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The prevalence of obesity in women of childbearing age around the globe has
dramatically increased in the last decades. Obesity is characterized by a low-state
chronic inflammation, metabolism impairment and oxidative stress, among other
pathological changes. Getting pregnant in this situation involves that gestation will
occur in an unhealthy environment, that can potentially jeopardize both maternal and
fetal health. In this review, we analyze the role of maternal obesity-induced oxidative
stress as a risk factor to develop adverse outcomes during gestation, including reduced
fertility, spontaneous abortion, teratogenesis, preeclampsia, and intrauterine growth
restriction. Evidences of macromolecule oxidation increase in reactive oxygen species
generation and antioxidant defense alterations are commonly described in maternal and
fetal tissues. Thus, antioxidant supplementation become an interesting prophylactic and
therapeutic tool, that yields positive results in cellular, and animal models. However, the
results from most meta-analysis studying the effect of these therapies in complicated
gestations in humans are not really encouraging. It is still to be analyzed whether these
therapies could work if applied to cohorts of patients at a high risk, such as those with
low concentration of antioxidants or obese pregnant women.

Keywords: fertility, preeclampsia, miscarriage, latin-America, teratogenesis, intrauterine growth restriction,
oxidative stress

PREVALENCE OF OVERWEIGHT AND OBESITY AMONG
WOMEN OF REPRODUCTIVE AGE

Prevalence of obesity in both developed and developing countries has increased among women
over the last decades (Heslehurst et al., 2007; NCD Risk Factor Collaboration, 2016), including the
prevalence in women of childbearing age, which has also raised dramatically worldwide (Nguyen
et al., 2008; Menting et al., 2018; Schaefer-Graf et al., 2018), from 29.8% in 1980 to 38.0% in 2013 (Ng
et al., 2014). Correa and Marcinkevage reported an average global prevalence of obesity in women
of childbearing age ranging between 1% in Chad to 70.3% in Tonga (Correa and Marcinkevage,
2013).

Abbreviations: AGA, appropriate for gestational age; GSH, glutathione; GWG, gestational weight gain; IUGR, intrauterine
growth restriction; LGA, large for gestational age; MDA, malondialdehyde; NAC, N-acetylcysteine; OR, odds ratio; OS,
oxidative stress; PE, preeclampsia; ROS, reactive oxygen species; SGA, small for gestational age.
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The available epidemiological data in Latin-American
countries are dispersed, obtained from periodic national surveys
in some cases, or from low-scale, punctual regional studies in
others. As it is shown in the Figure 1, the highest prevalence
of obesity in women of reproductive age was found in Mexico,
while the lowest prevalence was found in Haiti.

The trend in the prevalence of obesity has become a matter
of concern to preconception healthcare programs because pre-
pregnancy obesity and excessive GWG is associated with an
increased risk of adverse reproductive health outcomes (Dolin
and Kominiarek, 2018; Most et al., 2018). Obesity reduces fertility
and increases time taken to conceive (Poston et al., 2016). At
the beginning of the gestation, obese pregnant women are more
likely to have spontaneous and recurrent pregnancy loss (Chu
et al., 2007). The rate of embryo malformations is also increased,
showing mainly neural tube, and cardiac defects (Rasmussen
et al., 2008). During mid-late gestation, obesity pregnancies have
an increased risk for PE and gestational diabetes mellitus, both
of which are associated with long-term morbidities post-partum
(Milne et al., 2009; Poston et al., 2016). Obese women can also
experience difficulties during labor and delivery. The chances of
requiring a cesarean intervention in obese mothers double that of
lean mothers, while the comorbidity (anesthetic complications,
massive blood loss) reaches almost 34% of the gestations. For the
newborn, there is a higher risk of LGA, macrosomia, shoulder
dystocia and even obesity in childhood (Dennedy and Dunne,
2010; Nelson et al., 2010; Most et al., 2018).

Obesity is associated with a dysregulation in the metabolic
balance comprising lipid metabolism, inflammatory or hormonal
processes in addition to insulin resistance (Bozkurt et al., 2016).
The pathogenesis of obesity is complex and includes metabolic
and hormonal dysregulation, low-grade chronic inflammation
and endoplasmic reticulum stress, among other processes that
are closely interconnected. Several groups all over the world,
including ourselves (Alcala et al., 2015), have focused our
research in the role of oxidative stress as a central mechanism
that may enhance the aforementioned conditions. In this context,
we have shown how the use of antioxidants in long-term obesity
reduces obesity-associated inflammation, insulin resistance and
tissue fibrosis. In the following lines we will discuss the role
of OS before, during and after gestation in the mother with
pregestational obesity and in the offspring, reviewing the use of
antioxidant therapies to ameliorate or prevent undesired negative
outcomes.

OXIDATIVE STRESS

OS has been traditionally recognized as a key factor in
the pathophysiology of numerous conditions, including
cardiovascular and neurodegenerative diseases, cancer, diabetes,
and obesity.

OS has been classically defined as an imbalance between ROS
generation and its detoxification by antioxidant systems, in favor
of the former. ROS are partially reduced, oxygen-containing
metabolites (some of them are free radicals) that are generated
because of normal cellular metabolism and environmental

factors. They are extremely reactive and have the potential to
oxidize lipids, proteins and DNA. On the other side, enzymatic
(superoxide dismutase, catalase, glutathione peroxidase) and
non-enzymatic (vitamin C and E, glutathione) antioxidants
neutralize the effect of highly reactive ROS by transforming them
into less reactive species and eliminating oxidation by-products,
protecting cells from oxidative damage.

However, ROS, at a physiological concentration, behave as
second messengers in several signaling pathways that are critical
for the normal cellular function. Several studies in the last
10 years have described how ROS can modify the redox state of
key residues of proteins (Jones et al., 2004) regulating enzyme
activity. They have been reported to participate in different
signaling pathways (NF-κB, PTP1b, ASK1, PTEN, REF1, p66hc,
or IRP1) (Ray et al., 2012).

Adipose tissue has been proposed as the origin of obesity-
induced OS, that is later transmitted to other tissues and may
account for obesity-associated diseases such as hypertension,
cardiovascular disease, or even cancer (Furukawa et al.,
2004; Matsuda and Shimomura, 2013). Hyperglycemia,
hyperleptinemia, endothelial dysfunction, hyperlipidemia
and mitochondrial dysfunction are the main mechanisms that
have been described to increase ROS-generation systems such
as nitric oxide synthases (NOS) or NADPH oxidases (Savini
et al., 2013). In the first stages of obesity, an upregulation of the
antioxidant enzymes is observed to prevent oxidative damage,
but as fat accumulates the antioxidant defense is overtaken,
leading to OS (Alcala et al., 2015; Alcala et al., 2017).

In addition, oxidative stress has also been observed in
healthy gestation. In the second trimester, there is a spike
in oxygen supply and metabolic rate in placenta. If ROS
levels are maintained under control, they regulate trophoblast
proliferation, invasion and angiogenesis, required for a healthy
pregnancy (Wu et al., 2015).

Thus, both obesity and gestation are characterized by an
increased OS. When combined, OS is one of the proposed
mechanisms involved in many reproductive and pregnancy
disorders that may lead to adverse pregnancy outcomes (Malti
et al., 2014).

OXIDATIVE STRESS, MATERNAL
OBESITY AND PREGNANCY OUTCOMES

Fertility
Pre-existing obesity is an independent risk factor for anovulation,
subfertility and infertility in women (Silvestris et al., 2018).
Several studies show a positive correlation between maternal BMI
and time-to-pregnancy (Gesink Law et al., 2007; Wise et al.,
2010). It is estimated that for every unit of increase in the BMI,
there is a 5% decrease in the probability of conception (van der
Steeg et al., 2008). On the other hand, weight loss strategies may
positively influence in fertility (Sim et al., 2014). A 10% of weight
loss in overweight patients with infertility significantly improved
conception and live birth rates (Kort et al., 2014).

The deleterious effect of obesity on reproduction is mainly
driven by endocrine and metabolic alterations, which may
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FIGURE 1 | Estimates of obesity in women of childbearing age in Latin-America. Percentage of obesity (BMI ≥ 30 Kg/m2) in women between 18 and 45 years old.
BOL, BRA, COL, ECU, ESV, GUA, HAI, HON, MEX, NIC, PER, and GUY obesity prevalence obtained from National Health Surveys and compilated in (Correa and
Marcinkevage, 2013). VEN prevalence obtained from Instituto Nacional de Nutrición (2008–2010). CHI obesity prevalence obtained from Encuesta Nacional de Salud
(ENS-2009) and reviewed in (Araya et al., 2014). PAN obesity prevalence obtained from cross-sectional studies (2010–2011) (Mc Donald et al., 2015). ARG obesity
prevalence obtained from Encuesta Nacional de Nutrición y Salud (ENNyS-2007). PR obesity prevalence obtained from self-reported, prospective longitudinal cohort
study (2011–2014) (Guilloty et al., 2015). SPA and POR obesity prevalence obtained from the European Health Interview Survey (EHIS 2014).

interfere with the neuroendocrine and ovarian function
through a disruption in the hypothalamus-hypophysis-ovarian
axis. The mechanisms underlying the defective endocrine
program in obese women include metabolic alterations due to
hyperinsulinemia, the effect of pro-inflammatory cytokines,
endoplasmic reticulum stress, alterations in the mitochondria
and OS (Silvestris et al., 2018).

In rodents, oocytes from dams fed on high fat diet showed
abnormal mitochondrial morphology and increased activity,
resulting in increased ROS production and GSH reduction
(Igosheva et al., 2010) leading to meiosis failure (Han et al., 2017;
Wang et al., 2018). Circulating markers of OS are also elevated
in women with polycystic ovary syndrome, with a remarkable
50% decline in GSH concentration. In fact, GSH seems to be a
critical player in both male and female fertility. The lack of the
enzyme that catalyzes the rate-limiting step in GSH synthesis, the
glutamate cysteine ligase, in female mice dramatically reduced
preimplantation development (Nakamura et al., 2011; Lim et al.,
2015).

The use of antioxidants to improve fertility in obese patients
is still a matter of debate. A recent meta-analysis concludes that
there is low-quality evidence of a beneficial effect of antioxidants
to increase fertility (Showell et al., 2017). However, this report
fails to independently analyze a cohort of women with pre-
gestational obesity, where the oxidative insult may arise from the
combination of two situations that are, independently, associated
to oxidative stress. In this situation, the use of antioxidants such
as resveratrol in preclinical studies using rodent models (Ghowsi
et al., 2018; Jia et al., 2018), or in randomized control trials in
humans using Mg and Zn (Afshar Ebrahimi et al., 2017) or NAC
(Nasr, 2010; Maged et al., 2015) improved overall reproductive
outcome.

Miscarriage and Obesity
Overweight and obese pregnant women present a higher risk of
pregnancy loss and recurrent miscarriage compared to normal
weight gestations (OR vary from 1.31 to 1.67) (Metwally et al.,
2008; Boots and Stephenson, 2011). There is an even higher risk
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for obese women of recurrent early miscarriage in spontaneous
conception (OR: R: 3.51; 95% CI, 1.03–12.01) and miscarriage
after ovulation induction (OR: 5.11; 95% CI, 1.76–14.83).

Recent results suggest a reduced regenerative capacity and
plasticity of the endometrium in obese pregnant women
(Murakami et al., 2013), factors that may predispose for
pregnancy loss (Lucas et al., 2016).

Another key step for a successful pregnancy is a proper
maternal-fetal exchange. From week 8 to 12 of gestation
there is a peak in placental pO2 when the maternal blood
enters the placenta. This signal triggers the transcription
of antioxidant genes (catalase, glutathione peroxidase, and
superoxide dismutase) to overcome the prooxidant environment
(Jauniaux et al., 2000). In obese pregnancies, together with
a pre-established oxidative situation (Catalano and Shankar,
2017), there is a dysregulation of immune cells within the
endometrium, characterized by a reduced presence of the anti-
inflammatory Treg lymphocytes and an increase of natural
killer lymphocytes (Quenby et al., 2009). This promotes early
angiogenesis, increasing placental pO2 prior to the establishment
of a mature antioxidant system, depleting non-enzymatic
antioxidants such as GSH and vitamin E (Hansen and Harris,
2013). Several authors have described an increase in OS
markers in placenta from early and recurring pregnancy loss
and suggested that increased ROS generation may be caused
by premature establishment of maternal placental perfusion,
which has been correlated with a higher risk of miscarriage
(Miller et al., 2000; Burton and Jauniaux, 2004; Yiyenoglu et al.,
2014).

However, current meta-analyses have shown no beneficial
effect of the administration of vitamins (alone or in combination)
prior to pregnancy or during the early stages of pregnancy
(Balogun et al., 2016). Given the importance of GSH metabolism
to fully develop a successful pregnancy, more studies should be
carried out to evaluate the potential of NAC (a GSH precursor) to
prevent obesity-related miscarriage. So far, the supplementation
with NAC to women with recurrent unexplained pregnancy
loss significantly increased the rate of living pregnancies
beyond 20 weeks and the take-home baby rate (Amin et al.,
2008).

Malformation
Congenital anomalies are the end-products of aberrant
organogenesis in utero during the first trimester of gestation.
A meta-analysis in 2009 revealed that newborns from obese
mothers are at increased risk of severe congenital malformations,
including neural tube defects and cardiovascular anomalies
(Stothard et al., 2009). Results from a cohort including more
than 1.2 million deliveries, showed that liveborn singletons
from mothers with a BMI > 40 kg/m2 almost double the risk of
suffering major congenital malformations in the nervous system
compared to the offspring of normal weight mothers (Persson
et al., 2017).

The mechanisms involved in obesity-mediated teratogenesis
are still unrevealed. Traditionally, the fuel-mediated teratogenesis
hypothesis claims that exposing the embryo to an excessive
amount of nutrients, mainly glucose and ketone bodies,

may promote embryo malformations, inappropriate organ
development and metabolic disturbances in the youth (Freinkel,
1980; Catalano, 2010; Plagemann and Harder, 2011).

OS, common feature in maternal obesity (Gallardo et al.,
2015), has been suggested as a potential mechanism in the
teratogenesis induced by diabetes (Viana et al., 1996) or chemical
teratogens such alcohol, cocaine, valproate, or thalidomide
(Hansen and Harris, 2013).

In addition to a direct effect on DNA damaging and repair
(Wells et al., 2010), at a molecular level, OS has been shown
to inhibit Pax3 upregulation during early embryogenesis in a
murine embryonic stem cell model (Wu et al., 2012). Pax3 is
a transcription factor required for neural tube development. As
a result, cardiac neural crest and neuroepithelial cells undergo
apoptosis by a process dependent on the p53 tumor suppressor
protein (Wang et al., 2011). The supplementation with GSH and
vitamin E has proven to be effective in the upregulation of Pax3
expression after an oxidative insult (Wu et al., 2012).

To the best of our knowledge, there is not any clinical
trial, to test the potential protective effects of antioxidant
supplementation in pre-gestational obese women. However,
using retrospective, survey-based studies, a reduction in
antioxidant consumption has been linked to increase odds of
limb and neural tube defects in obese pregnant women (Chandler
et al., 2012; Pace et al., 2018).

Preeclampsia and Cardiovascular
Alterations
PE is a severe disease characterized by the presence of
hypertension and proteinuria during the second and third
trimester of gestation (Steegers et al., 2010). PE affects
approximately 2–8% of all pregnancies (Ghosh et al., 2014) and is
associated with substantially higher maternal and fetal morbidity
and mortality worldwide, especially in Latin American countries
where PE is one of the leading causes of maternal and fetal
mortality (Giachini et al., 2017).

PE women exhibit at least a twofold increased risk of stroke,
while risk of death due to ischemic heart disease is eight
times higher when PE occurs before 34 weeks of gestation
(Deanfield et al., 2005). Indeed, the American Heart Association
has included PE as a risk factor for future cardiovascular disease
(Bushnell et al., 2014).

Obesity has been listed as a major risk factor for PE (Marchi
et al., 2015), together with higher waist circumference, blood
pressure, insulin, proinsulin, glucose, C-reactive protein and
triglycerides levels, and lower HDL cholesterol (Mongraw-
Chaffin et al., 2010; Sliwa and Bohm, 2014).

The current well-accepted pathophysiology of PE involves
a two-stage model: first, an incomplete remodeling of the
spiral arteries communicating maternal and placental blood flow
through a defective trophoblast invasion. This leads to the second
stage, where the ischemia-reperfusion cycles triggers the release
of harmful molecules including ROS, cytokines, antiangiogenic
proteins, cell fragments, microparticles, and extracellular vesicles
(Redman and Sargent, 2000, 2005; Tannetta et al., 2013; Hod et al.,
2015). These elements may reach the maternal circulation and
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FIGURE 2 | Obesity, gestation and oxidative stress. Pregestational obesity increases the risk of suffering adverse outcomes prior (reduced fertility), during
(spontaneous abortion, embryo malformations, preeclampsia, intrauterine growth retardation) and after gestation (small and large for gestational age deliveries) for
both the mother and the fetus. Oxidative stress is a common feature in the etiology of obesity and can cause an accumulative effect with the oxidative stress that
appears during gestation. The effects and the evidences of oxidative stress in obesity-complicated pregnancies are here summarized. IUGR, intrauterine growth
retardation; SGA, small for gestational age; ROS, reactive oxygen species; MDA, malondialdehyde. Artwork was obtained from Servier Medical Art, licensed under a
Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

are thought to be the causative factors of endothelial dysfunction
(Roberts and Escudero, 2012).

OS, common in obesity, appears to be the central component
of both placental and endothelial dysfunction (Aouache et al.,
2018). Pregestational obesity modifies the arterial architecture in
placenta (Avagliano et al., 2012) and its contraction/relaxation
capacity, being more susceptible to maternal OS (Saker et al.,
2008). In addition, obese placenta presents an increased
generation of mitochondrial ROS caused by a defective
respiratory chain (Hastie and Lappas, 2014), that has been linked
to placental angiodysplasia (Ishii et al., 2014). The following
episodes of hypoxia/reoxygenation induce the activity of the
xanthine oxidase, an important source of superoxide (Hung et al.,
2002).

Oxidative damage in the placenta leads to inflammation,
apoptosis and the release of cellular debris into maternal
circulation, along with several anti-angiogenic factors, cytokines
and oxidants (MDA, isoprostanes) concomitant with a reduced
antioxidant capacity (Atamer et al., 2005). These placental-
derived factors act on the maternal vascular endothelium,
inducing more OS and stimulating the production and secretion

of pro-inflammatory cytokines, as well as vasoactive compounds.
This results in a massive systemic endothelial dysfunction
characterized by vascular inflammation and constriction
(Goulopoulou and Davidge, 2015).

Preclinical experiments in cellular and animal models
reported beneficial effects of antioxidants reducing maternal
blood pressure and improving endothelial function (Chang et al.,
2005; Roes et al., 2006; McCarthy and Kenny, 2016). However,
meta-analysis from clinical trials in humans did not support the
use of antioxidant therapy to reduce the risk of PE (Rumbold
et al., 2008, 2015; Roberts et al., 2010). It is important to notice
that none of these reviews stratify the population according to the
BMI, so the effect of antioxidants on PE women with a preexisting
oxidative situation has not been studied yet.

Intrauterine Growth Restriction and
Obesity
An adequate transport of O2 and nutrients in the mother-
placenta-fetus circuit is mandatory for the normal development
of gestation. An excess in the nutrient supply from obese mothers
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(Rosario et al., 2015) has been strongly associated with alterations
in fetal growth (Yu et al., 2013), increasing the risk of delivering
LGA (Bove et al., 2014). Strikingly, epidemiological studies have
also noticed that SGA deliveries are also more frequent among
overweight and obese women (Radulescu et al., 2013). It is still to
be confirmed whether pregestational BMI or GWG have more
impact on fetal growth (Crane et al., 2009). In any case, both
pregnancy outcomes, SGA and LGA, have an increased risk of
suffering perinatal complications, including stillbirth (Yao et al.,
2017) and complications later in life.

LGA newborns are the result of an increased flux of oxygen
and nutrients together with placental overgrowth (Gaccioli et al.,
2013), with a feature gene expression and more OS than those
AGA (Saker et al., 2008). Even several years after delivery, in
a prepubertal age, LGA children present more OS and insulin
resistance than AGA (Chiavaroli et al., 2009).

On the other hand, IUGR in obesity is partly caused by a
defective oxygen and nutrient supply to the placenta, which
resembles the pathological basis of PE (Srinivas et al., 2009).
However, not every case of IUGR can be explained by preexisting
PE, so the presence of divergent molecular mechanisms has been
proposed by some authors (Villar et al., 2006).

Nonetheless, OS is present in both conditions and may have
a critical impact on the development of the disease. In fact,
an increase in oxidative markers (MDA, isoprostanes, protein
carbonyls) has been found in placenta, maternal and chord
plasma (Longini et al., 2005; Biri et al., 2007; Zadrozna et al.,
2009; Mert et al., 2012; Negro et al., 2017) of IUGR-complicated
pregnancies, with and without PE. Enzymatic antioxidant
defenses are also upregulated, as an increase in superoxide
dismutase or glutathione peroxidase activities have been
previously described. However, non-enzymatic antioxidants,
such as GSH, vitamin E and C contents are depleted (Biri et al.,
2007; Rajasingam et al., 2009; Zadrozna et al., 2009; Mert et al.,
2012), reflecting an OS situation.

To our knowledge, there is not any published clinical trial
in humans to determine the potential effect of antioxidants
(vitamins or GSH-precursors) on the intrauterine growth
from obese mothers. Retrospective, food intake survey-based
studies, showed conflicting results. For example, in Spain no
relation was found between the consumption of antioxidant
vitamins and SGA frequency (Salcedo-Bellido et al., 2017) and
a meta-analysis about the use of vitamin E during pregnancy
showed no beneficial effect to prevent poor fetal growth
in healthy pregnancies (Cohen et al., 2015; Rumbold et al.,
2015).

CONCLUSION

Pregestational obesity affects approximately to 1 out of 3
women of childbearing age in the world. The excessive fat mass
accumulation correlates with OS, caused by an overactivation of
the ROS-generating systems (mainly NOS and NADPH oxidases)
and a depleted antioxidant defense. Obesity-induced OS arises

as a central factor that increases the risk of adverse outcomes
in gestation, as it has been summarized in the Figure 2. Prior
to gestation, obesity-related OS can cause decreased fertility
due to a defective meiosis and mitochondrial alterations in
the oocytes. On early gestation, OS increases the risk of
miscarriage by reducing the plasticity of the endometrium and
promoting early angiogenesis, that increases oxygen supply
prior to the maturation of the antioxidant systems. OS can
directly cause DNA damage and the inhibition of key genes for
neural tube development and closure, responsible for some of
the most common malformations observed in embryos from
obese mothers. During the second trimester, placenta becomes
another physiological source of ROS, with a physiological role
on materno-fetal connection. However, the combination of both
sources of OS in obese pregnancies can cause an overproduction
of ROS, that may account for a defective vascularization of the
placenta, leading to both hyperoxia and hypoxia. These two
situations exacerbate the placental oxidative state and participate
in the pathology of vascular conditions such as PE and IUGR.

Despite the multiple evidence of the oxidative disbalance
along normal pregnancies, the use of antioxidants to prevent
these outcomes is conflicting. While they have proven to be
effective in preclinical studies in cellular and animal models,
the reports of its application in large-scale clinical trials
is often discouraging. However, the analyzed clinical trials
in this mini-review do not specifically analyze a cohort of
women with pregestational obesity. The design of specific
clinical trials for this population, with a basal situation of
increased OS, could potentially generate more promising results.
Besides clinical recommendations to obese women, such as
weight loss before conception and controlling GWG, specific
studies on antioxidant therapies focused on this population
could help clarifying the adequacy of targeting OS to prevent
complications.
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