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ABSTRACT
Accurate detection of target microbial species in metagenomic datasets from environ-
mental samples remains limited because the limit of detection of current methods is
typically inaccessible and the frequency of false-positives, resulting from inadequate
identification of regions of the genome that are either too highly conserved to be
diagnostic (e.g., rRNA genes) or prone to frequent horizontal genetic exchange (e.g.,
mobile elements) remains unknown. To overcome these limitations, we introduce
imGLAD, which aims to detect (target) genomic sequences in metagenomic datasets.
imGLAD achieves high accuracy because it uses the sequence-discrete population
concept for discriminating between metagenomic reads originating from the target
organism compared to reads from co-occurring close relatives, masks regions of the
genome that are not informative using the MyTaxa engine, and models both the
sequencing breadth and depth to determine relative abundance and limit of detection.
We validated imGLAD by analyzing metagenomic datasets derived from spinach leaves
inoculated with the enteric pathogen Escherichia coliO157:H7 and showed that its limit
of detection can be comparable to that of PCR-based approaches for these samples (∼1
cell/gram).

Subjects Bioinformatics, Genomics
Keywords Genomes, Metagenomics, Limit of detection

INTRODUCTION
Detection of target bacterial species and strains (e.g., pathogens) in environmental samples
is a critical step for robust environmental, clinical and biodefense surveillance studies
(Mande, Monzoorul & Tarini, 2012; Miller et al., 2013). A wide range of methods has
been employed to target and monitor selected species in air, water, food or clinical
samples. Traditional assays include microscopy, culture-based analyses and, in the case of
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pathogens, immunoassays that detect antigens expressed by the pathogen. However, these
assays are typically cumbersome (e.g., results are available after at least 1–2 days), and
cannot typically detect organisms that are resistant to cultivation or novel. Accordingly,
culture-independent techniques, including PCR-based amplification tests or sequencing of
genomicDNA, have been developedmore recently that providemore rapid and, often,more
accurate means to diagnose and genotype bacterial species (Huang et al., 2017). Advances
in sequencing technologies have also drastically improved DNA collection and sequencing
from environmental samples. Currently, it is possible to collect DNA samples from the
entire microbial community present in a sample, denoted as metagenomic datasets, which
provides new opportunities for diagnostics. Nonetheless, several challenges remain to
be addressed in order to qualify metagenomics as an everyday tool for the diagnostic
laboratory. Due in part to these challenges, many clinical samples entering a public health
laboratory remain undiagnosed for the causative agent despite being subjected to a battery
of techniques (Miller et al., 2013).

Most importantly, assessment of the minimum amount of sequencing required for
accurate detection of target bacterial species in a background of a complex microbial
community remains challenging. This problem has important practical applications
in environmental and clinical surveillance studies as keystone ecosystem organisms or
pathogens may not be among the abundant taxa in situ. Detection limits vary depending
on the sequencing effort and technology (e.g., read length), and the complexity of the
microbial community sampled, i.e., the number and relative abundances of the species
present in the sample and their relatedness to the target species. In most cases, these
parameters or their effects on the limit of detection remain inaccessible. Experiments with
increasing amounts of target DNA added to environmental samples have been performed in
the past to empirically establish detection limits (e.g.,Be et al., 2013). However, a theoretical
framework to establish limit of detection based on bioinformatics analysis of metagenomics
is still lacking. Furthermore, such empirical approaches are typically cumbersome, and
specific to the system tested.

Several methods to evaluate presence or absence of bacterial species based on best match
or Bayesian analysis of read mapping patterns against a reference collection of genome
sequences such as Pathoscope or Sigma (Ahn, Chai & Pan, 2015; Hong et al., 2014) have
been recently developed. Additionally, taxonomic profilers such as MetaPhlAn (Segata et
al., 2012; Truong et al., 2015) or MetaMLST (Zolfo et al., 2017) employ species- or strain-
specific genetic markers to identify the different members of the community. However,
these approaches rely on Single Nucleotide Polymorphism (SNP) pattern differences
against reference genes/genomes, which are difficult to robustly determine, especially in
cases of low abundance (i.e., not enough reads available to reliably call SNPs). Importantly,
no available tool can detect organisms that are not part of a reference genome database,
and most tools are not easily adaptable to include new target genomes as references
(e.g., the tools require re-computation of the -typically large- training datasets or reference
database to include new target organisms). Further, it is not clear how the co-presence of
relatives of varying relatedness to the target organisms in the sample, as often is the case of
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environmental samples, affects detection ability and whether or not strain-level resolution
can be achieved.

While these previous studies highlighted the challenges associatedwith accurate detection
of genomes in metagenomic datasets, they also provided hints for possible solutions to
the problem. More specifically, the detection problem can be framed as a classification
problem based on two categories: a metagenomic dataset is designated as positive if the
target genome is present; conversely, a negative dataset does not include any sequence
originating from the target. Thus, training sets with positive and negative datasets could
be used to train a classifier for reliable target detection. Likewise, the taxonomic profilers
have shown that some regions of the genome can be used to reliably infer presence of
a target, at the species or even sub-species (strain) levels, while other regions are not
diagnostic enough. Therefore, the classification problem has two important parameters.
One parameter is sequencing depth, i.e., how many times each base of the genome is
sequenced or covered by sequencing reads, directly related to the relative abundance of
the target organism in the sample and thus, the limit of detection. The other parameter is
sequencing breadth, i.e., what fraction of the genome has to be sequenced, after removing
(masking) regions of the genome that are not diagnostic enough, for reliable detection.
By determining the minimum recovered fraction of the genome needed for detection,
reliable detection can be established even in cases where species-specific genes are missing;
for instance, due to incomplete sequencing or assembly of the target genome from the
metagenomic dataset as an effect of low relative in-situ abundance.

Here, we present imGLAD (in-silico metagenomes for Genome Low- Abundance
Detection), a new pipeline that incorporates a training classification step with positive and
negative datasets as outlined above, and several computational optimizations to address
the abovementioned limitations. Application of imGLAD to metagenomes derived from
samples of known composition (mock) showed that it can reliably detect target organisms of
interest in a backgroundof closely related co-occurring relatives and frequently outperforms
other methods.

MATERIAL AND METHODS
Overview of the imGLAD pipeline
imGLAD assumes that reads of a metagenomic dataset originate at random from all regions
of the genome. Thus, the fraction of the genome that is recovered in the dataset (sequencing
breadth) as well as the number of times each region is sequenced (sequencing depth), both
depend on the abundance of the organism in the community. Highly conserved regions
(e.g., rRNA and tRNA genes), as well as regions resulting from recent horizontal gene
transfer (e.g., transposase and integrase genes), can recruit reads from other non-target
genomes and misleadingly increase the value of sequencing depth (and hence, estimated
relative abundance) in some datasets depending on the gene composition of the organisms
present. To address this problem, we developed a framework to identify which fraction
of a target genome corresponds to reads that belong to the target and what fraction is the
result of spurious matches. This framework has two steps: initial training and subsequent
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Figure 1 Schematic representation of imGLAD’s pipeline. imGLAD has two main components. (A) The
first part (training) consists of a learning procedure, in which a set of in-silico generated datasets are fitted
through a logistic model that aims to separate positive from negative datasets. For this, a database of 200
genomes is used to generate the simulated Illumina reads of these datasets. Reads simulated from the tar-
get genome are then incorporated into half of the simulated datasets. The resulting datasets are marked as
positive for training while the other half is marked as negative. Sequencing depth and breadth of the target
(reference) genome are calculated for each dataset. A logistic function is then fitted to the data to separate
positive from negative examples. The regression parameters are stored for further use. (B) The second part
(estimation) consists of estimating the sequencing breadth and/or depth values of the target genome pro-
vided by the (recruited) reads of the experimental metagenomes, and comparison of the derived sequenc-
ing depth and breadth values to those of the logistic function from the training step.

Full-size DOI: 10.7717/peerj.5882/fig-1

prediction (Fig. 1). Training set selection can be automatic or user defined. The automatic
training generates reads from a randomly selected number of genomes (default is 200
genomes) from RefSeq (Pruitt, Tatusova & Maglott, 2007), and builds in-silico-generated
datasets of about 1 million reads each. Simulated reads from the target genome(s) are
then generated in a similar way and added to the former datasets in order to create the
positive datasets with decreasing target abundances. Reads from the target genome(s) are
omitted for the construction of negative datasets. All other genomes used to create the
datasets are sampled in equal proportions (i.e., same relative abundances). The user can
also choose the genomes to use to generate the training set (e.g., genomes previously known
to co-occur in the same environment). In this case, the construction of the training set
will be performed based on these genomes rather than the default genome collection from
RefSeq. Simulated Illumina-like reads are generated using ART-MountRainier (Huang et
al., 2012) with default settings. Simulation of reads from additional sequencing platforms
is provided as an option, using also ART-MountRainier. Reads from both positive and
negative samples are then recruited against the target genome sequence (reference) using
BLAT (Kent, 2002). Alternatively, BLAST can be used to improve sensitivity at the expense
of computational time (Altschul et al., 1997). By default, reads with identity higher than
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95% and at least 90% of the read length aligned are selected to calculate sequencing breadth
and sequencing depth, after normalizing for the size of the dataset. This level of identity
has been shown to capture well the genome-aggregate Average Nucleotide Identity (ANI)
typically seen between most currently named bacterial species, i.e., >95% ANI within vs.
<95% ANI between species (Konstantinidis & Tiedje, 2005; Rodriguez et al., 2018) and the
sequence-discrete populations recovered frequently in metagenomes of natural habitats
(Caro-Quintero & Konstantinidis, 2012), although different user-defined cut-offs can be
used as well. Members of such sequence-discrete populations show high gene-content
and nucleotide sequence similarity among themselves, often -but not always- >95% ANI,
and/or lower relatedness (e.g., <90% ANI) to close relatives (reviewed in Caro-Quintero
& Konstantinidis, 2012). Sequencing depth (SD) is calculated as the number of reads
mapping to the genome (N) multiplied by the read length (L) divided by the total length of
the genome (G), and sequencing breadth (SB) is calculated as the number of bases covered
(B) divided by the total length of the genome, using Eqs. (1) and (2) below, respectively. If
the genome consists of more than one contig (e.g., draft genomes), the length is assumed
to be the sum of the lengths of all contigs.

SD= L∗N/G (1)

SB=B/G. (2)

A logistic function is fitted to the resulting recruitment data (i.e., SB and SD values or
SB values alone; see also below) that attempts to separate the positive from the negative
training datasets in terms of sequencing depth and sequencing breadth (the latter two are
the variables of the function). In particular, this approach calculates the parameters of the
logistic function by computing the error in the training set, i.e., what SB and SD values
are observed for the 100 positive vs. the 100 negative training datasets, and modifying the
parameters accordingly to reduce the error until convergence is reached. Error is assessed
by a log-likelihood maximization via gradient approach, which modifies the parameter
values until the error is minimized. Regression coefficients of the logistic equation are
calculated for the SD and SB variables as well as for an intercept term and thus, the model
estimates three parameters, i.e., SD, SB, and intercept. Final parameters of the model are
estimated by default only based on SB (sequencing breadth), as this variable was found to
be the most discriminating parameter for positive vs. negative samples (see also below).
However, an estimation including SD is also provided as an option in order to produce, in
addition to the probability of presence/absence, an accurate estimation of the abundance
of the target genome.

Estimation of the probability of detection and limit of detection
Once the parameters of the logistic function have been determined (above), SB and SD
can be used to reliably predict the probability of presence of the target genome in any
number of query metagenomes after the reads of the query have been recruited against the
target genome and (observed) SB is estimated as described above for training datasets. The

Castro et al. (2018), PeerJ, DOI 10.7717/peerj.5882 5/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.5882


probability of presence is estimated according to:

p= 1−
1

1∓e−z
(3)

where z is a linear function of the form βT t, β represents the regression parameters
and t is either a vector composed of the SD (Eq. (1)) and SB (Eq. (2)) or, by default, a
one-dimensional variable corresponding to SB. Based on the model parameters (Eq. (3)), it
is possible to establish a detection limit for the target genome in each metagenomic dataset
analyzed. This limit is defined as the minimum fraction (SB) that needs to be sampled
in order to estimate a probability of presence at 0.95. The result is displayed as a black
solid line in a 2D plot of SB and SD (e.g., Fig. 2). The SD value observed based on the read
recruitment, when corresponding to a probability value equal or higher to 0.95, is then used
to estimate the relative abundance of the organism in the sample. The SD corresponding
to 0.95 probability then provides the limit of detection in terms of relative abundance.

Filtering conserved regions
To avoid spurious results from reads mapping on regions of the (target) genome with
insufficient diversity (high sequence conservation such as rRNA genes) or frequently
undergoing horizontal gene transfer such as mobile elements, the user can create a filter for
these regions using MyTaxa (Luo, Rodriguez & Konstantinidis, 2014a). This filter is created
by predicting genes in the target genome and determining their classification weight using
MyTaxa. If the MyTaxa classification score is at the bottom 5% or the gene is not scored
(e.g., some hypothetical proteins) the gene is removed from the genome and further
analysis. The filtered version of the genome is subsequently used for the model training
and probability estimation steps.

Bioinformatic tool comparisons and tool parameters used
MetaPhlAn V2 (Truong et al., 2015) was run with the default settings using Bowtie version
2.2.8 (Langmead & Salzberg, 2012) for read mapping. MetaMLST (Zolfo et al., 2017) was
used with default settings. PathoScope 2.0 (Hong et al., 2014) was run with default settings,
using the same set of reference genomes that were used to build the training datasets for
imGLAD.

Four tests were performed to assess specificity and sensitivity. In all cases, sensitivity
was calculated as the proportion of properly classified positive datasets among the total
number of positive datasets. Specificity was defined instead as the fraction of correctly
identified negative datasets among all negative datasets examined. For the first test,
metagenomic datasets were created with similar parameters to the training dataset of
E. coli (i.e., 100 datasets from RefSeq genomes). These datasets were spiked with seven
different concentrations of the E. coli genome in order to provide 1% to 7% coverage of the
genome (i.e., sequencing breadth). In the second test, Human Microbiome Project (HMP)
metagenomes were spiked with reads from the E. coli genome in order to provide 1% to 7%
sequencing breadth as above. 571 HMP datasets were used for each E. coli concentration. In
the third test, the datasets constructed in test 1 were spiked with reads from close relatives
of E. coli, i.e., Klebsiella (81% ANI), Salmonella (82% ANI), and Escherichia fergusonii (92%
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Figure 2 Identification of target genomes in metagenomic datasets with imGLAD. Positive datasets
(crosses) are separated from negative datasets (dots) through a logistic function (solid line) based on in-
silico training datasets. (A) Datasets with reads of E. coli are separated from negative datasets. (B) Datasets
with reads of B. anthracis are separated from negative datasets. Red asterisks denote the position of the ex-
perimental metagenomes (remaining dots represent in-silico generated datasets). Note the differences in
scale on the x-axes between positive and negative datasets.

Full-size DOI: 10.7717/peerj.5882/fig-2
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ANI), at random concentrations for each genome in addition to the E. coli reads. Finally,
a test using close relatives, i.e., >95% ANI representing strains of the same species, was
performed in the HMP datasets in a similar way as described above for test #3.

Leaf inoculation experiments to test imGLAD and sample
sequencing
Fifty grams of field-grown spinach leaveswere inoculated (spiked in)with cells ofEscherichia
coli O157:H7 strain RM6067, a strain linked to the 2006 spinach-associated outbreak in
the USA (Carter et al., 2011). Three serial dilutions were performed resulting in three
inoculation concentrations: 80, 8 ×103 and 8 ×105 cells per pellet, plus a control sample
with no inoculated cells. Cells for inoculation were obtained from single colonies that were
grown overnight, and cell concentrations were determined by enumeration of colony-
forming units (CFUs) on LB agar plates. Leaves were subsequently washed, the leaf wash
was filtered to remove plant debris, and leaf-associated microorganisms were pelleted by
centrifugation at 10,000 g for 10 min at 4 ◦C. DNA extraction was performed using MoBio
UltraClean Microbial DNA isolation kit according to manufacturer’s instruction (MoBio).

DNA sequencing libraries were prepared using the Illumina Nextera XT DNA library
prep kit according to manufacturer’s recommendations, except that the protocol
was terminated after isolation of cleaned amplified double stranded libraries. Library
concentrations were determined by fluorescent quantification using a Qubit HS DNA
kit and Qubit 2.0 fluorometer (Thermo Fisher Scientific, formerly Life Technologies,
Waltham, MA, USA) according to manufacturer’s recommendations and libraries were
run on a High-Sensitivity DNA chip using the Bioanalyzer 2100 instrument (Agilent, Santa
Clara, CA, USA) to determine average library insert sizes. An equimolar mixture of the
libraries (final loading concentration of 11 pM) was sequenced using a MiSeq reagent v3
kit for 600 cycles (2 × 300 bp paired end run) on an in-house Illumina MiSeq instrument
(Georgia Institute of Technology), running the MiSeq control software v2.4.0.4 (MCS).
Adapter trimming and demultiplexing of sequenced samples was carried out by the MCS.
Additionally, we usedmetagenomic datasets inoculated with Bacillus anthracisDNA, which
were made available previously (Be et al., 2013).

McFadden’s pseudo-R2 metric to assess the robustness of the
logistic model/function with close relatives
The ability of the logistic model to distinguish between positive and negative training
datasets when close relatives of increasing relatedness to the target genome were used in the
training step was assessed using the McFadden’s pseudo-R2 metric. Specifically, the model
determined (fitted) by imGLAD for a certain training dataset was compared to a standard,
null logistic model which only contained an intercept variable. Effectively, this null model
represented the standard logistic curve centered on the same point as the fitted imGLAD
model but without any adjustment to the shape of that curve. Specifically, the metric was
defined as:

R2
McFadden= 1−

log(LC)
log(Lnull)

(4)
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where LC is the maximized likelihood value for the fitted model and Lnull is the maximized
likelihood value for the null model (intercept only, no covariates). Therefore, if the
comparison shows perfect congruence between the two models (pseudo-R2 close to 0
value) this means that the fitted model is not robust but similar to a randomly drawn
model. In contrast, when pseudo-R2 approaches 1, this denotes a robust fitted model.
Note that pseudo-R2 may not equal 1, even for robust models, because the null model may
approximate the fitted model estimated by imGLAD by chance alone in some iterations
since it is drawn using the same intercept value. For this evaluation, the genome of one
close relative at a time was added to the (negative and positive) training datasets at similar
relative abundance (i.e., 10×, to ensured complete genome coverage) as the target genome
(E. coli strain O157-H7) was added in the positive datasets. The genomes of relatives were
sorted into the following groups corresponding to their ANI values to the target genome
(%): 90, 95, 96, 97, 98.0, 98.2, 98.4, 98.6, 98.8, 99.0, 99.2, 99.4, 99.6, and 100. No genome
was found with ANI value between 99.8% and 99.9% ANI. In addition to these related
genomes, a uniform background dataset, which included 200 genomes showing <80% ANI
to E. coli strain O157-H7, was included to provide positive and negative training datasets of
adequate complexity. Successive iterations of imGLAD with the resulting training datasets
that each contained one close relative of varied ANI value to the target genome were
performed, and models were evaluated using the Eq. (4) above as implemented in the scipy
module of Python.

Availability and dependencies of imGLAD
imGLAD is available through http://enve-omics.ce.gatech.edu/imGLAD/. Source code is
available under GNUGeneral Public License v3.0 at GitHub (https://github.com/jccastrog/
imGLAD). imGLAD execution requires BLAT or BLAST to be installed, ART and the
Python modules ‘‘scipy’’, ‘‘numpy’’, ‘‘screed’’, ‘‘statsmodels’’, and ‘‘BioPython’’ (Jones,
Oliphant & Peterson, 2001; Oliphant, 2006; Skipper & Perktold, 2010).

RESULTS
Training set for E. coli and B. anthracis
We evaluated imGLAD’s performance on training datasets with E. coli strain O157:H7
EC4115, a strain almost genetically identical to RM6067 used in the spinach inoculation
experiments, i.e., ∼99.97% average nucleotide identity (or ANI), and B. anthracis strain
Ames as target genomes. The training datasets included closely related (but distinct) species
of the same genus with ANI lower than 95% (Fig. 1; see also below for within-species
resolution), which corresponds to the frequently used standard for species demarcation
(Goris et al., 2007) and encompass the sequence-discrete populations recovered frequently
in metagenomes of natural habitats (Caro-Quintero & Konstantinidis, 2012). Although
the predicted detection limit (from the training step) varied slightly for each of the two
species, it was always possible to have confident detection (probability of presence >99%)
when sequencing breadth was about 0.03 (or 3% of the total genome) or more based on
the training datasets used (Fig. 2 & Table 1). The model for E. coli was able to accurately
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Table 1 Samples inoculated with different cell concentrations of E. coli (1st column) were classified by
imGLAD as present/positive or absent/negative. The calculated breadth of the E. coli reference genome
recovered (2nd column) and the sequencing depth (3rd column) as well as the derived probability of pres-
ence (4th column) are shown. The estimated relative abundance (fraction of total cells) of E. coli in the
sample is also shown (6th column). Relative abundance was estimated based on the number of reads map-
ping on the E. coli genome after filtering relative to the total number of reads of the metagenome, assum-
ing all community members had an average genome size of 5 Mbp (similar to E. coli genome size) and all
mapped reads originated from the E. coli cells spiked in (1st column) without losses, i.e., relative abun-
dance= fraction of total reads mapping to E. coli. All samples were found positive for presence of E. coli
(p-value= 0.004) except the control sample without inoculated E. coli cells.

Sample Sequencing
breadth

Sequencing
depth

E. coli
presence
(p-value)

Library size
(in Mbp)

E. coli
relative
abundance

Control 0.007 0.042 0.847 4,664,749 ND
80 cells 0.239 0.262 0.004 4,957,122 2.44E–05
8×103 cells 0.463 0.639 7.1×10−4 3,895,441 0.0033
8×105 cells 0.993 3.683 1×10−5 3,705,361 0.3463

separate positive from negative samples (probability of presence > 95%) to a minimal value
of sequencing breadth of 0.01 (Fig. 2A).

The logistic models from the training datasets were then applied to metagenomic
datasets originating from environmental samples and spiked-in with the target genome
(see ‘Material and Methods’ for details). For the E. coli experiment, 100 grams of field
grown spinach leaves were inoculated (spiked in) with cells of strain RM6067, a strain
linked to the 2006 spinach-associated outbreak in the USA (Carter et al., 2011). Three
serial dilutions were performed resulting in three inoculation concentrations: 80, 8 ×103

and 8×105 E. coli cells per spinach leafmicrobiome (Table 1), plus a control sample with no
inoculated cells (no cells were spiked in; although E. coli cells might have been present in the
background leaf microbial community in low concentration). The resulting samples were
sequenced using the Illumina MiSeq short-read technology as described in the ‘Material
and Methods’ section. imGLAD was able to detect the target E. coli genome in all samples,
even as low as 80 cells (Table 1). For the negative control, imGLAD provided values of
sequencing breadth (0.007) and sequencing depth (0.042) that were consistent with the
values of negative samples in the training set, i.e., the target genome was not present at
the limit of detection of the approach (Fig. 2A; p-value for presence: 0.847, Table 1). The
matching reads in this case probably originated from natural E. coli populations present on
the spinach leaves at low abundance or close relatives and/or spurious matches (Fig. S1).

The B. anthracis datasets were made previously available by Be and colleagues, and
consisted of a soil microbial community DNA sample spiked with known quantities
(genome equivalents) of DNA of B. anthracis strain Ames (Table 2), and sequenced using
the Illumina GA-II technology (Be et al., 2013). A training set for B. anthracis was built
in a similar way to the E. coli set; however, genomes that belong to Bacillus cereus were
excluded from the training dataset in this case as they show ANI values higher than 95%
to B. anthracis. Based on the training datasets, a slightly higher limit of detection than
the one for E. coli was obtained (probability of presence >95%), with a minimum value
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Table 2 Soil samples inoculated with different copies of B. anthracis strain Ames genomic DNA (1st
column) were classified by imGLAD as present/positive or absent/negative. The calculated breadth of
the B. anthracis reference genome recovered (2nd column) and the sequencing depth (3rd column) as well
as the derived probability of presence (4th column) are shown. Samples with a number of genome higher
or equal to 100 genomes were classified as positive samples. Samples with one and 10 genomic copies were
indistinguishable from the negative samples of the training set.

Sample Sequencing
breadth

Sequencing
depth

B. anthracis
presence (p-value)

1 Genome 1.56×10−3 2.0×10−3 0.999
10 Genomes 0.001 0.003 0.998
100 Genomes 0.039 0.128 0.002
103 Genomes 0.562 0.732 1.4×10−3

104 Genomes 0.983 1.563 0
105 Genomes 0.999 4.34 0

of sequencing breadth of 0.039 (Fig. 2B). Among the six samples tested, a significant
probability of presence (p >99%) was obtained in samples with 100 (3.8% of the genome
recovered), 1,000 (56.2%), 104 (98.3%), and 105 (99.9%) B. anthracis genome equivalents.
The samples with lower genome copy number (one and 10 genomes) were not identified
as positive. Manual inspection of the number and position of matching reads to the B.
anthracis reference genome in the latter two datasets revealed about 2,000 reads for the 10
genome copy dataset and about 4,000 reads for the one genome copy dataset, i.e.,more reads
were obtained with the lower abundance dataset, indicating spurious matches (each dataset
was on average 5.6 Gbp in size). Further, the reads were concentrated in a few regions of the
genome (not randomly distributed), which was indistinguishable from negative datasets
(Table 2, Fig. 2B, and Fig. S2). Thus, it appears that the B. anthracis genomes might not
have been sequenced adequately in the low copy number datasets. This interpretation is
also consistent with the fact that Be and colleagues employed a phi29-based, whole-DNA
amplification method that may have resulted in biased sequencing (e.g., only a few, not
enough diagnostic regions of the genome were amplified and sequenced), especially in
the low B. anthracis genome concentrations. Further, our results are also consistent with
estimates that 100 Gbp or more are required to cover the complete genome diversity
within typical soil microbial communities as described previously (Luo et al., 2014b) and
the conclusions of the original study by Be and colleagues.

Comparison to other tools
We compared the performance of imGLAD with other available platforms that can be
used to identify the taxa present in the sample. It should be pointed out, however, that
these tools do not target a specific organism/genome of interest but instead assess the
total microbial community composition and thus, their objective is slightly different
than imGLAD’s. Nonetheless, we were able to obtain meaningful results by comparing
imGLAD with popular tools for these purposes such as MetaPhlAn, MetaMLST, and
Pathoscope, which illustrated the advantages of imGLAD. In the E. coli and B. anthracis
metagenomes described above, imGLAD provided higher sensitivity than other tools,
especially at low levels of sequencing breadth. i.e., the proportion of properly classified
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Full-size DOI: 10.7717/peerj.5882/fig-3

positive datasets among the total number of positive datasets. For instance, with 2% of the
genome covered by sequencing reads in training datasets, imGLAD accurately classified
as positive 95% of the datasets, whereas Pathoscope and MetaPhlAn classified only about
47% and 16% of the datasets, respectively. Only when sampling 7% of the genome or
more, did these tools yield similar results to imGLAD (Fig. 3A). It should be noted that 7%
is more than twice the genome breadth (i.e., 3% of the genome) that imGLAD required
to reach 100% classification sensitivity. Comparisons against available tools that require
higher target abundance to make confident calls such as ConStrains (Luo et al., 2015) were
not attempted as this would have been an unfair comparison. A few other tools such as
GOTTCHA (Freitas et al., 2015) were proven to be too sensitive, e.g., (positively) detecting
E. coli even in E. coli negative training datasets, and thus, were not evaluated further.

Additionally, we used a set of 571 metagenomic datasets of the HMP (http:
//www.hmpdacc.org/), in which different concentrations of E. coli (target organism)
reads were spiked to further test the specificity of imGLAD against a naturally occurring
background community (as opposed to in-silico generated datasets) (Fig. 3B). These
datasets were selected because they did not have any detectable amounts of E. coli by any of
the three tools to confound results. MetaPhlAn, which is optimized for human-associated
microbial communities, had better performance when tested against these HMP datasets
relative to the E. coli or B. anthracis datasets mentioned above. However, MetaPhlAn still
required at least 5% of the genome to be recovered in order to provide high confidence
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(positive) detection whereas imGLAD achieved similar confidence with only 3% of the
genome. Hence, imGLAD’s sensitivity was superior, especially in cases of low abundance
of the target genome(s).

Improved detection was also observed in in-silico synthesized datasets that included
close relatives (ANI greater than 95% up to 98% compared to the target; for >98%
ANI, see below), although a larger fraction of the genome was typically required in these
cases (∼7%) in order to achieve high specificity and sensitivity by imGLAD. PathoScope
and MetaPhlAn required an even higher fraction (at least 10%) of the target genome
for comparable specificity and sensitivity (Fig. 3C; Fig. S3 shows similar results but the
background metagenome was from HMP instead of the in-silico synthesized datasets). In
all cases imGLAD achieved high specificity (>97%), i.e., the fraction of correctly identified
negative datasets among all negative datasets examined (Fig. S4). In comparison, the other
three tools never reached specificity higher than 90% on the same four tests (Fig. S4).

Filtering of conserved regions
In addition to creating a model using the whole genome, regions of the genome that
provide a less reliable phylogenetic signal (e.g., regions that are highly conserved or contain
mobile elements; see ‘Material and Methods’ for details) can be identified by MyTaxa and
removed/masked so that the prediction and/or the training steps can be repeated with
the filtered genome for more accurate results. Briefly, MyTaxa was used to examine the
classification accuracy of all genes in the genome as described previously (Luo, Rodriguez &
Konstantinidis, 2014a), and genes with classification score at the bottom 5% or not scored
(e.g., some hypothetical proteins) were removed (filtered out) from the genome, providing
the filtered genome, which was used for the training step and further analysis. Filtering in
general, improved the detection limit because reads mapping on masked regions were not
counted (Fig. 4). For instance, filtering lowered the minimum sequencing depth required
for robust detection from 0.123×(no filtering applied) to 0.061×in the training datasets
for E. coli (same p-value was used in both cases, equal to 0.05). The reduction in sequencing
breadth howeverwas not as dramatic as sequencing depth (e.g., 0.014 to 0.009 fraction of the
total genome for the same datasets). The larger effect of filtering on sequencing depth than
breadth was presumably attributable to the fact that filtering typically removed only a small
part of the target genome (i.e., <5% by default settings) that recruited a disproportionally
high number of reads encoding highly conserved or frequently transferred genes. This
interpretation is also consistent with the sigmoidal relationship between sequencing depth
and breadth, which tends to flatten at high values of sequencing depth and becomes linear
at lower values (Wendl et al., 2012). Hence, filtering with MyTaxa is recommended, in
general, provided the target organism is represented in the database.

Effect of relatedness of co-occurring genomes and strain-level
resolution
When building the training set, the user is able to add any non-target genomes that could be
relevant for optimizing detection of the target genome such as genomes that are known to
be present and relatively abundant in the sample or closely related species that should not
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Full-size DOI: 10.7717/peerj.5882/fig-4

contribute positive signal (i.e., reads mapping on shared regions of the genome). In general,
imGLAD’s sequencing breadth and/or depth for positive detection (i.e., the detection limit)
was expected to be higher with higher relatedness of the non-target genomes in the training
set to the target genome. For instance, we tested different training sets that included
relatives at different levels of ANI to the target genome ranging from 80 to almost 100%
ANI. Consistent with our expectations, higher sequencing depth and breadth were required
for robust detection when relatives showing 95–∼98.5% ANI (within species resolution) to
the target co-occurred in the training dataset compared to relatives showing 90% or 80%
ANI (between species resolution). This was due to the fact that more conserved and/or
identical regions were present in the genome of the former relative to the latter. In fact,
when co-occurring relatives were members of different species than the target species (i.e.,
show <95% ANI), imGLAD’s limit of detection was very similar to that of the training
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datasets without close relatives, i.e., 3% of the genome needed to be recovered for confident
detection in most cases. When genomes of the same species were present (i.e., between
95 and ∼98.5% ANI), about 10% of the genome was required, depending on the exact
genomes considered and their relatedness (Fig. 3C).

When relatives showed higher than ∼98.5% ANI (i.e., represented very closely related
strains), imGLAD’s detection efficiency was increasingly lower up to about 100%, where
reliable detection calls were often not possible. For instance, using McFadden’s pseudo-R2

metric to assess the ability of the logistic model to distinguish between positive and negative
datasets, we found that the model parameters were reasonably well estimated (R2 >0.7)
until relatives showing about 98.5% ANI relatedness to the target were included in the
training datasets, at which point the pseudo-R2 fell near 0.5. Increasing the ANI relatedness
of the (non-target) relatives further produced pseudo-R2 values either equal to or below
0.5, indicating that the logistic model was not robust in identifying presence of the target
in these cases (Fig. 5). Furthermore, as the relatedness increased, the contribution of the
sequencing depth metric became less important. In fact, in some training datasets where
close relatives with high identity to the target genome (98% ANI or higher) were present
and in relative high abundance, the estimated parameters showed high variation during the
training step. This resulted, for instance, in a positive slope between sequencing breadth
and depth, which was not reliable for estimating relative abundance and detection limit,
consistent with the McFadden’s pseudo-R2 statistics mentioned above. In these cases,
sequencing breadth alone represented a more reliable parameter for robust detection calls.
It should be noted, however, that the McFadden’s pseudo-R2 evaluation showed that the
model based on both sequencing breadth and depth performed better than the one based
on sequencing breadth alone (Fig. 5). This was due to the fact that the genome of close
relatives was added in the training datasets at the same abundances as the target genome
for this evaluation, and that two parameters are typically better than one for model fitting.
Hence, the abundance of the target genome relative to that of the close relatives may affect
the significance level of the sequencing depth for the logistic function, and the estimation
of abundance of the target genome in a query metagenome.

In summary, gene-content differences among the target genome and the co-occurring,
non-target close relatives become increasingly more important for robust detection in
cases where the non-target genome(s) show increasing genetic relatedness to the target
up to about 98.5% ANI, which marks the upper limit of relatedness of the non-target
to the target genome for reliable selective detection of the target. Within species (i.e.,
strain-level) resolution was achievable by imGLAD in such cases, but not when strains
shared >98.5% ANI. In the latter cases, the gene-content differences between target and
non-target genomes, reflected on sequencing breadth in negative training datasets, was too
small to resolve robustly. However, it is important to point out that, in practice, resolution
among genomes sharing >98.5% ANI is typically not necessary for most applications since
such genomes are typically members of the same sub-clade within species and share highly
similar phenotypes, while resolving such closely related genomes would probably require
detailed phylogenetic SNP analysis. Hence, training with close relatives is important for
more stringent results when needed, especially in cases that the close relatives are known or
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highly anticipated to co-occur in the same samples with the target organism. When close
relatives are not a concern, the default settings of imGLAD should be robust. The default
settings are: to create 200 training examples (100 positive, 100 negative) with 1,000,000
simulated 150 bp Illumina reads per dataset; the reads are generated evenly from 200
genomes randomly sampled from NCBI; the positive datasets have additional reads from
varying abundances of the target genome; the reads from each dataset are then aligned
against the target genome using Blat with thresholds of 95% identity and 90% alignment
length in order to build the logistic model.

DISCUSSION
We presented imGLAD, a novel algorithm that utilizes a logistic model-based learning
approach for accurate detection of target bacterial species in complexmetagenomes, and for
establishing detection limits in a target species- andmicrobial community-specific manner.
By building and analyzing training datasets with decreasing abundances of spiked-in reads
originating from the target genome, imGLAD allows for highly reliable calls, while reducing
the number of false positives (Fig. 2). Further, and contrary to available tools, imGLAD
allows for reliable estimation of the detection limit of the metagenomic sequencing effort
applied based on the training datasets of decreasing target genome abundance and a

Castro et al. (2018), PeerJ, DOI 10.7717/peerj.5882 16/23

https://peerj.com
https://doi.org/10.7717/peerj.5882/fig-5
http://dx.doi.org/10.7717/peerj.5882


linear combination of both genome sequencing depth and genome sequencing breadth,
or only sequencing breadth. The degree of sequence conservation of the genes of the
target genome and their extent of horizontal gene transfer are also taken into account in
estimating the limit of detection, which represents a substantial advantage over existing
tools in minimizing false-positive calls. The results using both simulated datasets (e.g., Fig.
2) as well as experimental metagenomes (Tables 1 and 2) highlighted these advantages
of imGLAD. However, imGLAD is not designed to detect all species present in a sample.
Thus, it differs from taxonomic profiling software, and is computationally more expensive,
due to the training step, if the goal is to detect more than a couple of targets. Rather, the
goal of imGLAD is to provide highly accurate detection of specific, user-provided target
species (e.g., pathogens or keystone species), including newly sequenced genomes. Further,
imGLAD’s logistic model, while computationally demanding to create (e.g., building
in-silico training datasets), needs to be built only once and can subsequently be used
multiple times with different metagenomes. This way, imGLAD could be used to efficiently
and rapidly detect several target organisms in an environmental sample (by building a
model for each target in advance). For instance, the modeling step typically took 8–12 h
on a node with 4 CPUs (2.5 Mzh, 12 Gb memory), whereas the detection (i.e., making a
call) step with one query metagenome took 0.5–1 s (once the read recruitment against the
target genome was completed; the time required for the latter step varied, depending on
genome and metagenome sizes).

A distinguishing strength of imGLAD is the detection of low abundance target genomes.
Current tools for metagenomic profiling use specific markers or SNP patterns to identify
and classify the species present in the sample (e.g., Hong et al., 2014; Segata et al., 2012).
However, at low levels of abundance, these markers may not be found, and SNPs cannot be
called, and in some cases, the SNPs are called incorrectly such as in the case of MetaMLST
(Zolfo et al., 2017), which requires high abundances (above 2×) to make confident calls
and thus, performed poorly in the tests we conducted compared to other tools or imGLAD
(e.g., Fig. 3). Our approach is not focused on a particular region of the genome, but instead
takes into account the whole genomic context. This provides higher recall while preserving
precision (Fig. 3 & Fig. S4). Further, methods based on read assignment depend on the
comprehensiveness of their reference database and do not provide high precision when
challenged with samples containing closely-related species (Hong et al., 2014). Accordingly,
the tools evaluated here provided high false positive rates in such cases (Fig. S4), which can
be concerning, for instance, in pathogen surveillance studies and environmental samples,
where closely related strains of the same speciesmay co-occur. imGLAD can provide reliable
prediction even in such cases, although at the expense of a lower detection limit, assuming
the close relatives are known and available and, hence, can be used as part of the training
step as exemplified in the E. coli case above. However, if the query metagenome(s) include
relatively abundant, non-target genomes more related to the target genome than any of the
genomes used to construct the training datasets, then the predictions of imGLAD (or other
tools) might not be highly accurate. In such cases, the user needs to recover the genome
sequences of the relatives from the metagenome(s) using genome binning techniques,
if the representative sequences are not available otherwise, in order to include them in
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the training dataset. The results presented here (e.g., Figs. 3A & 5) provide a quantitative
picture of this issue and its consequences on the accuracy of imGLAD as well as other tools.

Electrochemical immunoassays have shown promise in detecting pathogens such as
B. anthracis or their toxins and can sometimes offer strain-level resolution. The limit
of detection of these techniques can, in some cases, be ∼1pg/ml (Sharma et al., 2016),
which is below the limit of detection of imGLAD (56 pg/ml–560 pg/ml corresponding
to 10–100 cells, respectively) based on the E. coli spike in experiment on spinach and
current best practices for metagenomic sequencing and the samples analyzed here. Thus,
immunoassays and culture-based approaches are still more sensitive thanmetagenomics, at
least for highly complex metagenomes such as those of soils (but probably not as much for
food and agricultural samples, the human gut or habitats of similar complexity), and could
be used in combination with tools like imGLAD for more reliable and comprehensive
results. A key advantage of imGLAD is that it has high specificity, which sometimes
cannot be achieved by immunoassays or culture-based approaches. It should be noted
that imGLAD might be able to offer resolution within species as well, e.g., by including
in the training dataset genomes that are members of the same species but show sequence
divergence from the target genome higher than that of the sequencing errors (e.g., 99%
ANI or less) and/or have substantial gene content differences (which can be captured
by the sequencing breadth parameter). Sub-species resolution can also be obtained by
analyzing the reads identified by imGLAD as representing the target genome in the query
metagenome for their SNP pattern against a collection of genomes related to the target
genome, using -for instance- the PathoScope approach (Hong et al., 2014) or a (manual)
phylogenetic analysis of the reads.

Notably, imGLAD allows one to include new target genomes, including draft assemblies,
in the training datasets, with little effort, which may be important for practical applications.
Thus, the training step of imGLAD can be optimized with specific targets or habitats in
mind such as the human gut and provide comparable, if not better results than tools that
are already optimized for these communities. In contrast, most tools available require time
and CPU-intensive updates of their reference databases to include new targets. Similarly,
imGLAD can be easily optimized for different sequencing technologies as long as the
training datasets are produced with reads simulating these technologies. This flexibility
of imGLAD is an important advantage because the tenet ‘‘one approach fits all’’ does not
apply well in the case of microbial detection in environmental samples, which are typically
characterized by different degrees of co-occurring (non-target) relatives and are often
sequenced based on different strategies nowadays.

It is also important to note that imGLAD’s training step can be optimized to evaluate
samples of different microbial community complexity, in addition to co-occurring relatives
of varied genetic similarity to the target organism anddifferent target genomes. For instance,
more complex communities can be simulated in the training step by including a higher
number of different genomes in the training datasets (200 genomes by default) and/or with
different species abundance distributions, e.g., power law as opposed to equal abundances
(default setting). We have also found that training datasets with 200 genomes work well for
most natural communities of medium-to-high complexity while increasing the number
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of genomes only marginally increased the specificity or sensitivity of imGLAD (Figs. S5
& S6), in general, especially given the extra computational time required. Specifically,
our assessment showed that if the richness of the targeted microbial community (i.e.,
number of 95% ANI defined species or clusters) is within one order of magnitude of the
number of genomes used in the training (i.e., one through 2,000 species, for 200 genomes
in the training datasets), the estimated imGLAD models are robust. Hence, the default
number of genomes (n= 200) should work for most microbial communities, and smaller
number of genomes could be used for less complex communities (e.g., n= 100). The
choice of which genomes to use in the training dataset, in addition to just the number of
genomes, is apparently also very important for imGLAD’s accuracy, e.g., inclusion or not
of close relatives as mentioned above (e.g., Fig. 5). Analyzing the target metagenome with
profiling tools such as MetaPhlAn and MyTaxa (Luo, Rodriguez & Konstantinidis, 2014a;
Truong et al., 2015) in advance can provide the end user with pertinent information on the
taxonomic composition of the target community. This information can guide the selection
of the genomes used for the training datasets so that close relatives, when present in the
metagenome, can be included for more robust results (e.g., Fig. 5).

We also tested the effect of the size of the training datasets (i.e., library size), in the
range of 100 to 1,000,000 reads per dataset, on imGLAD’s limit of detection (defined at
the p value = 0.05 level as described above). As expected, larger training sets increased
the limit of detection because the number of reads recruited by the target genome in such
negative datasets (i.e., spurious matches or matches for poor phylogenetic marker genes)
increased. However, we found that the increase was only minor overall and, in fact, leveled
off around 0.03 sequencing breadth (3%) for 100,000–1,000,000 reads/dataset (Fig. S7).
Therefore, the default setting for training dataset (1,000,000 reads) should be robust for
most applications. Additionally, we evaluated the accuracy of imGLAD detection calls
using the receiver operating characteristic (ROC) curves to measure positive rates and
false negative rates over different sequencing breadth. It is important to note that, because
the separation of the positive and negative datasets is very sharp (e.g., Fig. 2), the ROC
curves were almost perfect for all cases where close relatives of 98% or less ANI to the
target, or no close relatives, were present in the sample. In the datasets with close relative
showing 98–99% ANI to the target being present, we found some overlap of the positive
and negative datasets (Fig. S8), consistent with the results reported above for increasingly
more challenging detection with relatives in the 98.5–100% ANI range.

The decreasing costs of sequencing as well as technological improvements in sequencing
throughput and read length make it possible to use metagenomics to track specific
bacterial populations in time series data or monitor the presence of pathogens in clinical
or environmental samples. As the number of studies with a focus on metagenomic datasets
continue to increase, the need for fast, reliable and flexible bioinformatics analysis tools
to detect and characterize target populations will also continue to grow, particularly in
cases where isolation is not possible or is expensive. imGLAD represents an effective way
to accomplish this objective and to robustly evaluate the limitations of the underlying
sequencing technology or effort. imGLAD’s default settings should work for most target
microbial communities and genomes, and the results presented here represent a guide for
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further optimization depending on the specific goals of the study and the samples analyzed.
Therefore, we anticipate that imGLAD will find applications across the fields of clinical
and environmental microbiology.
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