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Apoptosis plays a key role in protection against genomic instability and maintaining

tissue homeostasis, and also shapes humoral immune responses. During generation

of an antibody response, multiple rounds of B-cell expansion and selection take place in

germinal centers (GC) before high antigen affinity memory B-cells and long-lived plasma

cells (PC) are produced. These processes are tightly regulated by the intrinsic apoptosis

pathway, and malignant transformation throughout and following the GC reaction is

often characterized by apoptosis resistance. Expression of pro-survival BCL-2 family

protein MCL-1 is essential for survival of malignant PC in multiple myeloma (MM).

In addition, BCL-2 and BCL-XL contribute to apoptosis resistance. MCL-1, BCL-2,

and BCL-XL expression is induced and maintained by signals from the bone marrow

microenvironment, but overexpression can also result from genetic lesions. Since MM

PC depend on these proteins for survival, inhibiting pro-survival BCL-2 proteins using

novel and highly specific BH3-mimetic inhibitors is a promising strategy for treatment.

This review addresses the role and regulation of pro-survival BCL-2 family proteins during

healthy PC differentiation and in MM, as well as their potential as therapeutic targets.

Keywords: apoptosis, B-cell malignancy, BCL-2 family, BH3-mimetic, germinal center, MCL-1, multiple myeloma,

plasma cell differentiation

INTRODUCTION

Multiple myeloma (MM) is a malignancy of clonal long-lived plasma cells (PC) residing in the
bone marrow (BM) (1). The malignancy arises as a result of genetic changes that occur during
differentiation of B-cells into PC (2, 3). MM is characterized by resistance against the intrinsic
apoptosis pathway, which is regulated by proteins of the BCL-2 family (4).

The BCL-2 protein family consists of pro-survival BCL-2-like proteins (BCL-2, BCL-B, BCL-W,
BCL-XL, BFL-1/A1, and MCL-1), pro-apoptotic BH3-only proteins (initiators), and pro-apoptotic
effectors BAX, BAK (5), and possibly BOK (6–8). Cytotoxic stimuli such as DNA damage,
chemotherapeutic agents, or cytokine deprivation promote upregulation of BH3-only proteins,
which inhibit pro-survival BCL-2 family members (5). In addition, post-translational modification
of BH3-only proteins can affect their stability, activity, and subcellular localization (9). BH3-only
proteins vary in their affinities for different pro-survival proteins. For instance, BAD only binds
with high affinity to BCL-2, BCL-XL, and BCL-W, while NOXA selectively inhibits MCL-1 and
BFL-1/A1. BIM, PUMA, and BID have high affinity for all pro-survival proteins (10, 11). If all
available pro-survival proteins are sequestered by BH3-only proteins, BAX and BAK can disrupt the
mitochondrial outer membrane, leading to cytochrome C release, caspase activation, and execution
of apoptosis (12). In addition, some BH3-only proteins, including BIM, PUMA, and BID, can
directly bind to BAX or BAK and induce conformational changes that contribute to BAX/BAK
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activation (13–15). Regulation of apoptosis is essential for
generation and selection of high-affinity PC, and malignant
transformation of cells in this process often coincides with defects
in apoptosis.

HEALTHY PC DIFFERENTIATION

Long-lived PC originate from germinal centers (GC), which are
dynamic structures that develop in secondary lymphoid organs
upon antigen stimulation and helper T-cell activation. Clonal
expansion, somatic hypermutation, class switch recombination,
and affinity-based selection of B-cells take place in GCs, resulting
in the production of high-affinity antibodies (16). GCs contain
a dark zone (DZ), consisting of dividing B-cells, and a light
zone (LZ), in which B-cells are selected based on antigen
affinity through B-cell receptor (BCR) signaling and CD40-
CD40L interactions (17–19). B-cells with low antigen affinity
undergo apoptosis, and B-cells with high antigen affinity either
return to the DZ for another round of mutation and expansion,
or differentiate and move out of the GC as memory B-cells
or PC. Somatic hypermutation and class switch recombination
take place during proliferation in the DZ and are mediated by
activation-induced cytidine deaminase (AID) (20). Most GC-
derived PC are recruited into the BM, where stromal cells provide
signals for long-term survival (21, 22).

The BCL-2 Family in PC Differentiation
Apoptosis regulation plays a central role in the cycle of
expansion, selection, and differentiation that eventually produces
mature PC. Expression of BCL-2 family proteins during PC
differentiation and after malignant transformation of (post-)
GC B-cells is highly variable and shown in Figure 1. MCL-1
is essential for GC formation and maintenance, memory B-cell
development (23), and survival of existing PC (24). In fact, B-
cells are dependent on MCL-1 throughout development (25).
BCL-2, which is important for naïve and memory B-cells, is
downregulated in the GC (26, 27). In contrast, MCL-1, BCL-XL,
and BFL-1 are upregulated. BH3-only proteins BIM and BIK are
also upregulated in the GC, but this upregulation was shown to be
countered by MCL-1 and BCL-XL, respectively (27). Apoptosis
of low-affinity B-cells in the GC is dependent on the interplay
between pro-survival and pro-apoptotic BCL-2 proteins. In mice,
overexpression of Bcl-2 was shown to disrupt GC selection
of memory B-cells, but not of high-affinity plasmablasts (28).
Knockout of Bim (29) or Noxa (30) resulted in increased amounts
of low-affinity B-cells, suggesting that these BH3-only proteins
play a critical role in elimination of low-affinity B-cell and PC

Abbreviations: ABC-DLBCL, activated B-cell-like diffuse-large B-cell lymphoma;

AID, activation-induced cytidine deaminase; APRIL, a proliferation-inducing

ligand; BAFF, B-cell activating factor; BCL-2, B-cell lymphoma 2; BCR, B-cell

receptor; BH3, BCL-2 homology 3; BM, bone marrow; CLL, (B-cell) chronic

lymphocytic leukemia; DLBCL, diffuse-large B-cell lymphoma; DZ, dark zone;

FGFR3, fibroblast growth factor receptor 3; GC, germinal center; GCB-DLBCL,

germinal center B-cell-like diffuse-large B-cell lymphoma; IFN-α, interferon α; Ig,

immunoglobulin; IGF-1, insulin-like growth factor 1; IgH, immunoglobulin heavy

chain; IL-6, interleukin 6; LZ, light zone; MCL-1, myeloid cell leukemia 1; MGUS,

monoclonal gammopathy of undetermined significance; MM, multiple myeloma;

PC, plasma cell; WM, Waldenström macroglobulinemia.

clones. Puma was shown to be essential for regulation of memory
formation in mice, since its loss resulted in accumulation of
memory B-cells (31). Fully differentiated GC-derived PC are
characterized by high expression of transcriptional regulator
BLIMP-1, which promotes MCL-1 expression and represses
BIM (32).

MALIGNANT TRANSFORMATION OF GC
B-CELLS

In the GC, somatic hypermutation and class switch
recombination are mediated by AID, which functions by
deaminating cytidine residues to uracil (20). AID is targeted
to the variable immunoglobulin (Ig) regions, as well as the Ig
switch regions. As a result of AID activity, the mutation rate in
the variable Ig regions is estimated to increase to between 10−2

and 10−3 mutations per bp (33). In addition to its function in the
Ig gene, AID can also be erroneously targeted to other genomic
loci, introducing mutations and Ig translocations that can
contribute to malignant transformation (34, 35). Many different
malignancies, some of which dependent on BCL-2 family
proteins for survival, arise from (post-) GC B-cells (Figure 1).
These include B-cell chronic lymphocytic leukemia (CLL)
(36), follicular lymphoma (37), diffuse-large B-cell lymphoma
(DLBCL) (38), Waldenström macroglobulinemia (WM) (39),
and multiple myeloma (MM) (40).

Pro-survival BCL-2 Proteins in GC B-Cell
Malignancies
Pro-survival BCL-2 proteins contribute to apoptosis resistance of
malignant B-cells, and their overexpression can be regulated in
different ways. In 60–65% of CLL cases, the BCR is hypermutated,
indicating that the malignancy originates from post-GC B-cells.
Conversely, in the remaining 35–40% of cases, the BCR lacks
signs of hypermutation and the disease presumably originates
from B-cells that have differentiated independently of the
GC (36). In both types, apoptosis resistance is mediated by
overexpression of BCL-2 (41). This overexpression is due to
BCL2 gene hypomethylation and genetic loss of microRNA
loci that normally inhibit BCL-2 expression (42, 43). Inhibition
of BCL-2 using specific BH3-mimetic inhibitor Venetoclax
efficiently induces apoptosis in CLL cells in circulation, and is
also promising for other BCL-2 dependent malignancies such as
follicular lymphoma and a subset of DLBCL (44–46).

Follicular lymphoma originates from GC B-cells and is
characterized by the hallmark chromosomal translocation
t(14;18), which is present in 85% of patients and results in
overexpression of BCL-2 due to juxtaposition of the Ig heavy
chain (IGH) and BCL2 loci (37). In addition, MCL-1 is highly
expressed in some follicular lymphomas, and its expression
correlates with disease grade (47).

DLBCL has distinct subtypes, including germinal center B-
cell-like (GCB-) DLBCL, which is derived from normal GC
B-cells; and activated B-cell-like (ABC-) DLBCL, originating
from B-cells that have completed the GC reaction (48). T(14;18)
is present in 45% of GCB-DLBCL, but does not occur in
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FIGURE 1 | Expression of pro-survival BCL-2 family proteins during PC differentiation and after malignant transformation of (post-) GC B-cells. Upon encounter of a

naïve B-cell with its cognate antigen, and in the presence of adequate T cell help, a germinal center (GC) is formed where the B-cell undergoes multiple cycles of

expansion and hypermutation in the dark zone (DZ), and affinity-based selection in the light zone (LZ). Low-affinity B-cells undergo apoptosis, while high-affinity B-cells

can undergo further selection, or exit the GC as a memory B-cell or plasma cell (PC). In the GC, BCL-2 expression is strongly repressed and expression of MCL-1,

BCL-XL, and BFL-1 is increased. MCL-1, but not BCL-XL, was shown to be essential for survival of GC B-cells. Naïve and memory B-cells have high expression of

BCL-2 and are sensitive to its inhibition, and PC depend on MCL-1 expression for survival. Erroneous targeting of activation-induced cytidine deaminase (AID) during

somatic hypermutation and class switch recombination can lead to mutations that promote malignant transformation, resulting in a variety of GC-derived malignancies

(dashed lines). Multiple GC-derived malignancies, such as follicular lymphoma (FL), diffuse-large B-cell lymphoma (DLBCL), some B-cell chronic lymphocytic

leukemias (B-CLL), and multiple myeloma (MM) depend on overexpression of BCL-2 family proteins for survival. BL, Burkitt’s lymphoma; BM, bone marrow; CLL,

chronic lymphocytic leukemia; DLBCL, diffuse-large cell B-cell lymphoma; DZ, dark zone; FL, follicular lymphoma; HL, Hodgkin lymphoma; LZ, light zone; MCL,

mantle cell lymphoma; MM, multiple myeloma; PC, plasma cell; WM, Waldenström macroglobulinemia.

ABC-DLBCL (49). Still, BCL2 expression is high in many
cases of ABC-DLBCL, as a result of gain or amplification of
the 18q chromosome arm on which BCL2 is located (50).
MCL-1 expression is also frequently high in ABC-DLBCL and
sometimes in GCB-DLBCL, possibly as a result of chromosomal
amplification or transcriptional regulation (51). In addition,
ABC-DLBCL is characterized by constitutively high NF-κB
activity. Among the targets of NF-κB are BCL-XL, BFL-1/A1,
and possibly BCL-2, whose high expression as a result of NF-κB
signaling may contribute to apoptosis resistance in ABC-DLBCL
(52–54).

MM and WM are malignancies that contain a clonal PC
population residing in the bone marrow. Both are preceded
by monoclonal gammopathy of undetermined significance
(MGUS), which is characterized by presence of <10% clonal PC
in the BM, presence of monoclonal Ig in the blood, and lack

of clinical symptoms (55, 56). WM originates from post-GC B-
cells that have undergone somatic hypermutation but did not
undergo class switching, whereas MM originates from post-GC
B-cells after class switching (39). As a result, the serum Ig in WM
is of the IgM type, and IgH translocations do not occur (57).
The cellular phenotype is mixed, ranging from B-cells to PC (58).
Possibly, malignancy is acquired during the B-cell or plasmablast
stage, with somemalignant cells continuously differentiating into
PC. MM, on the other hand, consists of fully differentiated PC
and is characterized by frequent IgH translocations and genomic
instability (59). MM cells most frequently produce IgG or IgA,
although IgM or IgD have been observed in rare cases (60). In
WM, pro-apoptotic and pro-survival BCL-2 family proteins are
expressed at low levels similar to non-malignant B-cells and PC.
It is therefore expected that WM will only be sensitive to BH3-
mimetic drugs if these are combined with other treatments that
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increase pro-apoptotic protein levels and mitochondrial priming
(61). In contrast, MM cells are highly dependent on BCL-2 family
proteins for survival, with MCL-1 as the essential player (62, 63).

THE BCL-2 FAMILY IN MULTIPLE
MYELOMA

MCL-1 protein expression is increased in newly diagnosed MM
compared to healthy PC, and protein levels are even higher at
relapse (64). In addition, overexpression of MCL-1 is associated
with shorter patient survival (64). Using RNA interference
lethality screening in cell lines, MCL-1 was also identified as
one of the most important and selective survival genes for MM
(65). In subsets of MM cell lines and patient samples, BCL-2
and BCL-XL expression is also high (66), suggesting that these
three proteins may act redundantly in preventing apoptosis.
Since expression of both pro-survival and pro-apoptotic BCL-
2 family members is heterogeneous, and the interplay between
them is complex and dynamic, dependence on MCL-1, BCL-
2, and BCL-XL is likely to differ between patients (66–68).
Signals and cellular processes that may lead to overexpression
of MCL-1, BCL-2, and BCL-XL in MM are indicated in
Figure 2.

Survival Signals From the BM
Microenvironment
MM cells reside in the BM, where they interact with extracellular
matrix proteins and cells from the BMmicroenvironment, which
include stromal cells, osteoblasts, osteoclasts, endothelial cells,
fibroblasts, adipocytes, and cells of hematopoietic origin (40).
MM cells promote neighboring cells to produce IL-6 (69), which
induces JAK/STAT3 signaling in MM, leading to transcription of
MCL-1 and BCL-XL (70–73). MCL-1 expression in MM can also
be IL-6-independent (74), or occur via other signals from the BM
microenvironment (75). For instance, signaling through BAFF
(B-cell activating factor) and APRIL (a proliferation-inducing
ligand), whose levels are increased in MM patients compared to
healthy controls, induces expression of both MCL-1 and BCL-
2 and promotes PC survival (24, 76). Other survival signals
from the bone marrow environment include interferon α (IFN-
α), which induces MCL-1 in a STAT3-dependent manner (77),
and insulin-like growth factor 1 (IGF-1), which downregulates
expression of BIM (78).

Genetic Lesions
MM is characterized by recurrent chromosomal aberrations,
some of which may be linked to apoptosis pathways.
Translocations or chromosomal amplifications and gains
involving 18q are rare in MM (79), suggesting that BCL2
overexpression is not a key event in malignant transformation.
No other genetic lesions in MM have directly been correlated to
overexpression of a BCL-2 family member. Nevertheless, gain
or amplification of 1q21, the chromosome region containing
the MCL1 gene, occurs in approximately 40% of MM cases and
correlates with poor disease prognosis (80). Notably, IL6R, the

gene encoding the IL-6 receptor, is also located on 1q21, as are
several other candidate drivers of high-risk disease (81).

T(4;14), which is present in 10–15% of MM patients (80),
may lead to disruption and subsequent overexpression of
fibroblast growth receptor 3 (FGFR3), which is considered
an oncogene (79). In a murine IL-6-dependent hybridoma
cell line, FGFR3 was shown to signal through STAT3 and
substitute IL-6 signaling, leading to increased BCL-XL
expression and decreased apoptosis (82). Correspondingly,
specific tyrosine kinase inhibitors with known anti-FGFR3
activity induced apoptosis in t(4;14)-positive cell lines
(83).

MCL-1 Stabilization
Unlike for BCL-2 and BCL-XL (66), transcriptional activity
of MCL1 does not directly correlate to protein levels.
MCL-1 is unique within the BCL-2 family because it
has a large N-terminal domain that allows for post-
translational modification (84, 85). Proteasomal degradation
of MCL-1 occurs upon phosphorylation and subsequent
poly-ubiquitination of this N-terminal region. Kinases
associated with phosphorylation of MCL-1 include JNK,
GSK-3, and ERK-1 (86). Ubiquitin ligases Mule, SCFβ−TrCP,
SCFFbw7, and APC/CCdc20 were shown to target MCL-1
for proteasomal degradation after recognizing specific
phosphorylated residues (87). This process can be reversed
by deubiquitinases, such as USP9X (88). The contribution of
these kinases and ubiquitin modifiers to MCL-1 regulation
in MM is currently unknown. If the key players in
MCL-1 regulation can be identified for MM, these MCL-1-
modifying proteins may be interesting targets for therapeutic
intervention.

OVERCOMING APOPTOSIS RESISTANCE:
BCL-2 PROTEINS AS THERAPEUTIC
TARGETS IN MM

As apoptosis resistance in B-cell malignancies often results
from overexpression of pro-survival BCL-2 family proteins,
inhibiting these proteins is a promising strategy for development
of targeted therapeutics. Several BCL-2 family inhibitors, also
named BH3-mimetics because of their structural and functional
resemblance to the BH3 domain of BH3-only proteins, are
currently in clinical development. BCL-2 inhibitor Venetoclax
is the first BH3-mimetic approved by the Food and Drug
Administration. It was approved in 2016 for treatment of
CLL with a 17p deletion (46). Additionally, Venetoclax was
tested in phase I clinical trials with relapsed and refractory
MM patients, where monotherapy was particularly effective
when the t(11;14) translocation was present (89). T(11;14) is
associated with an increased BCL2/MCL1 mRNA ratio, but
the mechanism behind this is unknown (90). When MM
patients were treated with Venetoclax in combination with
conventional MM drugs bortezomib (a proteasome inhibitor)
and dexamethasone, it was well tolerated and the response
rate was highest in patients with high BCL2 expression (91).
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FIGURE 2 | Signals and cellular processes that mediate apoptosis resistance in MM. MM cells receive signals from the bone marrow microenvironment that stimulate

their survival. These signals include IL-6 and IFN-α, leading to JAK/STAT signaling and expression of MCL-1, BCL-XL, and VEGF. VEGF, in turn, promotes IL-6

production by neighboring cells. Other signals from the bone marrow microenvironment include BAFF and APRIL, which signal via TRAFs and induce expression of

MCL-1 and BCL-2. IGF-1 signaling downregulates BIM, transcriptionally as well as post-translationally. MM cells also have high expression of the PC transcriptional

regulator BLIMP-1, which promotes MCL-1 and represses BIM expression. Amplification of the 1q chromosome arm often occurs in MM. The genes for both MCL-1

and the IL-6 receptor (IL-6R) are present on this locus, possibly leading to overexpression in 1q-amplified MM. In addition to transcriptional regulation, MCL-1 is

heavily regulated post-transcriptionally, which may contribute to the high MCL-1 protein levels found in MM. Dashed lines represent methods for interference in

apoptosis resistance by MM drugs dexamethasone and bortezomib, and by BH3-mimetics. APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor;

BCMA, B-cell maturation antigen; BH-3, BCL-2 homolog 3; BLIMP-1, B lymphocyte-induced maturation protein 1; IFN-α, interferon alpha; IGF-1, insulin-like growth

factor 1; IL-6, interleukin 6; IL-6R, interleukin 6 receptor; JAK, janus kinase; STAT3, signal transducer and activator of transcription 3; TACI, transmembrane activator

and calcium-modulating ligand interactor; TRAF, TNF receptor-associated factor; VEGF, vascular endothelial growth factor.

Experiments in cell lines even indicate more-than-additive
effects when Venetoclax is combined with proteasome inhibitor
carfilzomib or dexamethasone, due to upregulation of NOXA
and BIM, respectively (92). If conventional treatment increases
availability of BH3-only proteins and their distribution toward
pro-survival target proteins, this may increase sensitivity to BH3-
mimetic drugs.

While the results of MM treatment with Venetoclax
underline the potential of using BH3-mimetics in MM,
they also suggest that Venetoclax may only be effective
in a subset of patients, namely those who have relatively
high BCL-2 and relatively low MCL-1. Based on in vitro
and xenograft experiments, MCL-1 is often shown to be
essential for MM survival and its generally high expression
may confer resistance to Venetoclax (66, 93, 94). Therefore,
MCL-1 itself is a very promising therapeutic target in

MM, and multiple MCL-1 inhibitors are currently under
development (95). MCL-1 inhibitor S63845 efficiently kills
MM and other MCL-1-dependent cancer cell lines (96). Its
derivate S64315/MIK665 is currently being tested in phase
I clinical trials by Servier for acute myeloid leukemia and
myelodysplastic syndrome (NCT02979366), and by Novartis for
MM and DLBCL (NCT02992483). In addition, clinical testing in
MM patients has started with MCL-1 inhibitors developed by
Amgen, named AMG 176 and AMG 397 (NCT02675452 and
NCT03465540, respectively) (97), and by AstraZeneca, named
AZD5991 (NCT03218683) (98).

Simultaneous targeting of multiple BCL-2 family proteins
may be a solution to resistance in case of redundancy between
MCL-1, BCL-2, and BCL-XL in MM. Before the development
of Venetoclax, BH3-mimetics with broader protein specificity
have been studied, such as Navitoclax (99). Navitoclax (ABT-263)
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mimics the selectivity of BAD, thereby inhibiting only BCL-
2, BCL-XL, and BCL-W. When tested in CLL patients,
results were promising, but dose-limiting thrombocytopenia
was observed as a result of BCL-XL inhibition (100–102).
This led to the development of BCL-2-selective BH3-mimetic
Venetoclax (44). Other putative BCL-2 family inhibitors with
broad target specificity, such as Obatoclax (GX15-070), were
shown to function partly or completely in a BAX/BAK-
independent manner, and are therefore no longer considered
BH3-mimetics (103). The results with Navitoclax indicate
that potential side-effects of BCL-2 family inhibitors may
be dose-limiting, and that combined inhibition of BCL-2
family members may only be possible if the concentration
of each specific inhibitor remains below the threshold of
toxicity.

MCL-1 is not only essential for B-cells and PC, it is also
essential in other cell types, including hematopoietic stem
cells (104), cardiomyocytes (105), and neural precursor cells
(106). In contrast to healthy cells, increased expression of
pro-apoptotic molecules (“priming”) renders malignant cells
more susceptible to apoptosis upon inactivation of pro-survival
proteins (107). Since MCL-1 is the most dominant pro-
survival protein in MM, its inhibition leads to release of a
large proportion of pro-apoptotic proteins present in MM
cells, thereby promoting apoptosis induction. In mice, MCL-
1 inhibitor S63845 was tolerated well at concentrations that
killed cancer cells (96), even when murine Mcl-1 was replaced
by its human ortholog, thereby increasing inhibitor sensitivity
of all cells (108). This may yield a therapeutic window for
targeting MCL-1, especially if MCL-1 inhibitors are combined
with existing treatments that increase pro-apoptotic protein
expression.

CONCLUSION

High expression of pro-survival BCL-2 family proteins
contributes to outgrowth and drug resistance of malignant
B-cell clones. While beneficial for cell survival, addiction
to high levels of specific pro-survival BCL-2 proteins also
makes cells vulnerable to BCL-2 family inhibition using
BH3-mimetic drugs. MM is characterized by high expression
of MCL-1, and overexpression of BCL-2 and BCL-XL is
observed in subsets of patients. Constitutive overexpression
of these pro-survival proteins in MM results from a range
of microenvironmental signals and different genetic lesions.
This complex regulation of MCL-1, BCL-2, and BCL-XL
offers multiple direct and indirect targets for therapeutic
intervention. Recent development of BH3-mimetic drugs, that
specifically target MCL-1, BCL-2, or BCL-XL, may contribute
to overcoming apoptosis resistance and improving treatment
for MM.
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