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Abstract -- In this paper, a Distributed Time-Delay Neural Network (DTDNN) algorithm is used to 
control the Power System Stabilizer (PSS) parameters to find the reliable conditions. The proposed 
DTDNN algorithm apply tapped delay line memory to set the PSS. In this study, DTDNN consists of a 
DTDNN-identifier and a DTDNN-controller. The performance of the system with DTDNN-PSS 
controller is compared with a Recurrent Neural Network PSS (RNN-PSS) and Conventional PSS (C-
PSS). The results show the effectiveness of DTDNN-PSS design, and superior robust performance for 
enhancement power system stability compared to other with different cases. 
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INTRODUCTION 

Power systems are complex multi-
component dynamic systems in which the system 
characteristics fluctuate with varying loads and 
varying generation schedules. These power 
systems suffer by low-frequency oscillations on 
sudden changes in load or occurrence of fault. 
The transfer of bulk power across weak 
transmission lines is hindered due to continuous 
persistence of such a low-frequency oscillation 
(0.2–3.0 Hz) (Muammar et al., 2018; Rahayu, 
Sambariya & Prasad, 2015). 

In early 1960s, the fast acting, high-gain 
automatic voltage regulators (AVRs) were 
applied to the generator excitation system which 
in-turn invites the problem of low frequency 
electromechanical oscillations in the power 
system. To reduce the low-frequency oscillations, 
the PSS adds a stabilizing signal to AVR that 
modulates the generator excitation to damping 
electrical torque component in phase with rotor 
speed deviation, which increases the generator 
damping.  

The uniformly adopted type of PSS is 
known as conventional PSS (CPSS), which 
consists with the lead–lag-type components. In 
early phase of optimization, CPSS parameters 
have been tuned using gradient based 
optimization technique. It requires the 
computation of sensitivity and eigenvectors at the 
end iteration, which resulted with heavy 
computational burden and slow convergence rate 
(Sambariya, Gupta & Prasad, 2016).  The CPSS 
suffers with some limitations as (a) these are 
designed off-line, therefore, requires re-tuning 
during commissioning, (b) these are tuned for 
one operating condition, therefore, may not 

perform properly for varying operating conditions, 
and (c) because of changing conditions and 
configuration of a power system, they require 
retuning for good performance, regularly 
(Sambariya & Prasad, 2015). 

CPSS are the fixed parameter controllers, 
designed over a nominal operating point to get 
desired performance at this point as well expect 
over a wide range of operating conditions and 
varying system conditions (Sambariya ,2015).. 

In case of adaptive PSS, with poor 
initialization, the performance during learning 
phase is not satisfactory. Continuity of the 
objective function is a prerequisite for gradient 
algorithm used in such applications. As 
alternative control theories such as the variable 
structure, the adaptive and linear optimal control 
theory has been used to design Power System 

Stabilizers with improved performance (Bhati & 

Gupta, 2013). 
The rapid development of power systems 

and increasingly diverse problems, demands a 
real-time settlement. Therefore, this paper 
proposes the design of power system stabilizers 
(PSS) based on Distributed Time-Delay Neural 
Network (DTDNN) that can respond to changes 
in system performance directly. In this study 
DTDNN PSS was applied on a single machine 
system. The application of DTDNN PSS on a 
single machine system is emphasized on DTDNN 
PSS performance against low frequency 
oscillations and improved performance of system. 

 
METHOD 

Artificial neural networks are modeled after 
the computational principles of brain, with the 
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specific aim of understanding and replicating 
human activities (Gruning & Sander, 2014).  

Artificial neural networks have been used 
in many applications such as sales forecasting, 
industrial process control, customer research, 
medical application and risk management 

(Ozerdm, Olaniyi, & Oyedotun, 2017). 
Artificial Neural Networks are nonlinear 

models motivated by the physiological 
architecture of the nervous system which can be 
trained to learn approximate functions of complex 
non-linear systems that usually depend on a 
large number of inputs (Hagan, Demuth, Beale & 
Jesu´s,2014).  

Artificial neural networks are typically 
organized in layers: the input layer, hidden layer 
and output layer, which consist of several 
neurons. Each neuron in a layer is connected to 
adjacent layers by weights. Data are presented to 
the network via the input layer, which are 
multiplied by the weights, and then go through 
the activation function of the neuron in one or 
more hidden layers. The function in the output 
layer computes the output of the artificial neuron 
(Baliyan, Gaurav & Mishra, 2015).  

Back-propagation (BP) algorithm is the 
most frequently used, effective, and easy way to 
learn model for multilayered networks. It is a 
supervised learning technique which is based on 
the gradient descent method that attempts to 
minimize the error of the network by moving 
down the gradient of the error curve. Levenberg-
Marquardt algorithm is one of the fastest back-
propagation algorithms which works well for 
training small and medium sized networks.  

But static (feed forward) networks have no 
feedback elements and contain no delays; the 
output is calculated directly from the input 
through feed forward connections.  

 The weakness of the backpropagation 
neural network is the limited function of static 
training and output depends only on current input 
conditions, so it can not afford. If there is any 
change of input data pattern. 

 According to Ibrahim, (2010), DTDNN 
provides a simple and efficient way of classifying 
data sets. To process data for classification we 
believe that DTDNN are best suited due to their 
high speed and fast conversion rates as 
compared with other learning techniques. Also, 
DTDNN preserves topological mappings between 
representations, a feature which is desired when 
classifying normal v.s. intruder behavior for 
network data.  

 That is, the relationships between 
senders, receivers and the protocols them, which 
are the primary features that we use, are 
preserved by the mapping. A DTDNN is it 

dynamic networks are generally more powerful 
than static networks because dynamic networks 
have memory, they can be trained to learn 
sequential or time varying patterns. In dynamic 
networks, the output depends not only on the 
current input to the network, but also on the 
current or previous inputs, outputs, or states of 
the network (Ibrahim,2010). 

Each layer in the Distributed Time-Delay 
Artificial Neural Network is made up of the 
following parts:  
• Set of weight matrices that come into that layer 

(which can connect from other layers or from 
external inputs), associated weight function rule 
used to combine the weight matrix with its 

• input (normally standard matrix multiplication), 
and associated tapped delay line.  

• Bias vector  
• Net input function rule that is used to combine 

the outputs of the various weight functions with 
the bias to produce the net input (normally a 
summing junction)  

• Transfer function 
The network has inputs that are connected 

to special weights, called input weights, and 
denoted by IWij, where j denotes the number of 
the input vector that enters the weight, and i 
denotes the number of the layer to which the 
weight is connected. The weights connecting one 
layer to another are called layer weights and are 
denoted by LWij, where j denotes the number of 
the layer coming into the weight and i denotes 
the number of the layer at the output of the 
weight (Ibrahim, 2010). 

A Distributed Time-Delay Artificial Neural 
Network structure is used to reduce overshoot of 
speed. The 703 features from SMIB datasets are 
used for input data. The DTDNN processes those 
given data to recognize and reduce overshoot of 
speed oscillation. Fig. 1 illustrates the 
architecture and parameters used in simulation 
process. The following are Proposed Distributed 
Time Delay Neural Network equations: 
Layer 1 


=

+−=
j

i

ji bdtpWta
1
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Layer 2 
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Symbol j and k are indicated j and k neuron. 
Where Wji is the network weighted input. In layer 
1, p1(t - d1) inputs at the time (t - d1) a1(t - d2). is 
the output from the hidden node; Wkj and (t - d2). 
are the weight and delay connecting in the layer 
2. a2(t) is the output of the kth neuron in the lth 
layer at the (t - d2). 
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Figure 1. Proposed Distributed Time Delay Neural Network Structure 

 
RESULTS AND DISCUSSION 

In this paper, the power system under 
study composes of the single machine connected 
to an infinite bus (SMIB) through a transmission 
line. It is mentioned The Heffron-Phillips block 
diagram for the mathematic model of the SMIB 
power system as shown in Fig. 2. 

Stability analysis requires the modelling of 
some important power system components such 
as   excitation system, synchronous generator 
and AC network.  The current design makes use 
of IEEE Model 1.0 to correspond to the 
synchronous generator having high gain and 
constant static exciter of low time. 

 

 

Figure 2. Heffron–Phillips block diagram for SMIB power system (Chaib L, Choucha. A. & Arif. A. 
2017). 
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The SMIB criterion linear model, known as 
Heffron-Phillips model (also called K-constant 
model) can be achieved by linearizing the system 
equations around operating conditions.  
Conversion of the machine equations present in 
Park reference frame to the Kron reference frame 
rotating synchronously can establish an interface 
of synchronous machine with the external 
network. 

The performance of system must know 
before analyze the system. The Flowchart is 
shown in Fig. 3. Data sample take from 
simulation without and with C-PSS. When 
Training and develop model had finished. The 
DTDNN-PSS has applied to SMIB to reduce 
speed overshoot.  

 

 

 

Figure 3. Flowchart Diagram of Design DTDNN-PSS 
 
The DTDNN reads the output of the power 

system and attempts to duplicate the waveform 
of the output power system by comparing the 
output of the power system with the DTDNN 
output. If there is deviation error, the error signal 
is sent back to DTDNN for the learning process 
to minimize error.  

DTDNN has two inputs Δω and Δu. Δω is 
the output of the plant and Δu is the output of 
PSS, as the initial input DTDNN uses the output 
from conventional PSS for the trainning process. 
Mathematically can be written: 

],[)( utXi =   (3) 

Where Δω taken from the rated value of the 
last synchronous machine which is censored with 

a constant time interval of 100 ms. And, Δu is is 

taken from the last control that has been done 
using conventional pss. (C-PSS simulation). T is 
the sampling period, ω is the deviation of the 
angular velocity against the sync speed in rad / s. 
u is the output of the controller. The network 
structure used in this training consists of three 
layers, namely the input layer, the hidden layer 
and the output layer. When the mapping process 
has done, DTDNN PSS is installed to the system. 
The model of DTDNN P S is shown in Fig. 4. 
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Figure. 4. Model DTDNN PSS 

 
The training data to damp the speed 

oscillation is the plant output data in the form of 
speed with variation of the distrubance between 
0.5 and 1.0 pu. The number of neurons used is 5.  

In this study loading is assumed to be: P = 1.0 
pu; Vt = 1.0 pu; Pf = 0.85 pu, and P = 0.5 pu; Vt = 
1.0 pu; Pf = 0.85 pu. The disruption of 1 p.u is 
injected into the plant, and an output for the plant 
as shown in Fig. 5 is obtained. 

 

 
Figure 5. Speed in the nominal operating condition following disturbance 1 (p.u) with conventional 

PSS, RNN PSS and DTDNN PSS 
 

 
Figure 6. Speed in the nominal operating condition following disturbance 0.5 (p.u) ) with conventional 

PSS, RNN PSS and DTDNN PSS 
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DTDNN PSS can decrease the overshoot 

speed to 0.6 p.u from its original state of 1.528 
p.u. It’s overshoot speed also better than RNN 
PSS which can only decrease by 0.7 p.u. The 
conventional PSS can only decrease the 
overshoot speed by 1.15 pu. 

In Fig. 6, DTDNN PSS can decrease the 
overshoot speed to 0.45 p.u from its original state 
of 0.73 p.u.  The overshoot speed also better 
than conventional PSS which can only decrease 
the overshoot speed by 0.576 p.u. 

 

CONCLUSION 
In this paper, we presented DTDNN PSS 

implementations for the Single Machine. DTDNN 
PSS is able to improve the performance of the 
Single Machine system in which DTDNN PSS is 
installed.  

The comparison between RNN-PSS and 
DTDNN-PSS shows that DTDNN-PSS has better 
damping results at load 1 p.u. DTDNN-PSS can 
reduce the overshoot to 0.6 p.u at load 1 p.u load 
But RNN-PSS has better damping result at load 
0.5 p.u. RNN-PSS can reduce overshoot to 0.34 
p.u. The training time and iteration of DTDNN has 
better than RNN 

The success of the design of Distributed 
Time-Delay Neural Network power system 
stabilizers (DTDNN PSS) is highly dependent on 
the data and the correct learning process. 
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