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Galectins are potent regulators of cell adhesion, growth and apoptosis in diverse

cell types, including chondrocytes and synovial fibroblasts. Elevations in synovial fluid

galectin-3 have been observed in rheumatoid arthritis, juvenile idiopathic arthritis and

experimental inflammatory arthritis in animal models, whereas galectin-1 is thought to

be protective. Less is known about galectins-1 and-3 in osteoarthritis (OA). Therefore,

the purpose of this study was: (1) to determine whether galectin-1 and-3 synovial fluid

concentrations and synovial membrane and cartilage histochemical staining were altered

following osteochondral injury in an experimental equine osteoarthritis (OA) model and

(2) to measure galectin-1 and-3 mRNA expression and synovial fluid concentrations in

naturally occurring equine carpal OA. Synovial fluid galectin-1 and-3 concentrations were

quantified using custom ELISAs in two research horse cohorts undergoing experimental

OA induction (n = 5 and 4) and in a cohort of horses with naturally occurring carpal

OA (n = 57). Galectin mRNA expression in synovial membrane and cartilage tissue

obtained from carpal joints of horses with naturally occurring OA was measured using

RT-qPCR, and galectin immunostaining was assessed in synovial membrane and

osteochondral tissues in the experimental model (n = 5). Synovial fluid galectin-1 and-3

concentrations increased following experimental carpal osteochondral fragmentation.

Cartilage galectin-1 mRNA expression increased with OA severity in naturally occurring

disease. The superficial zone of healthy articular cartilage stained intensely for galectin-3

in sham-operated joints, whereas galectin-1 staining was nearly absent. Chondrocyte

galectin-1 and-3 immunoreactivity increased following cartilage injury, particularly in

galectin-1 positive chondrones. Galectins-1 and-3 are present in healthy equine synovial

fluid and increase following post-traumatic OA. Healthy superficial zone chondrocytes

express galectin-3, whereas galectin-1 chondrocyte staining is limited predominantly

to chondrones and injured cartilage. Further work is needed to clarify the functions of

galectins-1 and-3 in healthy and OA joints.
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INTRODUCTION

Galectins are potent regulators of cell adhesion, growth, and
apoptosis in diverse tissues and organs, including synovial
joints. Galectin-1 and galectin-3 are expressed in synovial

fibroblasts, articular chondrocytes, and hypertrophic growth
plate chondrocytes (1–3). Synovial fibroblasts express higher
levels of galectin-1 and-3 as compared to articular chondrocytes
(4), and intracellular galectin-3 promotes chondrocyte survival in
both articular and hypertrophic chondrocytes (5, 6).

Associations between increased galectin-3 in synovial fluid,
synovial tissues, and sera of human patients with inflammatory
arthritis have been observed in several studies (7–9), and strong
expression of galectin-3 at sites of joint destruction has led
authors to suggest that galectin-3 plays a role in rheumatoid

arthritis (RA) pathogenesis (10). Some authors have even
proposed that galectin-3 may be a potential therapeutic target
for RA (11, 12). Conversely, decreased galectin-1 concentrations
and increased anti-Gal-1 antibodies have been detected in
RA patients (13). Galectin-1 expression is downregulated and
galectin-3 expression is upregulated in synovial tissue from
patients with juvenile idiopathic arthritis (8). Most rodent
experimental models of inflammatory arthritis suggest that
galectin-1 is protective (14–17), whereas galectin-3 promotes
joint inflammation (16, 18). For example, galectin-1 knockout
(KO) mice develop earlier onset and more severe collagen-
induced arthritis (14), and galectin-3 KO mice have reduced
inflammation and bone erosion in response to antigen-induced
arthritis as compared to wild-type mice (18). In addition, while
both recombinant protein and genetic delivery of galectin-1 are
protective in rodent models of collagen-induced arthritis (15–
17), administration of galectin-3 shRNA protects rodents from
collagen-induced arthritis (16). Classification of galectin-3 as a
driver or inhibitor of inflammatory arthritis is likely affected by
its intracellular or extracellular localization (6, 19), with rodent
knockout models emphasizing intracellular galectin signaling.

The role of galectins in osteoarthritis (OA) and post-traumatic
osteoarthritis (PTOA) is not well understood. What little is
known about galectin-1 and-3 synovial fluid levels or synovial
membrane localization in human OA is derived from studies
where OA patients were used as a comparison group to RA
patients (7). Galectin-1 and-3 levels have not been evaluated in
synovial fluid from healthy human patients, with the exception of
a “healthy control” group in two studies in which synovial fluid
was obtained pre-operatively from patients with knee trauma
or meniscal tears (7, 20). Lectin/galectin staining in human
OA cartilage has revealed increased galectin-1 and galectin-3
chondrocyte immunostaining at sites of cartilage damage (21–
23), with increasing galectin-1 positivity correlated with cartilage
Mankin scores (21, 23). Galectin-1 and-3 mRNA was expressed
in human OA chondrocytes at higher levels than galectins-
2, 4, 7, 8, and 9; however, levels of galectin expression in
healthy chondrocytes were not studied (23). Investigation of in
vitro signaling pathways in human OA chondrocytes revealed
that both galectins-1 and-3 promote an inflammatory gene
signature, at least in part through their role as upstream NF-
κB signaling effectors (21, 24). On the other hand, galectin-3

KO mice demonstrate increased cartilage damage in a mono-
iodoacetate injection model of OA (6), and galectin-3 KO mice
also demonstrate increased bone resorption and accelerated
trabecular bone loss as compared to wild-type mice (25),
suggesting a protective role for galectin-3 in OA.

To the authors’ knowledge, galectins have only been
evaluated in animal models of inflammatory arthritis and
not in PTOA models. Therefore, critical gaps in knowledge
include understanding: (1) how synovial fluid galectin-1 and-3
concentrations change over time following joint injury, (2) how
galectin-1 and-3mRNA expression and synovial fluid levels differ
in healthy as compared to OA joints, and (3) whether galectin-
1 and-3 immunostaining differs between healthy and OA
cartilage in PTOA. Horses are athletic animals that commonly
develop PTOA in the course of their performance careers (26).
Synovitis, cartilage impact injury, osteochondral fragmentation
and subchondral bone injury are common in the high-motion
carpal joints (27). Because PTOA in horses can better recapitulate
certain aspects of human PTOA pathogenesis than chemically
induced models in rodents (28), we chose to evaluate galectins-
1 and-3 in the equine model. Synovial fluid and articular
tissues were obtained from horses with naturally occurring OA,
and the carpal osteochondral fragment high-speed treadmill
exercise model of OA was used to evaluate serial changes in
synovial fluid galectins and cartilage immunohistochemistry.
Biochemical, histologic, and inflammatory changes are well-
characterized in the equine carpal osteochondral fragment model
of OA (27, 29, 30), and this model is commonly used to test
the therapeutic effects of intra-articular or systemic OA therapies
(27, 31).

Therefore, the objectives of this study were to: (1) compare
galectin-1 and-3 mRNA expression and synovial fluid
concentrations in healthy and OA joint tissues from horses
with naturally occurring OA, and (2) to determine whether
galectin-1 and-3 serial synovial fluid concentrations and galectin
immunostaining were altered following osteochondral injury in
an experimental equine OA model.

MATERIALS AND METHODS

Ethics Statement
All experimental protocols were approved by the university
Institutional Animal Care and Use Committee (protocol
numbers: 2011-0027 and 2012-0097). All sample collection was
performed following humane euthanasia of horses using sodium
pentobarbital or obtained from discarded tissues following
arthroscopic surgery of horses with informed consent from
owners.

Equine Carpal Osteochondral Fragment
Model
Synovial fluid samples collected from two distinct equine
experimental cohorts (n = 5 and n = 4) undergoing carpal
fragmentation were used to measure serial galectin-1 and-3
concentrations. Synovial membrane biopsies and osteochondral
tissues were collected from the first cohort (n = 5) for
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immunohistochemistry following euthanasia on day 70 post-
fragmentation. Analysis of synovial fluid lubricin concentrations
and lubricin immunostaining has previously been reported in
the first cohort (32). Horses in both cohorts were subjected to
carpal osteochondral fragmentation in one randomly assigned
joint, while the opposite joint served as a sham-operated
control. Two weeks post-operatively, horses commenced a high-
speed treadmill exercise program 5 times weekly, continuing
throughout the study duration of either 70 or 75 days. Five
Thoroughbred horses (n = 3 females and 2 castrated males),
aged 2–6 years old, were enrolled in the first cohort, and four
Thoroughbred horses (n= 2 females and 2 castrated males), aged
2–6 years old, were enrolled in the second cohort. Experimental
protocols were roughly similar between the two groups; however,
the timing of synovial fluid collection and study duration differed
slightly. All horses were housed in 3.65 × 3.65m box stalls and
engaged in similar treadmill exercise programs, consisting of
walking (5 km/h) for 5min, followed by trotting (16–18 km/h) for
2min, galloping (28–32 km/h) for 2min, and ending with 2min
of trotting (16–19 km/h) exercise performed in the morning.
Synovial fluid aspirates were processed similarly, and synovial
fluid supernatants were stored in aliquots at −80◦C following
centrifugation at 3,000x g for 5min to pellet any cellular debris.
Synovial fluid samples were collected and banked from the
first cohort approximately 2 years prior to the second cohort,
and all samples were frozen at −80◦C for long-term storage.
Synovial fluid samples from the first cohort were subjected to up
to 3 freeze-thaw cycles prior to ELISA measurements, whereas
samples from the second cohort were only subjected to 1 freeze-
thaw cycle.

Naturally Occurring Equine OA
Synovial fluid and discarded tissues, including synovial
membrane and osteochondral tissues, were harvested where
available from the antebrachialcarpal (ACJ) and middle carpal
joints (MCJ) of horses undergoing arthroscopic surgery at
the Cornell University Equine Hospital, with informed owner
consent. Each joint was assessed as healthy (grade 0) or assigned
an osteoarthritis (OA) severity score of mild (1), moderate (2) or
severe (3) on the basis of radiographic evidence of osteophytes,
enthesiophytes, osteoproliferation, joint space narrowing or
chronic fracture lines as previously described (33). Synovial
fluid and tissues were also collected from horses donated for
research purposes, and joint scores were assessed on the basis of
radiographic and/or gross dissection findings. Thoroughbred,
Standardbred or Quarter Horse females (n = 34), intact males
(n = 6), or castrated males (n = 17) ranging in age from 2 to 13
years were included. A total of 54 and 52 synovial fluid samples
were quantified using galectin-1 and-3 ELISAs, and 57 synovial
membrane and 34 cartilage tissue samples were analyzed via
RT-qPCR.

Galectin-1 and-3 Synovial Fluid ELISA
Equine galectin-1 (GenBank ID: KY264050.1) and galectin-
3 (GenBank ID: KY264051.1) were cloned, recombinantly
expressed in E. coli, and purified using lactosyl sepharose
chromatography and FPLC gel filtration as previously reported

(34). Galectin ELISA antibody reactivity to recombinant equine
galectin standards has previously been described (4). Both
the goat anti-mouse Gal-1 antibody (AF1245; R&D Systems,
Minneapolis, MN) and the goat anti-human Gal-3 antibody (sc-
19280; Santa Cruz Biotechnology, Dallas, TX) were biotinylated
using the Mix-n-Stain biotin antibody labeling kit (Biotium Inc.,
Fremont, CA), and biotinylated goat anti-mouse Gal-3 antibody
(BAF1197, R&D Systems, Minneapolis, MN) was obtained from
the manufacturer. Synovial fluid samples were resolved on
12% SDS-PAGE gels and probed with the biotinylated primary
antibodies to confirm antibody reactivity to equine synovial fluid
galectins. All 3 biotinylated primary antibodies were used at
a concentration of 0.15µg/mL in blocking buffer (3% BSA in
0.1% PBS-Tween for anti-mouse Gal-1 and anti-mouse Gal-3
antibodies; 1% Gelatin in 0.1% PBS-Tween for anti-human Gal-
3). Streptavidin-HRP was applied at 4 ng/mL in 0.1% PBS-Tween
for all blots.

Custom galectin-1 competitive inhibition ELISAs (4) were
performed on banked equine synovial fluid samples from
two cohorts of horses subjected to carpal osteochondral
fragmentation. Briefly, 96-well high-binding plates (Corning Inc.,
Corning, NY) were coated with 1µg/mL of goat anti-mouse
Gal-1 capture antibody in sodium carbonate buffer, pH 9.6 at
4◦C. After 3 rinses in 0.1% PBS-Tween, protein free blocking
buffer (Thermo Fisher Scientific, Rockford, IL) was added for 1 h.
Unlabeled recombinant equine galectin-1 standards (2µg/mL to
15.6 ng/mL) were diluted in 200 ng/mL biotinylated recombinant
equine galectin-1 in 0.1% PBS-Tween. Synovial fluid samples
pre-diluted 1:50 in PBS were further diluted 1:1, for a final
dilution of 1:100, in 200 ng/mL of biotinylated recombinant
equine galectin-1. Blocking buffer was aspirated, and 100 µL
of recombinant equine galectin-1 standards or synovial fluid
samples were added to the plate in duplicate and incubated for
1 h at RT. Plates were rinsed in 0.1% PBS-Tween, incubated
with 100 µL of streptavidin HRP for 30min. TMB reagent was
added for 10min prior to halting the reaction with 1N H2SO4.
Absorbance was measured at 450 nm with 540 nm background
subtraction.

For the custom galectin-3 sandwich ELISA, 96-well plates
were coated with 2µg/mL of goat anti-human Gal-3 capture
antibody (sc-19280) using similar methodology as for Gal-1.
After rinsing in 0.1% PBS-Tween, protein-free blocking buffer
was added for 1 h, followed by serial dilutions of recombinant
equine galectin-3 standards (400 ng/mL to 1.6 ng/mL) in
duplicate. Synovial fluid samples pre-diluted 1:50 in PBS were
further diluted 1:1 in 1% BSA in PBS, for a final dilution of 1:100,
and added in duplicate to the plate. Following 1 h incubation at
RT, the plate was rinsed in 0.1% PBS-Tween, and biotinylated
goat anti-mouse Gal-3 pAb (BAF1197) was added at 200 ng/mL
for 1 h. Following rinsing, 100 µL of streptavidin HRP was added
for 30min prior to adding 1N H2SO4. Absorbance was measured
at 450 nm with 540 nm background subtraction.

Galectin-1 and-3 RT-qPCR
Synovial membrane and cartilage tissues were snap-frozen in
liquid nitrogen and stored at −80◦C for up to 3 years. The
frozen tissues were crushed and ground into fine powder in
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liquid nitrogen with a mortar and pestle prior to isolation
of RNA. Total RNA was extracted using the E.Z.N.A Tissue
RNA Kit (Omega BioTek, Inc., Norcross, GA) for synovial
membrane or the RNeasy Lipid Tissue Mini Kit (QIAGEN
Sciences Inc., Germantown, MD) for cartilage. DNase I was
added during RNA extraction to remove genomic DNA. RNA
purity and concentration were assessed with a multimode
plate reader (Tecan Spark R© 10M, Tecan, Austria) with a
NanoQuant PlateTM. Expression of galectin-1 and galectin-3
mRNA was quantified using the Taqman RNA-to-CT one-step
kit (Applied Biosystems, Foster City, CA) and the ABI PRISM
7900HT Sequence Detection System (Applied Biosystems, Foster
City, CA). As previously reported, Primer Express Software
Version 2.0 (Applied Biosystems, Foster City, CA) was used
to design forward and reverse primers and probes for equine
galectins-1 and-3 (4). Primer and probe sequences are listed
in Table 1. Equal amounts (10 ng per reaction) of total RNA
were added in a 20 µl reaction volume for all samples. The
RT-qPCR reactions were all performed in duplicate. The levels
of gene expression were calculated using the standard curves
generated with serial dilutions of E. coli-expressed equine Gal-
1 and Gal-3 as standards. All data were normalized with the
housekeeping gene equine 18S rRNA. A qPCR checklist is
provided to document the technical aspects of qPCR Protocols
(Supplementary Material).

Galectin-1 and-3 Immunohistochemistry in
Experimental Equine OA
Synovial membrane and osteochondral tissue sections from
the radial carpal bone and opposing third carpal bone were
stained for galectin-1 and galectin-3 using previously reported
techniques (34). Briefly, osteochondral sections were fixed in
4% paraformaldehyde, de-calcified in 10% EDTA for 3 weeks
and embedded in paraffin, while synovial membrane sections
were embedded in paraffin immediately after fixation. Following
deparaffinization, sections were treated with 1% hyaluronidase
(Sigma-Aldrich, St. Louis, MO) in 20mM sodium acetate
for 30min at 37◦C, followed by 3% hydrogen peroxide for
an additional 30min. Blocking in normal rabbit serum was
performed, followed by incubation with a goat anti-mouse
galectin-1 antibody (AF1245; R&D) or goat anti-human galectin-
3 antibody (sc-19280; Santa Cruz) at 1:100 dilution for 1 h
at room temperature. After washing, sections were incubated
with a biotinylated rabbit anti-goat IgG (Vectastain, Vector

Labs) and immunodetected with the Vectastain ABC Kit and
ImmPACT DAB reagent (Vector Labs). Negative controls were
performed by omission of primary antibody. Sections were rinsed
in PBS, counterstained with Harris hematoxylin, coverslipped
and imaged with a 20x objective using a ScanScope (ScanScope
CS0, Aperio). Images were saved as.tif files in Aperio’s Image
Scope software, cropped in Adobe Photoshop CC and formatted
in Adobe Illustrator CC.

Synovial membrane tissue sections were imaged but not
quantified due to the presence of strong galectin-1 and galectin-
3 immunostaining in all sections. Osteochondral sections from
the radial carpal bone and third carpal bone were scored
independently by two observers. Although observers were
blinded to individual animal identity, blinding to treatment
group (sham-operated or OA) was not possible due to the
presence of obviously injured articular cartilage within some
osteochondral sections. Where possible, separate scores were
assessed for injured cartilage regions vs. healthy cartilage regions
within the same section. Chondrocytes within each cartilage zone
(superficial, middle and deep) were assigned an immunostaining
intensity score for both galectin-1 and galectin-3 where: 0–none,
1–weak, 2–moderate, and 3–strong. In addition, the percentage
of galectin-1-positive chondrocytes was calculated for the entire
articular cartilage section, including superficial, middle, and deep
zones combined.

Statistical Analysis
To assess the effect of treatment (sham vs. OA) and time (day)
on galectin concentrations in synovial fluid, galectin ELISA
data were first tested for normality using a Shapiro-Wilk W
test and were found to be right skewed. Log transformation
was performed to achieve normality. In order to account for
the hierarchical nature of the data in the experimental models,
a mixed linear model was employed because each horse was
repeatedly measured on each limb and each limb repeatedly
over days. The fixed effects in the model included treatment
(sham vs. OA), day and a treatment∗day interaction term, and
random effects included horse and individual limb nested within
horse to account for the non-independence of the observations.
Predefined post hoc comparisons of specific contrasts for each
time point were performed to assess differences between sham
and OA joints, with a Bonferroni correction applied based on the
number of multiple comparisons to correct for the false discovery
rate. Model diagnostics were performed and showed normality
and homoscedasticity of residuals. Spearman correlation analysis

TABLE 1 | Genes, primers, and probes for TaqMan RT-qPCR.

Genes Accession

number

Primer sequences Probe sequences Amplicon

size (bp)

EqGal-1 KY264050.1 For: CAAGGCAGACCTGACCATCA

Rev: TGACGGCCTCCAGGTTGA

6-FAM/CTGCCGGAT/ZEN/GGCTACTCGT

TCAAGTTC/IABkFQ

77

EqGal-3 KY264051.1 For: TAAATTTCAACAGAGGGCATGATG

Rev: CAATGACTCTCCTGTTGTTCTCGTT

6-FAM/TGCCTTCCA/ZEN/CTTTAACCCG

CGCTT/IABkFQ

75

Eq 18S

rRNA

NR_046271.1 For: GGCGTCCCCCAACTTCTT

Rev: AGGGCATCACAGACCTGTTATTG

6-Fam/TCGAACGTCTGCCCTATCAACT

TTCGAT/IABkFQ

77
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was performed to determine associations between synovial fluid
galectin-1 and galectin-3 levels and previously published lubricin
ELISA data for the first experimental cohort and for the
naturally occurring OA cases (32). Raw RT-qPCR and ELISA
data from naturally occurring samples were log-transformed to
achieve normality of the data, and data were analyzed using
a one-way ANOVA with Dunnett’s post hoc tests for multiple
comparison correction, designating healthy carpal joints (OA
severity = 0) as the control group. Significance was set at α =

0.05.

Immunohistochemistry scores (0 to 3 scale) were treated
as ordinal categorical outcomes, and weighted kappa statistics
were calculated for inter-observer agreement. Immunostaining
results were assessed using Wilcoxon matched-pairs signed rank
tests due to the small sample size and non-normal distribution
of data. For the percentage of galectin-1 positive chondrocytes
throughout the entire cartilage section, scores were treated as
continuous outcomes and analyzed using Wilcoxon matched-
pairs signed rank tests. All modeling and parametric analyses
were performed using JMP Pro 13 software (SAS; Cary, NC), and

FIGURE 1 | Galectin-1 (A,B) and galectin-3 (C,D) concentrations in equine synovial fluid prior to (day 0) and after arthroscopically-induced osteochondral

fragmentation (OA) or sham operation (Sham). Data are displayed as box-and-whisker plots representing the first and third quartiles, median, and spread of

concentrations for each serial sampling time point. ELISA data in (A,C) were obtained from the same cohort of horses (n = 5), and ELISA data in (B,D) were obtained

from a second cohort of horses (n = 4). Mixed linear model derived P-values for the fixed effect of treatment and day were <0.001 for models A-D, except for D where

day P = 0.32. An interaction between treatment and day was identified for model A (treatment * day P = 0.0007) and C (treatment * day P = 0.03). Note that there is

variation in the date of synovial fluid sampling between the two cohorts. Asterisks denote days where OA galectin concentrations were significantly increased as

compared to Sham, * = P < 0.05 after Bonferroni correction.

FIGURE 2 | Galectin-1 and-3 concentrations in equine synovial fluid obtained from carpal joints of horses with naturally occurring osteoarthritis (OA), classified by

severity as mild (1), moderate (2) or severe (3) and from healthy carpal joints (0). Individual data are shown as scatterplots, in addition to means ± S.E.M. There were

no significant differences in synovial fluid galectin-1 (A) or galectin-3 (B) concentrations between healthy and OA joints.
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non-parametric test statistics, kappa statistics and graphs were
generated using Prism 7 (GraphPad; La Jolla, CA).

RESULTS

Synovial Fluid Galectin Protein
Concentrations
Experimental OA
Synovial fluid galectin-1 and galectin-3 concentrations
increased following carpal osteochondral fragmentation in both
experimental cohorts (Figure 1). In the carpal osteochondral
fragment model, galectin-1 synovial fluid concentrations
increased by up to 4-fold (median: 74.8µg/mL vs. 16.9µg/mL
on day 7), and galectin-3 synovial fluid concentrations increased
by as much as 5-fold in the OA joint as compared to the
sham-operated joint (median: 24.3 ng/mL vs. 4.6 ng/mL on
day 14). Galectin-1 synovial fluid concentrations were most
elevated acutely after injury, whereas elevations in galectin-3
were sustained up to the end of the study duration (day 75) in
one cohort of horses (Figure 1D). Galectin-3 was moderately
correlated with synovial fluid lubricin (ρ = 0.47, P < 0.0001),
whereas galectin-1 was weakly correlated with lubricin (ρ =

0.27, P = 0.007) (32). Galectin-1 and-3 synovial fluid levels were
weakly correlated (ρ = 0.31, P = 0.002).

Naturally Occurring OA
No differences in galectin-1 or galectin-3 concentrations were
detected in healthy joints as compared to joints with naturally

occurring OA (Figure 2). Galectin-1 and galectin-3 synovial fluid
concentrations were weakly correlated (ρ = 0.28, P = 0.04).

mRNA Expression in Naturally Occurring
OA
There were no differences in galectin-1 or galectin-3 mRNA
expression in synovial membrane from healthy and OA joints
(Figures 3A,B). In contrast, galectin-1 mRNA expression was
significantly upregulated in moderate and severe OA cartilage,
with an approximately 12- and 75-fold increase as compared
to healthy cartilage (Figure 3C). Galectin-1 mRNA expression
was minimal in healthy (grade 0) cartilage. Galectin-3 mRNA
levels were greater in severe OA as compared to mild OA
(Figures 3C,D).

Immunolocalization in Experimental OA
Synovial membrane tissue sections stained intensely for
both galectin-1 and galectin-3 (Figure 4), with the most
prominent immunoreaction observed in perivascular and
intimal regions. Consistent with RT-qPCR data, no differences
were noted in galectin synovial membrane immunostaining
between sham-operated and OA joints on day 70 post-
fragmentation. Weighted kappa statistics revealed moderate
inter-observer agreement for both galectin-1 and-3 chondrocyte
immunostaining (0.55 and 0.43, respectively). Safranin O
staining was decreased in areas of partial-thickness cartilage
fibrillation in the osteochondral fragment joint as compared
to the sham-operated joint (Figures 5A–D). Superficial zone

FIGURE 3 | Galectin-1 and-3 copy # per ng of RNA from synovial membrane (A,B) or cartilage (C,D) tissue obtained from healthy carpal joints (0) or carpal joints with

naturally occurring osteoarthritis (1–mild, 2–moderate, 3–severe OA). There were no differences in galectin-1 or-3 mRNA expression in synovial membrane tissue

(A,B). Cartilage galectin-1 mRNA expression increased with OA severity score (C, P = 0.0002), whereas galectin-3 mRNA expression was increased in severe OA

cartilage as compared to mild OA cartilage (D, P = 0.03). Scatterplots are displayed, with bars representing mean ± S.E.M. Differing letters note statistically significant

differences, P < 0.05.
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chondrocytes from healthy articular cartilage stained intensely
for galectin-3 (Figures 5I,J), whereas galectin-1 staining was
nearly absent (Figures 5E,F), consistent with gene expression
data and prior immunostaining results in healthy equine
cartilage (34). Galectin-1 immunostaining was increased in
superficial and middle zone chondrocytes from injured cartilage
(Figures 5G,H, P= 0.02 and 0.03, respectively) and was minimal
to absent in deep zone chondrocytes in all cartilage sections.
The most intense galectin-1 staining was localized to dividing
chondrocytes and chondrocyte clusters (chondrones) within
the superficial zone (Figure 5H, arrow). Chondrocyte galectin-
1 immunoreactivity was significantly increased in cartilage
from the osteochondral fragment joint as compared to the
sham-operated joint (Figure 6).

There were no differences in galectin-3 chondrocyte
immunostaining between healthy and injured cartilage.
Superficial zone chondrocytes demonstrated intense galectin-3
expression in both healthy and injured cartilage (Figures 5I–L).

DISCUSSION

Galectins-1 and-3 are present in healthy equine synovial fluid
and synovial tissue but increase in response to osteochondral
injury. In prior work, we have demonstrated greater galectin-1

and-3 mRNA expression in healthy equine synovial membrane
as compared to healthy articular cartilage (4), suggesting
that the synovium may be the predominant source of
synovial fluid galectins. Synovial fluid galectins-1 and-3 were
elevated in experimental OA, with a transient increase in
galectin-1 and a sustained increase in galectin-3. Cartilage
galectin-1 mRNA expression increased with increasing OA
severity, and galectin-1 immunostaining was increased in
superficial and middle zone chondrocytes in injured cartilage.
Whereas, galectin-3 was constitutively produced by superficial
zone chondrocytes, galectin-1 immunostaining was nearly
absent in healthy articular cartilage. Thus, although both
galectin-1 and-3 synovial fluid concentrations are increased in
joint injury, galectin-1 upregulation in injured chondrocytes
appears to be a specific response to cartilage injury in
horses.

Synovial Fluid Galectin Protein
Concentrations
Galectin-1 and-3 synovial fluid concentrations were increased
in injured as compared to sham-operated joints. To our
knowledge, this is the first study to profile serial galectin
synovial fluid measurements prior to and after joint injury,
revealing a transient elevation in galectin-1 after injury and a

FIGURE 4 | Synovial membrane galectin-1 and galectin-3 immunostaining reveals constitutive galectin expression in both sham-operated (A,D) and osteochondral

fragment joints (B,E) from a representative horse 70 days post-injury. Galectin-1 and-3 staining is most prominent in perivascular regions. No differences were

observed in galectin-1 or-3 staining between sham-operated and osteochondral fragment joints. Primary antibodies were omitted in (C,F), revealing absence of

antigen-independent staining. Scale bar: 200µm.
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FIGURE 5 | Safranin O/Fast Green (A–D), galectin-1 (E–H), and galectin-3 (I–L) immunostaining of third carpal bone cartilage from sham-operated and

osteochondral fragment joints from a representative horse 70 days post-injury. Superficial zone chondrocytes and some middle zone chondrocytes stain positively for

galectin-3 (I,J) but not galectin-1 (E,F) in sham-operated joints. Cartilage fibrillation, proteoglycan loss and chondrone (arrow) formation is observed in cartilage from

the osteochondral fragment joint (C,D). Chondrones stain positively for galectin-1 (G,H-arrow) and galectin-3 (K,L-arrow).

more sustained elevation in galectin-3. This longitudinal data
suggests that galectins are increased in response to traumatic
joint injury. Although these observations were supported by
two distinct equine experimental cohorts, differences in synovial
fluid galectin levels were not observed in horses with naturally
occurring carpal OA. Because the OA severity grading scale
for naturally occurring carpal injury involves assessment of
radiographic changes, which lag behind inflammatory changes,
and because the OA severity score doesn’t account for
the duration of injury prior to presentation, we may be
missing more acute, transient elevations in galectins in horses
at the time that they present to the hospital for surgical
treatment.

mRNA Expression
We observed increased galectin-1 mRNA expression and
immunostaining in injured equine cartilage. Interestingly,
galectin-1 cartilage mRNA expression increased proportionally
with the severity of arthritis. Our findings that galectin-1 mRNA
expression is increased in OA cartilage and that galectin-1
immunostaining is increased in regions of focal cartilage damage
coincide with prior studies in human OA cartilage (21–23).
Differences in galectin-1 immunostaining were not observed
in deep zone chondrocytes in the current study; however,
cartilage pathology was primarily restricted to the superficial
and middle zones in this equine OA model and could explain

why galectin-1 immunostaining was not observed in deep
zones.

Galectin-1 stimulates a network of NF-kB downstream
signaling in human OA chondrocytes as demonstrated by
microarray and RT-qPCR (21). Synergistic effects of galectins-1,-
3, and−8 have been demonstrated in human OA chondrocytes,
providing evidence for cooperativity within this galectin
signaling network (24, 35). On the other hand, galectin-
1 is suggested to mitigate inflammatory arthritis in rodent
models by altering immune cell function, inducing apoptosis
of CD4+ T cells and decreasing pro-inflammatory cytokine
expression (14–17). Notably, inflammatory arthritis and post-
traumatic osteoarthritis are distinct entities despite sharing some
similarities, such as synovial inflammation and synovitis (36,
37).

Immunolocalization
In addition to gene expression data demonstrating that synovial
membrane is the predominant source of galectins in synovial
joints, galectin immunostaining revealed prominent galectin-
1 and-3 immunolocalization in synovial membrane tissue
from both sham-operated and OA joints. Whereas, superficial
zone chondrocytes consistently stained positively for galectin-
3 in healthy cartilage, middle and deep zone chondrocytes
were negative. Similar patterns of strong superficial zone
chondrocyte galectin-3 staining have been previously observed
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FIGURE 6 | Chondrocyte galectin-1 positive immunoreactivity over the entire

thickness of articular cartilage in the equine carpal fragmentation experimental

model 70 days post-injury (n = 5). Data are presented as box-and-whiskers

plots, where boxes represent the first and third quartiles, the lines within the

boxes represent the median, and the lines outside the boxes represent the

spread of galectin-1 scores. The P-value indicates the difference between

injured (OA) and healthy (Sham) cartilage, produced by Wilcoxon

matched-pairs signed rank test.

in healthy equine and human cartilage (2, 34). Chondrocytes
in healthy cartilage were immune negative for galectin-1.
Galectin-1 positive chondrocytes were only detected in injured
cartilage, especially in dividing chondrocytes or chondrones
in the superficial and middle zones of injured, fibrillated
cartilage.

The identification of increased galectin-3 in RA (7, 38) and
juvenile idiopathic arthritis (8) has led authors to hypothesize
that galectin-3 precipitates inflammatory arthritis. Elevations
in serum galectin-3 concentrations have been detected in
patients with early RA and correlated with MRI bone lesions
1 year later (39). However, the link between galectin-3 and
OA is less clear and, to our knowledge, no human studies
have documented elevations in synovial fluid galectin-3 levels
preceding the development of arthritis. Data on the role of
galectin-3 in experimental rodent models is conflicting. Gal-
3 KO mice are predisposed to OA (6), potentially due to the
protective role that galectin-3 plays in chondrocyte survival (5, 6).
Galectin-3 KOmice also demonstrate decreased bone formation,
increased bone resorption, accelerated trabecular bone loss and
reduced bone strength as compared to wild-type mice, suggesting
an important role for galectin-3 in bone remodeling and
biomechanics (25). On the other hand, exogenous intra-articular
galectin-3 administration promoted the development of arthritis
in mice (19), and inhibition of galectin-3 through lentiviral-
mediated delivery of galectin-3 shRNA ameliorated collagen-
induced arthritis in rats (16). The conflicting data with respect
to galectin-3 and OA may be due to the distinct functions of
intracellular vs. extracellular galectin-3 and differences between
inflammatory and PTOA models of arthritis. Intracellular gal-
3 promotes chondrocyte survival both in vitro (6) and in vivo

(6); whereas administration of exogenous, extracellular galectin-
3 exacerbates inflammation (16, 18). Notably, most rodent
studies investigating galectins and arthritis have focused on
inflammatory models which more closely mimic RA. Horses
and other large animal models are more commonly used to
study PTOA and better represent the clinical scenario for
translation to PTOA in humans (28, 40). Therefore, future work
is needed to determine whether increased synovial fluid galectin-
3 concentrations in equine PTOA are functioning to protect
articular chondrocytes, promote synovial inflammation or both.

Here, we demonstrate constitutive expression of both galectin-
1 and-3 in healthy synovial membrane tissue and synovial
fluid, while also elucidating the time course of galectin-1
and-3 upregulation following induction of post-traumatic OA.
Toegel and Weinmann et al. have suggested that both galectin-
1 (21) and galectin-3 (24) promote OA through upstream
regulation of NF-kB signaling in chondrocytes. Accordant with
these findings, we show that galectin-1 mRNA expression and
immunostaining is increased in equine OA cartilage as compared
to healthy cartilage. Overall, our data suggests that galectin-
1 mRNA expression and protein production is increased in
injured equine articular chondrocytes, similar to injured human
cartilage (21, 22). Galectin-1 appears to be more specific to
articular cartilage injury in horses than galectin-3. In addition,
our data suggests that synovial membrane and cartilage galectin
expression patterns differ, with constitutive galectin-1 and-3
synovial membrane expression present in all sham-operated,
healthy joints.

This study provides evidence for the constitutive expression
and production of galectins-1 and-3 in healthy synovial joints.
Whereas, galectin-3 is constitutively produced in superficial
zone chondrocytes in healthy articular cartilage, both galectin-
1 and-3 are expressed in healthy synovial membrane tissue. In
addition, we demonstrate that synovial fluid galectins are elevated
in response to PTOA and that cartilage galectin-1 expression
strongly correlates with OA progression. Galectins may be
potential upstream therapeutic targets in OA; however, further
work is needed to clarify the mechanistic roles of galectins-
1 and-3 in synovial membrane tissue, cartilage and synovial
fluid in PTOA. Several small-molecule galectin antagonists and
anti-galectin monoclonal antibodies are currently undergoing
preclinical testing for fibrosis and cancer therapy and may have
applications in other chronic inflammatory diseases, such as
OA and RA (41). However, therapeutic targeting of galectins
also poses significant challenges due to the context-dependent
multifunctionality of galectin signaling (42) and the ability of
other galectin family members to compensate for the loss of
an individual galectin (35). In addition, because galectins are
constitutively expressed in several tissues, off-target effects are of
potential concern (43, 44). Constitutive expression of galectins
in synovial fluid also suggests that there may be functional
roles for galectins in healthy synovial joints, including beneficial
roles in cartilage lubrication (34). Additional research is needed
to clarify the functions of galectins-1 and-3 in healthy joints
and in PTOA in both experimental animal models and human
patients. Translational animal models will be critical for pre-
clinical testing of galectin-targeted therapies for human OA.
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