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During the last 20-30 years, palladium-catalyzed reactions have witnessed 
tremendous advances in the industrial and organic reactions such as 
hydrogenation, coupling, cyanation and amination. Despite the wide utility of 
Pd-catalysts in these reactions, they suffer from a number of drawbacks such 
as recovery, reuse of catalyst and remain as  a contaminant in the products 
at the end of the reaction. A powerful and convenient reaction procedure 
for the C-N coupling reaction (the Buchwld-Hartwig reaction), yielding 
products of N-arylanilines and N-arylamines in conventional heating has 
been reported. The protocol utilized an high stable Pd(EDTA)2- salt by counter 
cation of N-methylimidazolium bounded to 1,3,5-triazine-tethered SPIONs 
(superparamagnetic iron oxide nanoparticles). The reaction products were 
produced under conventional heating at extremely low catalyst loading (as low 
as 0.003 mol% Pd).Finally, we also examined the reusability of the catalyst.  It 
was found that the catalyst could be recovered by external magnetic field and 
be reused for five times without obvious loss in catalytic activity.
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INTRODUCTION
Palladium-catalyzed reactions have emerged as 

powerful and selective tools for synthetic organic 
chemistry [1-3] such as carbonylation [4-8], 
cyanation [9,10], hydrogenation [11-13], coupling 
reactions [14-16], and amination [17].

Despite the wide utility of Pd-catalysts in these 
reactions, they suffer from a number of drawbacks 
such as recovery, reuse of catalyst and remain as  
a contaminant in the products at the end of the 
reaction.

Magnetic nanoparticles (MNPs) serve as an 
effective support for the metals in various organic 
transformations [18-20].

Buchwald-Hartwig type C-N coupling reaction 
is one of the most efficient tools to prepare  
nitrogen-containing arylamines [21,22]. This 
reaction involves the coupling of amines and aryl 
halides, using palladium as the catalyst. 

The formation of the C-N bond has  wide 
applications in biology, biochemistry, pharmaceutics, 
pigments, conducting polymers, electronic materials, 
and other organic synthesis [23-32]. 

In this work, we hope to report a powerful 
and efficient nanocatalyst for the N-arylation of 
various amines. This catalyst could be satisfactory 
recovered by a simple external magnet, and reused 
without loss of its reactivity.
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EXPERIMENTALS
Materials and methods

All chemicals purchased from Merck chemical 
company. Fe3O4 nanocomposite and silica-coated 
magnetite nanoparticles (SiO2@Fe3O4) were 
synthesized according to the literature respectively 
[33]. Na2Pd(EDTA) complex was prepared by 
dissolution of Pd(OAc)2 (Aldrich),  Na2CO3 and 
Na2H2EDTA (MERCK) in water (pH 9) as found 
in the literature [34]. All known organic products 
were identified by comparison of their physical 
and spectral data with those of authentic samples. 
Thin layer chromatography (TLC) was performed 
on UV-active aluminum-backed plates of silica 
gel (TLC Silica gel 60 F254). 1H, and 13C NMR 
spectra were measured on a Bruker DPX 400 
MHz spectrometer in CDCl3 with chemical shift 
(d) given in ppm. Coupling constants are given in 
Hz. The FT-IR spectra were taken on a Nicolet-
Impact 400D spectrophotometer in KBr pellets and 
reported in cm-1.

Synthesis of SPION-A-Pd(EDTA)
Na2CO3 (0.2 mmol, 0.021 g) was added to a 

mixture of Na2EDTA (0.1 mmol, 0.037 g) and 
PdCl2 (0.1 mmol, 0.018 g) in water (5 ml) at 25 
˚C, and was stirred magnetically for 5 h. In an 
argon atmosphere, SPION-ACl2 (0.53 g) in EtOH 
(5 ml) was added dropwise to the solution and 
the resulting mixture was stirred for a further 12 
h at room temperature. Finally, the catalyst was 
collected by external permanent magnet and 
washed with CH2Cl2 (3×10 ml) and H2O, and dried 
under vacuum. 

General Procedure for Buchwald-Hartwig Reaction 
under Thermal Conditions 

A round-bottom flask was charged under argon 
with aryl halide (2 mmol, 1 equiv), amine (1 mmol, 1 
equiv), DMSO (1 mL), tBuO-Na+ (2 mmol, 2 equiv) 
and SPION-A-Pd(EDTA) (0.094g, 0.003mol % of 
Pd).  The reaction mixture was stirred and heated at 

120 ̊ C for several hours (thin layer chromatography 
monitoring). After completion of the reaction, the 
reaction mixture was cooled to room temperature; 
the mixture was diluted with Et2O, filtered and 
concentrated under reduced pressure. The residue 
was purified by column chromatography on silicagel.

RESULT AND DISCUSSION
The SPION-A-Pd(EDTA) was successfully 

prepared (scheme 1) and characterized by means 
of  Fourier transform infrared spectroscopy (FT-
IR), inductively coupled plasma atomic emission 
spectroscopy (ICP), thermal gravimetric analysis 
(TG), and high resolution transmission electron 
microscopy (HR-TEM).

Fig. 1 illustrates the FT-IR spectrums of Fe3O4 
(a), silica-encapsulated Fe3O4 (b), and nanocatalyst 
SPION-A-Pd(EDTA) (c) respectively. 

The FT-IR spectrum of SPION-A-Pd(EDTA) 
(Fig.1, c) showed absorption bands at 3421 cm-1 
(N-H stretching vibration), 2930 cm-1 (C-H), 1622 
cm-1 (C=N) and 635-587 cm-1 (Fe-O) SPIONs.

The thermal stability of SPION-A-Pd(EDTA) 
was also evaluated by TGA-DTG. According to 
these curves, the weight loss below 600 ºC was 
approximately 8.87%. So, these results approved 
that SPION-A-Pd(EDTA) has almost high thermal 
stability below 600 ˚C (Fig. 2).

For  studying the morphology characteristics 
of SPION-A-Pd(EDTA), HR-TEM image was also 
investigated (Fig. 3).

HR-TEM images of SPION-A-Pd(EDTA) 
revealed that it appears to have almost a spherical 
structure with the average size about 10-13 nm 
(Fig. 3, b). Then, enormous active sites of this 
nanoparticle may present excellent activity in 
organic transformations.

Inductively coupled plasma atomic emission 
spectroscopy (ICP) determined the amount of 
palladium in SPION-A-Pd(EDTA) as 3.41wt%.

In continue, catalytic activity of this complex 
was investigated in Buchwald-Hartwig reaction.
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Scheme 1 The synthesis path of SPION-A-Pd(EDTA) 
 

Scheme 1. The synthesis path of SPION-A-Pd(EDTA)
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Hence, we initially examined reaction between 
morpholine and bromobenzene as model substrate 
to optimize the reaction conditions such as solvents, 
bases, temperature, and catalyst source.

In order to investigate the best solvent for 
this reaction, a series of solvents such as Dioxan, 
Toluene, DMF, and DMSO were selected (Table 1). 

 
 

 
 

 
Fig. 1 

 

a

b 
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Fig. 1: Comparison of the the FT-IR spectra of (a) Fe3O4; (b) silica-encapsulated Fe3O4; (c) SPION-A-Pd(EDTA)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table1 

Entry Solvent Yield (%)a 
1 Dioxan 43 
2 Toluene 50 
3 DMF          75 
4 DMSO   90 

                                                                                                                                            a Isolated yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Effect of solvent on the synthesis of 
4-phenylmorpholine as a model reaction.

Fig. 2: TG-DTG analysis of SPION-A-Pd(EDTA)
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We observed that more polar solvents such 
as DMSO, and DMF (Table 1. Entries 3, 4) were 
favorable for the reaction. On the contrary, less 
polar solvents such as Dioxan, and Toluene (Table 
1, entries 1, 2) provided slightly lower yields. 
Therefore, among the solvents tested, DMSO was 
the best choice.

Next, various bases were investigated. We found 
that using tBuONa as base in DMSO gives the N- 
arylated product with an excellent yield (Table 2, 
entry 5). The other inorganic bases such as K2CO3, 

K3PO4, and CS2CO3 and organic bases like NEt3 
only afford moderate to low yields of N-arylated 
products (Table 2, entries 1-4). No product was 
achieved in the absence of any bases.

Among the four Pd-sources used as a catalyst, 
SPION-A-Pd(EDTA) gave the highest yield (Table 
3, entry 5). Use of Pd(OAc)2, nanoSiO2@Pd(OAc)2, 
and nanoFe3O4@Pd(OAc)2 as catalyst gave low yield 
of product (Table 3, entries 2-4 ). The reaction in 
the absence of any catalyst did not give any product 
at all (Table 3, entry 1).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 

Fig. 3 
 
 
 
 
 
 

Fig. 3: (a) HR-TEM image of SPION-A-Pd(EDTA) and (b) 
SPION-A-Pd(EDTA) particle size distribution histogram.

Table 2 

Entry Base Yield (%)a 
1 NEt3 30 
2 K2CO3 45 
3 K3PO4         50 
4 Cs2CO3 60 
5 NaOtBu 90 

                                                                                                                                          a Isolated yield. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Entry Catalyst Yield (%)a 
1 - - 
2 Pd(OAc)2 5 
3 Pd(OAc)2@nano-Fe3O4 16 
4 Pd(OAc)2@nano-SiO2         10 
5 SPION-A-Pd(EDTA)   90 

                                                                                                                                 a Isolated yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Entry Temperature Yield (%)a 
1 90 50 
2 100 70 
3 120  90 
4 140    90 

                                                                                                                                            a Isolated yield. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Effect of base on the synthesis of 4-phenylmorpholine 
as a model reaction.

Table 3: Comparison with different catalysts

Table 4: Effect of temperature on the synthesis of 
4-phenylmorpholine as a model reaction.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 

 
 
 
 
 

Fig. 4:  Reuse of SPION-A-Pd(EDTA) examined on the model reactions of Buchwald-Hartwig reaction.
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Table 5 
 
Entry ArX Nucleophile Product b Time/h Yield % c 

1 
  

 
17 78 

2 
  

 18 73 

3 
  

 
11 82 

4 
  

 
10 85 

5 
  

 
5 90 

6 
  

 
9 85 

7 
   

11 84 

8 

  

 

11 83 

9 

 
 

 

15 82 

10 
  

 
13 89 

11 
  

 

15 80 

12 
 

 

 

12 81 

13 
  

 

32 80 

14 
 

 
 

29 81 

aReaction conditions: aryl halide (2 mmol), amine (1 mmol), tBuO-Na+ (2 mmol), DMSO (1 mL) in the presence of the catalyst  
containing 0.003 mol% Pd . 
b Temperature for entry 1 and 2 was 130 ˚C 
cIsolated yield. 
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Table 5. Amination of aryl and hetero aryl bromides catalyzed by the SPION-A-Pd(EDTA) system a 
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We also found that this reaction is sensitive to 
the reaction temperature. A temperature 120 ˚C 
was found to be the best temperature for the model 
reaction (Table 4, entry 3). A further increase in 
temperature could not enhance the product yield 
(Table 4, entry 4). Decrease in the temperature to 
90 ˚C led to a decrease in yield (Table 4, entry 1).

When bromobenzene was reacted with 
morpholine under air atmosphere, no coupling 
reaction was observed to take place. Whereas, 
in the presence of inert atmosphere, products 
were obtained with an excellent yield. With the 
optimized conditions in hand, the Buchwald-
Hartwig cross-coupling reactions were examined 
by varying both the amines including aromatic, 
aliphatic, and cyclic and a variety of aryl bromides. 
The results are summarized in Table 5.

In general, the presence of electron donating 
groups on N-nucleophiles and electron withdrawing 
groups on aryl halides enhanced the N-arylated 
product yield. Aniline substituted with electron 
donating group, such as 4-methoxy aniline, gave 
the product with a good yield (Table 5, entry 1). The 
reaction of aryl halides with heterocyclic amines 
such as morpholine, piperidine (Table 5, entries 
5-10) resulted in a desired product in an excellent 
yield. The high nucleophilicity of these heterocyclic 
amines can be due to their reactivities. 

The recyclability of the SPION-A-Pd(EDTA) 
system was also investigated. Catalyst recovered by 
a simple external magnet and reused for five times. 
Results are represented in Fig. 4.

CONCLUSION
In summary, we have developed a novel, air-

moisture, easily recoverable Pd-complexe.
We believe that this catalyst can catalyze 

amination of aryl halides in the presence of inorganic 
bases with an excellent recycling efficiency.
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