

thickness of 0.75mm per plate and the fluid pipes have a hydraulic diameter of 4.5mm. Additionally, 

the exterior absorber has a solar paint with an absorptivity of 0.95 and an emissivity of 0.85. Fig. 

3 shows a photo of the test facility with the two façade elements that were installed in front of two 

thermally insulated boxes. Furthermore, this figure shows a photo from a thermographic camera, 

which was taken on 21st of September at 12:15. At this particular time, an actual global (horizontal) 

radiation of 707 W/m² was monitored while the exterior temperature was 16.6 °C. in addition, a very 
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low wind of approximately 0.35 m/s was measured. The exterior absorber of the STAF panel was 

supplied with water at a volume flow rate of 25.8 l/h and a temperature of 17.8 °C.

Fig. 3  (Left) Photo of the outdoor test facility. (Right) Thermographic photo during outdoor measurement (from 21st September 
2016, 12:15). (Image by M. Hörtenhuber, 2017).

The water mass flow rate is monitored with the help of a magnetic-inductive flowmeter which has 

a measuring uncertainty of 2.5% of the measured value, but which is at least 0.05 l/h. The water 

temperature is monitored before the exterior absorber inlet as well as after the outlet with Pt100 

sensors which have class A accuracy according to DIN EN 60751. The absorbers are equipped with a 

number of thermocouples (with class 1 accuracy) in order to measure the temperature at the exterior 

and the absorber plate´s surfaces, as well as inside the thermal insulation. 

  2.2	 MEASUREMENT RESULTS

From 15th September, collected measurement data (shown in Fig. 4) serve as an example to give a 

short overview about the thermal behaviour of the STAF panel. The climate data are illustrated in 

the diagram on the left in Fig. 4. This diagram also includes the mass flow rate as well as the water 

inlet and outlet temperature of the exterior absorber of the STAF panel. The diagram on the right in 

Fig. 4 shows a comparison between the exterior absorber surface temperature of the reference and 

the STAF panel. Because the reference panel has an almost uniform temperature distribution, only 

one thermocouple (Tc1) is installed (illustrated in Fig. 3). The exterior absorber of the STAF panel 

shows an increasing surface temperature from the bottom to the top, which matches fluid motion 

that stores heat recovered from the absorption of solar radiation along the path (indicated by the 

temperature profiles of the thermocouples Tc2-Tc5). The difference between the hottest temperature 

of the STAF panel and the reference panel was approximately 25K. Furthermore, the maximum 

difference between water inlet and outlet temperatures occurred between 13:00 and 14:00 with an 

value of 21.3K, while the average mass flow was approximately 20kg/h over the day. In total, the 

energy harvesting for the panel on that day was approximately 3.48 kW/(m²∙d). Data were collected 

from the end of August until the end of November.



	 121	 JOURNAL OF FACADE DESIGN & ENGINEERING   VOLUME 6 / NUMBER 3 / 2018

  2.3	 EFFICIENCY OF THE STAF PANEL´S EXTERIOR ABSORBER

With the help of all monitored data, the efficiency of the STAF panel´s exterior absorber is calculated 

according to the equation of the absorber efficiency (Duffie & Beckman, 1991; Streicher, 2007), which 

is illustrated in Fig. 5. The red line shows the linear regression of the set points which are calculated 

with the help of measurement data. The first term of this equation represents the conversion rate 

of the solar radiation. The second term of the equation considers the effect of convective heat loss 

of solar thermal collectors, whereas the third term represents the radiative heat loss. On the one 

hand, for the absorber of the STAF panel, the solar conversion is higher because of the missing glass 

cover that conventional solar thermal collectors have (shown as blue and green dashed lines in the 

diagram in Fig. 5). 

Fig. 4  Excerpt of measurement data from the outdoor test facility from 15th September 2016 between 06:00 and 18:00

Fig. 5  Comparison of the efficiency between the STAF panel´s exterior absorber and solar thermal collectors

On the other hand, the convective heat loss is much higher when the exterior temperature is lower 

than the average absorber temperature. Compared to the convective heat loss, the radiative loss is 

so low that it can be neglected for the STAF panel´s exterior absorber. Generally, the efficiency of 

the STAF panel´s absorber can be described as good, but it cannot keep up with conventional solar 

thermal collectors without any improvements. The characteristic absorber efficiency curve can be 

used in a building and plant simulation in which the yearly energy output can be estimated by use 

of measured or generated climate data. Due to the scattering of the absorber efficiency’s set points 

the RMSE (Root Mean Square Error) is 0.124, which is quite high. This scattering occurred because 

the uncovered absorber is strongly influenced by the wind, the conditions of which varied during the 
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outdoor measurements. For this reason, the characteristic curve must be divided into several curves 

that are created with the help of monitored values for the same wind. 

3	 THERMAL AND STRUCTURAL ANALYSIS OF THE STAF 
PANEL WITH COUPLED CFD-FEM SIMULATION METHOD

  3.1	 DESCRIPTION OF THE CFD MODEL

In order to optimise the absorber geometry, and to improve the fluid pipework, the Computational 

Fluid Dynamic simulation method was used. With this method, a various number of different 

absorber geometries (or only sections of an absorber) can be analysed at same exterior boundary 

conditions. For the proper design of the three-dimensional CFD model and to guarantee a 

good quality of the simulation results, the monitored data from a tested STAF panel were used. 

The absorber geometry is designed with the CAD tool, AutoCAD, and is later imported to the ANSYS 

DesignModeler in form of a Step-File. The CFD mesh and the definition and interconnection of all 

involved solid and fluid components, as well as the definition of boundary surfaces, are created 

with the Software ANSYS ICEM. Finally, in the CFD analysis, the simulation is performed in ANSYS 

Fluent after definition of the physical models and boundary conditions. In Fluent, the simulation is 

performed under steady state conditions using a ‘Pressure-Based’ solver. A section of the CFD mesh 

of the honeycomb absorber from measurement is shown in Fig. 6, together with the resulting water 

flow characteristic at the outlet region of the absorber’s pipework. 

Fig. 6  Picture of the CFD mesh of the honeycomb absorber and a magnified section, with additional visualization of the fluid flow 
vectors

The final version of the mesh consists of approximately 25 million cells, after the tetrahedron cells 

are converted into polyhedral cells. This high number of cells is required because of the thin plates 

and the very flat shape of the fluid pipe. In particular, the fluid domain needs a special design in 

order to meet the requirements of the used ‘Realizable k-e’ turbulence model with an enhanced 

wall treatment. Both literature (Launder & Spalding, 1974) and the ANSYS User Guide state that this 

model is well suited for fluid dynamic simulations and combined heat transfer effects. Several CFD 
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analyses, regarding thermal behaviour, heat transfer effects, and effects of natural convection, were 

performed by two of the involved authors (Brandl, Mach, Grobbauer, Hochenauer, 2014; Brandl et al. 

2015; Brandl, Mach, & Hochenauer, 2016) in the past. Nevertheless, in this study, different CFD model 

approaches are also compared and evaluated with the help of the measurement results (see Section 

3.2). Furthermore, the fluid inlet is defined as mass flow inlet with the mass flow rate and the fluid 

inlet temperature as boundary conditions, whereas the fluid outlet is defined as a pressure outlet in 

the simulation model. At the exterior wall, an outdoor temperature and a solar radiation are defined 

as boundary conditions, as well as a convective heat transfer coefficient representing the influence of 

natural convection and wind.

The solar radiation is considered in the form of a radiation temperature (T
rad

 in K) according to the 

following equation (1) which is derived from Stefan-Boltzmann law. I is the radiation in W/m², T
e
 is 

the exterior temperature in K, and s is the Stefan-Boltzmann constant (= 5.67e-8 W/(m2K4)).
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At the inner wall, an interior room temperature and a heat transfer coefficient are defined. 

The thermal insulation and the interior plate are considered as virtual layers in the CFD model of 

the STAF panel with the honeycomb absorber, while real solid and fluid bodies are created in the 

example of the CFD-FEM coupling (presented in Chapter 3.4). The external heat transfer coefficient 

a
e
 in W/(m²K) is calculated according to the following equation (2) from standard VDI 2055. In this 

equation, L stands for the façade´s height in m and v for the wind speed in m/s.
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  3.2	 COMPARISON OF THE THERMAL BEHAVIOUR BETWEEN 
MEASUREMENT AND CFD SIMULATION

Before performing the thermal analysis of the absorber with different fluid pipe designs, the CFD 

model is evaluated by comparing the temperature data of the STAF panel with the honeycomb 

absorber, which was installed in an outdoor test facility. In the comparison, the evaluated 

thermographic photos and the measured water outlet temperature are used. Furthermore, measured 

values are used as boundary conditions in the CFD model. For this purpose, the data from 21st 

September are most suitable. At 12:09, a global radiation of 737 W/m² perpendicular to the STAF 

panel was measured with a diffuse fraction of 244 W/m². An exterior temperature of 16.6 °C was 

measured, and the averaged value of the wind speed between 12:00 and 13:00 resulted in a value 

of 0.35 m/s (= very low wind). The thermocouples inside the box behind the STAF panel measured 

an average interior temperature of 15.4 °C at that time. The mass flow rate was 25.5 kg/h and the 
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supplied water had a temperature of 17.8 °C. In the CFD model, the water has a density of 998.2 

kg/m³, a specific heat of 4182 J/kgK, and a thermal conductivity of 0.4 W/mK. The absorbers are 

made of aluminium with a density of 2700 kg/m³, a specific heat capacity of 896 J/kgK, and a high 

thermal conductivity of 201 W/mK. Polyurethane is used as thermal insulation between the exterior 

and interior absorber plate, which has a density of 80 kg/m³, a specific heat capacity of 1400 J/kgK, 

and a thermal conductivity of 0.025 W/mK. Because the water supply pipe is partly exposed to the 

sun, a preliminary CFD simulation, only of this pipe, was performed for the following comparison 

between measurement and CFD simulations (Fig. 7). The same model parameters are used in the 

CFD model as in the simulation of the STAF panel. A temperature difference of 0.48K between the 

measurement sensor and the mass flow inlet of the CFD model of the STAF panel is the result of this 

preliminary simulation. Therefore, in the CFD model of the STAF panel, a water inlet temperature 

of 18.3 °C is defined as the boundary condition. In the comparison between the measurement 

and CFD simulation, a couple of different models were used in order to choose the most suitable 

model for further analysis. The initial CFD model, which is described in the text above, uses a 

constant density for the fluid. In the next CFD model the ‘Gravity’ is activated as well as the option 

‘Full Buoyancy Effects’ in the turbulence model. Furthermore, the density of the fluid is defined as 

piecewise linear depending on the fluid temperature to enable natural convection inside the pipes of 

the absorber plate. 

A last version of the STAF CFD model is an extension of the model with natural convection. An air-

filled domain of 1m is added in front of the exterior absorber which has an inlet and outlet surface 

(Fig. 7). In this model, the boundary condition of the exterior temperature and the heat transfer 

coefficient, as well as the external radiation temperature are removed. Instead of the external 

radiation temperature, the solar calculator from FLUENT is used.

Fig. 7  Temperature contours of the water supply pipe CFD model (left), STAF CFD model with additional air domain (right)
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Fig. 8  Comparison between temperature contours from CDF simulations and the thermographic photo (from 21st  September 
2016, 12:09) of the STAF panel´s exterior absorber

POSITION Thermo-
graphic 

analysis (TA)

CFD Constant 
density (CD)

Difference 
between TA 

and CD

CFD Natural 
convection 

(NC)

Difference 
between TA 

and NC

CFD Exterior 
air and Solar 

calculator 
(EASC)

Difference 
between TA 
and EASC

°C °C K °C K °C K

T
WB-1

48.1 51.8 3.7 47.7 0.4 46.2 1.9

T
WB-2

42.0 44.8 2.8 42.7 0.7 43.4 1.4

T
WB-3

36.4 34.5 1.9 34.9 1.5 34.9 1.5

T
WB-4

33.2 31.8 1.4 31.7 1.5 31.1 2.1

T
WB-5

33.7 36.0 2.3 34.4 0.7 34.1 0.4

T
WB-6

29.1 29.5 0.4 29.5 0.4 28.9 0.2

T
WB-7

31.5 30.2 1.3 30.4 1.1 29.7 1.8

T
WB-8

25.7 24.7 1.0 24.6 1.1 23.9 1.8

T
WB-9

27.4 28.6 1.2 27.0 0.4 25.8 1.6

T
WB-10

23.1 21.4 1.7 21.4 1.7 20.8 2.3

T
WB-11

23.8 20.9 2.9 20.9 2.9 20.9 2.9

Table 1  Comparison of surface temperatures of the exterior absorber plate between thermographic analysis (from 21st 
September 2016, 12:09) and the CFD simulation results

Fig. 8 shows the comparison between a thermographic photo and the resulting temperature 

contours of the exterior absorber from CFD simulations. Additionally, those positions are indicated 

where the temperature of the thermographic photo is evaluated (with the help of the software 

‘ResearchIR’) and compared to the simulation results. A summary of this comparison can be found 

in Table 1. Generally, all temperature characteristics look similar. Considering the comparison of 

the water outlet temperature that is measured and simulated, data match very well. The difference 

between the investigated measured and simulated values at exterior temperatures of the absorber 

plate is a deviation between 3.7 and 2.9K. Because the CFD model with natural convection shows 

a better agreement with the thermographic photo and the evaluated temperatures, this model is 

proposed for further analyses with varying fluid pipe designs. A comparison between simulated 

and measured water outlet temperatures and the resulting thermal output from other days is 
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also performed. The results are summarised in Table 2 and show a good agreement between 

measurement and simulation.

DATE TIME EXTERIOR 
TEMP.

SOLAR 
RADIA-

TION

MASS 
FLOW 
RATE

FLUID 
INLET 
TEMP.

DT-PIPE-
SUPPLY 

(SIM.)

FLUID 
OUTLET 
TEMP. 

(MEAS.)

FLUID 
OUTLET 
TEMP.   
(SIM.)

THERMAL 
OUTPUT 
(MEAS.)

THERMAL 
OUTPUT 

(SIM.)

dd.mm.yyyy hh:mm °C W/m² kg/s °C °C °C °C W/m² W/m²

01.09.2016 12:00 25.6 630 0.0124 25.7 0.22 28.8 28.4 185 162

02.09.2016 12:00 27.1 652 0.0075 24.7 0.38 30.2 29.5 197 174

20.09.2016 14:02 17.5 621 0.0031 20.1 0.55 48.9 49.1 432 435

21.09.2016 12:09 16.6 737 0.0071 17.8 0.48 36.9 36.3 644 627

23.09.2016 13:00 20.4 749 0.0063 18.2 0.41 38.6 38.5 617 614

Table 2  Comparison of water outlet temperature and the thermal output between measurement and CFD simulation at different times

  3.3	 RESULTS FROM THERMAL ANALYSIS (CFD)

After the positive evaluation of the numerical method and the CFD model, this study shows the 

analysis of the thermal behaviour and thermal output of three further pipe designs for the absorber 

plate, with the dimensions 1.75 x 0.5m. For this analysis, the following boundary conditions are 

used: a solar radiation of 1000 W/m² at an angle of 45 °; an exterior temperature of 30 °C and a heat 

transfer coefficient of 25 W/m²K; an interior temperature of 20 °C and a heat transfer coefficient of 

5 W/m²K; a fluid inlet temperature of 15 °C and a mass flow rate of 50 kg/h; and a solar absorptivity 

of 0.95 for the exterior absorber surface. The comparison includes four different layouts: (a) the 

honeycomb absorber which is also used in the comparison with the in-situ measurements, (b) a 

harp absorber with 14 vertical, parallel fluid pipes, (c) again a harp absorber but with only 10 fluid 

pipes, and (d) another harp absorber but with 11 vertical, parallel arranged fluid pipes and more 

complex inlet and outlet pipework. The computed temperature contours of these four absorbers 

are illustrated in Fig. 9. All absorbers have (f) one-sided inflated fluid pipes, except the honeycomb 

absorber which has (e) double-sided inflated pipes. The relevant results from CFD simulations are 

summarised in Table 3.

The highest water outlet temperature of 27.9 °C is achieved with the absorber with 14 vertical fluid 

pipes (b) followed by the honeycomb absorber for which the fluid outlet temperature is 27.8 °C, and 

the absorber with 10 pipes which has a water outlet temperature of 27.7 °C. The lowest fluid outlet 

temperature (27.4 °C) occurs for the absorber (d) with the more complex inlet and outlet geometry. 

The resulting thermal output is 857 W/m² for the absorber (b), 851 W/m² for absorber (a), 846 W/

m² for absorber (c), and 822 W/m² for absorber (d). The honeycomb absorber (a) with the double-

sided inflated fluid pipe shows the lowest pressure difference of 1056 Pa between water inlet and 

outlet. The absorber (b) with the 14 pipes shows a pressure difference of 1424 Pa and 1599 Pa for 

the absorber (c) with 10 pipes. Again, the absorber (d) shows the worst case with a pressure 

difference of 2936 Pa.
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Fig. 9  Illustration of the absorber temperature contours of an absorber with a (a) honeycomb, (b) 14 vertical pipe harp, (c) 10 
vertical pipe harp, and (d) 11 vertical pipe harp absorber. Schematic (e) shows the cross section of the double-sided inflated pipe 
profile, and (f) of the one-sided inflated pipe profile.

PIPE DESIGN FLUID OUTLET TEMPERATURE THERMAL OUTPUT PRESSURE DIFFERENCE

°C W/m² Pa

Honeycomb 27.8 851 1056

Harp, 14 vertical pipes 27.9 857 1424

Harp, 10 vertical pipes 27.7 846 1599

Harp, 11 vertical pipes 27.4 822 2936

Table 3  Comparison of the water outlet temperature, the thermal output, and the pressure difference between the 
absorber designs

  3.4	 DESCRIPTION AND RESULTS FROM STRUCTURAL ANALYSIS (FEM)

The thermal analysis is followed by a structural analysis in which the deformation of the STAF panel 

is simulated with the help of the Finite Element Method (FEM). The same CFD model is used as a 

basis for the model, but the mesh is much coarser. Furthermore, the fluid domain is not necessary 

in the FEM simulation and can be neglected in the model. In the structural analysis, the thermal 
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deformations are considered, as well as the pressure caused by wind loads. Two different wind 

characteristics are observed: low wind and strong wind. While, for low wind the pressure is very 

small, a dynamic pressure p
d
 of 1000 Pa is set as an additional boundary condition in the FEM model 

with strong wind. The dynamic pressure of 1000 Pa represents a wind speed of approximately 150 

km/h according to equation (3), which is more than the maximum occurring wind in the region of 

Austria. The external heat transfer coefficient is increasing to a value of 100 W/m²K according to 

equation (2). In the equation r is the density of the fluid in kg/m³ and v is the wind speed in m/s.

 

2

2
1 vpd ⋅⋅= ρ  

For the determination of the thermal deformations, the results from the thermal analysis (CFD) are 

used as boundary conditions. For this reason, the temperature characteristic of each solid body is 

imported in the FEM model. This study presents the comparison of the deformation between a 3.5 x 

1.0 x 0.15m STAF panel and a conventional aluminium sandwich panel with polyurethane foam as 

the thermal insulator, and which has the same dimensions as the STAF panel. One-sided inflated 

fluid pipes are used, and the absorber plates show a thickness of 1.5mm. The STAF panel contains 20 

vertical fluid pipes which have individual inlets and outlets. The water is evenly supplied to the pipes 

(exterior and interior sides) at the bottom of the STAF panel with a mass flow rate of 100 kg/h and the 

water inlet temperature is measured at 10°C. At the exterior side, the water is heated due to 1000 W/

m² solar radiation and a solar angle of 45°, while the exterior temperature is 30°C. At the interior side 

of the panel, a room temperature of 25°C is defined. The heat transfer coefficients and absorptivity 

have the same values as in the simulation in Chapter 3.3. Fig. 10 shows the resulting temperature 

profiles from CFD simulation (a-d) as well as the deformations from FEM simulation (e-h) of the 

conventional sandwich and the STAF panel.  The maximum deformations occurred at the middle 

of the panel for the conventional sandwich panel and slightly above the middle for the STAF panel. 

Under low wind conditions, the maximum deformation is approximately 6.5mm for the conventional 

panel and about 3.6mm for this version of the STAF panel. Under strong wind, the maximum 

deformation is generally higher, with values of 17.5mm for the conventional sandwich panel and 

15.6mm for the STAF panel. The results from CFD and FEM simulations are summarised in Table 4.

AVERAGED SURFACE 
TEMPERATURE FOR 

LOW WIND

AVERAGED SURFACE 
TEMPERATURE FOR 

STRONG WIND

MAXIMUM  
DEFORMATION FOR 

LOW WIND

MAXIMUM  
DEFORMATION FOR 

STRONG WIND

°C °C mm mm

Exterior plate STAF panel 25.3 28.6 3.6 15.6

Interior plate STAF panel 12.2 12.2 3.6 15.6

Exterior plate sandwich panel 51.1 36.3 6.5 17.5

Interior plate sandwich panel 25.8 25.4 6.5 17.5

Table 4  Summary of the averaged surface temperature of the exterior and the interior absorber and the simulated maximum deformations
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Fig. 10  Temperature contours of (a) the sandwich panel for low wind, (b) sandwich panel for strong wind, (c) STAF panel for low 
wind, (d) STAF panel for strong wind. Deformation of the (e) sandwich panel for low wind, (f) sandwich panel for strong wind, (g) 
STAF panel for low wind, (h) STAF panel for strong wind.

4	 CONCLUSION AND OUTLOOK

In order to fulfil one of the main objectives of this study (mentioned in Section 1.3), the ‘one-way 

coupling’ between the two numerical simulation methods CFD-FEM has been implemented and 

allows the determination of the deformations caused by heat and cooling effects and/or wind loads.

Furthermore, the CFD model was evaluated with the help of measurement data from an outdoor 

test facility and thermographic photos of the STAF panel´s exterior absorber. A good agreement 

was achieved between the measured and simulated water outlet temperature of an absorber with a 

honeycomb pipework. Furthermore, from the comparison of the temperature noted between the CFD 

simulation and the thermographic images, it was concluded that the CFD model is accurate enough 

for further analyses.

In order to optimise the pipe design of the STAF panel with a honeycomb absorber from the outdoor 

test facility (and fulfil the remaining main objective of this study), three further absorber geometries 

were designed and analysed with the help of CFD simulations. The absorber with the 14 vertical, 

parallel arranged fluid pipes with one side inflation shows the best thermal performance. The lowest 

pressure difference was achieved for the honeycomb absorber with double-sided inflated fluid pipes.

From the results of the FEM simulation, it was concluded that the static behaviour was slightly 

improved due to the integrated fluid pipes. Generally, the mechanical stresses and thermal 

deformations are within the acceptable tolerances.

Based on the completed and pending thermal and static analyses, prototypes will be produced and 

measured under real climate conditions. The measurement data can be used for a final optimisation 

of the STAF panel. Therefore, a new outdoor test facility will be installed, which will allow the parallel 

analysis of five STAF panels.
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