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With the development of Industry 4.0, the cooperation between robots and people is

increasing. Therefore, man—machine security is the first problem that must be solved. In

this paper, we proposed a novel methodology of active collision avoidance to safeguard

the human who enters the robot’s workspace. In the conventional approaches of

obstacle avoidance, it is not easy for robots and humans to work safely in the common

unstructured environment due to the lack of the intelligence. In this system, one Kinect

is employed to monitor the workspace of the robot and detect anyone who enters the

workspace of the robot. Once someone enters the working space, the human will be

detected, and the skeleton of the human can be calculated in real time by the Kinect. The

measurement errors increase over time, owing to the tracking error and the noise of the

device. Therefore we use an Unscented Kalman Filter (UKF) to estimate the positions of

the skeleton points. We employ an expert system to estimate the behavior of the human.

Then let the robot avoid the human by taking different measures, such as stopping,

bypassing the human or getting away. Finally, when the robot needs to execute bypassing

the human in real time, to achieve this, we adopt a method called artificial potential field

method to generate a new path for the robot. By using this active collision avoidance, the

system can achieve the purpose that the robot is unable to touch on the human. This

proposed system highlights the advantage that during the process, it can first detect

the human, then analyze the motion of the human and finally safeguard the human. We

experimentally tested the active collision avoidance system in real-world applications.

The results of the test indicate that it can effectively ensure human security.

Keywords: active collision avoidance, artificial potential field method, unscented kalman filter (UKF), human-robot

security, human-robot coexistence

INTRODUCTION

With the development of Industry 4.0, robots tend to be intelligent and cooperative in the future.
On the one hand, robots can interact naturally with humans; On the other hand, robots can co-
operate with people to produce in a common area. Based on this, the concept of human-computer
collaboration emerged as a result, and was gradually sought after by industry, academia, and
research institutions. In recent years, human-robot collaborative robots have also continued to
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mature and are used in some production workshops, such as UR5
for mass production lines. The human-machine collaboration
feature will promote the wider use of robots and promote robots
to play an indispensable partner role in human life (Yu et al.,
2015; Li et al., 2017). However, according to the “Three Laws
of Robotics,” the robot must not harm human beings or sit and
watch human beings be harmed. It can be seen how important
the role of robot security in the industrial development process is.
As we all know, in order to ensure that the robot is safe enough,
since the industrial robot was born more than half a century ago,
most of the industrial robots have been placed in a static state,
which is to determinate “isolated” environment, and accomplish
a single repetitive task (Lee et al., 2017). Space is often isolated
from people by very strong fences. Of course, let alone higher
level of “into human life.” In recent years, with the deepening
of the trend of Industry 4.0, the manufacturing industry has
begun to develop the trend of customization, individuation and
flexibility, which poses a severe challenge to the fixed production
mode of traditional robots. This situation has led to inevitable
close contact between robots and humans, and the traditional
industrial robot production methods can’t meet the needs of
the company’s production safety. The security considerations
of collaboration between robots and humans have become the
top priority for the future development of human-machine
collaboration. The fact is that increasing the safety of robots often
means compromises in performance. This requires designers to
seek a balance between the two to ensure a win-win situation
between safety and performance. Currently, collaborative robots
have the ability to sense the environment and change their
behavior according to the changes in the environment. For
example, when a robot arm collides with a human arm, a human-
robot cooperative robot can perceive the existence of a human
arm according to a force sensor and stop and move away in time
and do some other actions that protect human safety. Therefore,
this function limits the performance of collaborative robots, such
as speed, load, and so on. In addition, with the development of
Industry 4.0, due to the large amount of traditional robots, it is
obviously unrealistic to replace all existing traditional robots in a
short period of time. Therefore, this paper proposes an effective
method to predict the possibility of collision between robots and
humans, and timely feedback to ensure human safety. Robots
can successfully complete tasks in the well-known circumstances,
such as factory working space. However, when a robot performs
work in the dynamic, unstructured environments or even the
environments with human, it has been a more challenging issue
that how the robot works safely and efficiently (Nozaki et al.,
2013). For the future robotics applications where humans and
robots collaborate in carrying out tasks together (Karami et al.,
2010), achieving safe and efficient human-robot interaction is
indispensable. To meet the requirement of safety, it is necessary
for robots to be able to find another path in the complex
environment. In order that humans and robots coexist and
collaborate in the complex environment, it is a big challenge
at all times to provide human with safety protection. There are
a few researches (Sadrfaridpour and Wang, 2017) which have
been done to develop robot systems, including interaction and
cooperation with humans in daily life. It is indicated that robots

could be very useful to accomplish various tasks with humans
jointly in these researches. Hence, it is always a big challenge
to find an approach to protect human operators in human-
robot collaborative systems, which includes two parts: detecting
possible collisions in real time and human avoidance during
runtime.

There are three parts (Flacco et al., 2012) in the active collision
avoidance in real time: (1) Environment perception; (2) Collision
avoidance algorithm; (3) Robot control. Collision avoidance is
considered as one of the core technologies in robot research,
which draws the widespread attention of the scholars. A lot of
real-time capable planning concepts are based upon the potential
field methods which are introduced in Zanchettin et al. (2016)
and Minguez and Montano (2009). These methods use virtual
attraction to represent targets and use repulsive field to represent
obstacles. As a result, the robot will automatically get close to the
targets and move away from the obstacles.

As to robotic systems, real-time planning algorithms (Harada
et al., 2004; Saffari and Mahjoob, 2009) are of great significance.
Due to the planning algorithms, robots are able to avoid the
obstacles in real environment. A planning algorithm, which can
coordinate humans and robots adaptively in hybrid assembly
systems, has been proposed in method (Takata and Hirano,
2011). And according to method (Ohashi et al., 2007), the arm
force is an advantage to detect the obstacles and avoid the objects
in the environment.

Several researches have been done on obstacle avoidance in
dynamic environments (Dietrich et al., 2012; Wu and Ma, 2013).
The researches mostly treated humans as moving obstacles. In
this case, the only thing to consider is the collision avoidance of
robots. However, there are some other researches choosing not to
treat humans asmoving obstacles.What is worthmentioning, the
assumption of the most of these above works is that the condition
of the environment is available. Most of the collision avoidance
algorithms are based on the distances between the robots and the
objects in real environment.

Inman-machine collaboration systems, in order to achieve the
safety protection, the approaches of avoiding collision which have
been applied are as follows: A novel meshless deformation model
of biological soft tissue is presented for interactive simulation
applications (Zou et al., 2017). Magneto-rheological fluid
based compliant actuation mechanism (Ahmed and Kalaykov,
2010a,b), by introducing into robotic joint. Therefore robot
need to work in a magnetic field environment. Vision-based
method (Krüger et al., 2005), based on the analysis of motion,
color and texture. Inertial sensor-based method (Corrales et al.,
2011), using a special suit to capture motion. However, it is
not practical for the inertial sensor-based method to be applied
in the realistic environment, for the reason that a special-
purpose suit with built-in sensors is required in this method.
Moreover, it can only capture the wearer’s motion leaving the
other objects in the environment omitted. And this may cause
severe safety problem because humans could be injured by the
surroundings. Currently, visual-based method is proved to be
a more practical approach for collision avoidance. Besides, as
the optical 3D sensors developed, some newly-launched depth
sensors, such as Microsoft Kinect (Microsoft Corporation, 2015),
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FIGURE 1 | Process chart of the proposed method.

FIGURE 2 | Skeleton joint points in the 3D space. (The person is Dolin and he

consents for the Publication of the Manuscript.) 1, Head; 2, Shoulder center;

3, Right shoulder; 4, Right elbow; 5, Right wrist; 6, Left shoulder; 7, Left

elbow; 8, Left wrist; 9, Hip center; 10, Right hip; 11, Right knee; 12, Right foot;

13, Left hip; 14, Left knee; 15, Left foot.

make developing a powerful sensor system with minimum effort
available.

In recent years, the vision-based method has focused on the
efficiency of collision detection. Virtual 3D models of robots
and real camera images of operators are used for monitoring
and collision detection, the control system can alert an operator,
stop a robot, or modify the robot’s trajectory away from an
approaching operator by zero robot programming (Wang et al.,
2013). Amulti-camera systemwas adopted in Gecks andHenrich
(2005) for detecting obstacles, whereas an emergency-stop based
approach was employed in Ebert et al. (2005) to avoid a collision
using an ad-hoc vision chip. In Tan and Arai (2011), a triple
stereovision system was reported for tracking the movement of
a sitting operator (upperbody only) by wearing color markers.
However, due to uneven environmental lighting condition,
mobile operators appearing in the monitored area may not
show consistent colors. Instead of markers, a ToF (time-of-flight)
camera was adopted in Schiavi et al. (2009) for collision detection,
and an approach using multiple 3D depth images was presented

in Fischer and Henrich (2009) for the same purpose. In method
(Flacco et al., 2012) a new integrated approach was proposed to
avoid collision by using one Kinect sensor and also raised depth
space approach.

Although these methods have been notable performances
in safety protection, our method has more necessary
improvements.

(1) Most researches treat humans as moving obstacles, so it is
likely that humans are mistaken for an operation objects
in the complex environment and may be injured, such as
work pieces. While our method can detect the human, then
analyze the motion of the human, and finally safeguard the
human.

(2) Most of the collision avoidance algorithms are based on
the distances between the robots and the objects in real
environment. While Our method can make an optimal
reaction in the light of the speed of the human. When the
human is approaching too fast, the robot keeps away from
the human; when the human is approaching slowly, the
object for the robot to avoid is the bounding sphere instead of
the human; when the human is static and judged to impede
the robot, a new path would be generated.

(3) The avoidance time of our method is shorter because no
continuous path calculation is required.

This paper proposed an active collision avoidance method (as
shown in Figure 1). A Kinect is employed to detect the human
in real time, since it can not only satisfy the demand of function
but also be accessible. Most importantly, the human can be
identified according to the characteristics of 3D data and the
skeletons of the human can be calculated, even if the human is
static, which greatly guarantees the safety of the human. UKF is
applied to reduce the influence of time-varying and uncertainty
of the signals of the position of the skeletons to complete human
tracking. Because of the randomness of human movements, only
using real-time path planning cannot realize the aim of active
obstacle avoidance, so we use an expert system to analyze the
behavior of the human. Depending on the status of human, we
use artificial potential field method to plan a new path so that the
robot can bypass the human in real time.When the humanmoves
at a relatively low speed, the system calculates a bounding sphere
and the robot bypasses the bonding sphere by using artificial
potential field method to plan a new path. When the human
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is moving fast, the robot must avoid the human immediately.
According to the current states of the human, an optimal reaction
will be made, which saves much time. By taking these measures,
this active collision avoidance method can not only achieve the
goal that cutting down the avoidance time and the avoidance
number at a large scale, improving the efficiency, but also solve
the problem of the cost.

The remainder of paper is organized as follows. In section
Human Identification, the human identification is described. The
human tracking using unscented Kalman filter is detailed in
section Human tracking using unscented kalman Filter and the
collision avoidance is introduced in Collision Avoidance. Then
we show the experiments and results in section Experiment.
Discussions are presented in section Discussions before ending
the paper with conclusions in section Conclusions.

HUMAN IDENTIFICATION

There are two key design which takes driving the human
movement tracking approach as a goal: computational efficiency
and robustness. A single input depth image is segmented into
a dense probabilistic body part labeling, with the parts defined
to be spatially localized near skeletal joints of interest. We use
an application program interface (API), which is embedded in
the Kinect, to carry out human positioning and tracking. When
human enters the workspace of the robot, the human can be
detected according to the characteristics of 3D data and the
skeletons of the human can be calculated by using the API.

As we know, from Kinect we can derive the skeleton joint
points. The 15 skeleton joints in the RGB image are shown in
Figure 2. We number the 15 skeleton joint points from top to
bottom and left to right. The coordinates of the 15 skeleton
joint points are referred to as Kinect coordination. This method
uses cylinder to construct the human body (Figure 2), since the
human body has volume. Using the two adjacent points to build
a cylinder is presented. According to the distance of the two
adjacent points, we can determine the size (length and radius)
of every cylinder, since the distance of the two adjacent points
for every person is not the same. Furthermore, every cylinder
of different part of human body is also not the same. The
cylinder of the arm is smaller than the one of the trunks. By
using the statistical data, we can calculate the length of the two
corresponding adjacent points and the scaling relation between
the sizes of a cylinder.

HUMAN TRACKING USING UNSCENTED
KALMAN FILTER

Since the signals of the position of the skeletons are time-
varying and they are ill-defined when occlusion is encountered,
an adaptive filter is required.

The Unscented Transform
The unscented transform determines the mean and variance of
any random variable by using a set of sigma points (William and
Aaron, 2009). Assume that y = f (x) is a non-linear transform

function of variable x. The state vector x is an n-dimensional
random variable with mean µ and covariance matrix P, χi
represents the set of sigma points for the random variable x.
Therefore, the statistics of the original random variable can
be achieved by the 2n+1 sigma points and the corresponding
weightsWi, which is given as follows:

χ0 = x i = 0

χi = x+
(√

(n+ λ)Px
)
i

i = 0 , ..., n

χi = x−
(√

(n+ λ)Px
)
i−n

n+ 1, ..., 2n

W
m

0
= λ/(n+ λ)

W
c

0
= λ/(n+ λ)+ (1− α2 + β)

W
m

i
= W

c

i
= 1/{2(n+ λ)} i = 1, ..., 2n

(1)

where x is the mean of the sigma points, the number of the sigma
points is n. λ = α2(n + k) − n is a composite scaling parameter,
α controls the spread of the sigma points around x. Making an
adjustment for α can minimize the impact of higher-order terms.
α is usually recommended to range from 0.0001 to 1. Although
there is no specific range of k, it should be ensured that the matrix
(n+λ)Px is positive semi-definitematrix. In general, k = 0. As for
a Gaussian distribution, k is chosen by k = 3− n. The parameter
β is introduced to improve the accuracy of the covariance. As
for a Gaussian distribution, β = 2 is optimal.

(√
(n+ λ)Px

)
i

represents the column i of matrix
(√

(n+ λ)Px
)
.

Suppose that the estimated statistics of y can be determined
by generating a set of sigma points. The estimated statistics of y
are then related to the sample mean y and variance Py, which is
defined

y = f (χi) i = 0, ..., 2n

y =
2n∑
i= 0

Wm
i yi

Py =
2n∑
0
Wc

i (yi − y)(yi − y)T

(2)

Define (2n+ 1)-dimensional vector χ as:

χ = [χ
0
,χ

1
, ...,χ

L
,χ

L+1
, ...,χ

2n
] (3)

Since χi(i = 0, 1, ...2n) is a vector named σ vector, the specific
form of σ is expressed





χ0 = x

χi = x+
√
(n+ λ){chol(Px)}Ti i = 1, ..., n

χi = x−
√
(n+ λ){chol(Px)}Ti i = n+ 1, ..., 2n

(4)

where chol(Px) represents the Cholesky decomposition of Px,
{chol(Px)}Ti is the column i of the transpose of chol(Px).

The conversion result of each column vector of χ using the
following nonlinear function is

y = f (λi) i = 0, 1, ..., 2n (5)
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Then, the mean and variance of y = [y0,y1,..., y2n] can be
expressed

y =
2n∑
i= 0

(W
(m)
i yi)

Py =
2n∑
i= 0

[
W

(c)
i (yi − y)(yi − y)T

] (6)

Unscented Kalman Filter (UKF)
The unscented transform can be applied to Kalman filter
(Hongzhong and Fujimoto, 2014) to estimate state. A general
non-linear tracking system can be expressed as following

xk+1 = F(xi, uk)
yk = H(xk, nk)

(7)

where xi is the state at time k, F is the state update function, and
H is the observation function. uk is the process noise and nk is the
observation noise.

The Kalman filter method which incorporates the unscented
transform is achieved by the following processes.

(1) Initialization state:

x0 = E [x0]

P0 = E
[
(x0 − x0)(x0 − x0)

T
]

(8)

(2) Building expansion matrix:

χk−1 =
[
x̂k−1, x̂k−1 +

√
(n+ λ){chol(Pk−1)}Ti ,

x̂k−1 −
√
(n+ λ){chol(Pk−1)}Ti

]
(9)

where the superscript indicates a value after applying the
state transition function.

(3) Time update:

χk−1 =
[
x̂k−1, x̂k−1 +

√
(n+ λ){chol(Pk−1)}Ti ,

x̂k−1 −
√
(n+ λ){chol(Pk−1)}Ti

]

χk|k−1 = f (χk−1) (10)

χk|k−1 = f (χk−1) is the state transition function which
is applied to the sigma points χk−1, generating a new set
of sigma points χk|k−1. The estimated state x̂k|k−1 and
the estimated covariance Pk|k−1 are the weighted sample
statistics of χk|k−1 given by

x̂k|k−1 =
2n∑

i= 0

[
W

(m)
i (χk|k−1)i

]

Pk|k−1 =
2n∑

i= 0

{
W

(c)
i

[
(χk|k−1)i − x̂k|k−1

]

[
(χk|k−1)i − x̂k|k−1

]T}
+Qk (11)

where Qk is system noise variance. Suppose the observation
function yk|k−1 = h(χk|k−1) generates a third set of
sigma points, the estimated observation state ŷk|k−1 and the
estimated observation covariance Po

k|k−1
are the weighted

sample statistics of given by

yk|k−1 = h(χk|k−1)

ŷk|k−1 =
2n∑
i= 0

[
W

(m)
i (yk|k−1)i

]

Po
k|k−1

=
2n∑
i= 0

{
W

(c)
i

[
(yk|k−1)i − ŷk|k−1

]

[
(yk|k−1)i − ŷk|k−1

]T}
+Rk

(12)

where Rkis observation noise variance.
(4) Measurement update:

Pxk ,yk =
2n∑

i= 0

{
W

(c)
i

[
(χk|k−1)i − x̂k|k−1

] [
(yk|k−1)i − ŷk|k−1

]T}

Kk = Pxk ,ykP
−1
xk,yk

(13)

where Pxk,yk is the sample cross correlation of χk|k−1 and
yk|k−1 Kk is the Kalman gain.

The estimated state and covariance are as follows:

xk = x̂k + Kk(yk − ŷk)

Pk = P−
k
− KkPxk ,ykK

T
k

(14)

Skeleton Points Estimation Using UKF
In the section II, there are fifteen skeleton points can be detected.
In this section, we use UKF to estimate the skeleton points. From
Figure 2 we can see that the skeleton points have been numbered
from 1 to 15. Except the number 1, the other points have a father
node (for example: the father note of point 3 is point 2; the father
note of point 6 is point 2). Let Pi,k, Pi+1,k be the position of point
i, i + 1 at time k with respect to coordinate of Kinect, Pi,k is the
father note of Pi+1,k. t is the sampling interval. Figure 3 shows
the position of Pi,Pi+1 in time k and k + 1. At time k + 1, the
position of Pi+1 is:

Pi+1,k+1 = Pi,k+1 � T(
−−−−−−−→
Pi,k+1P

′
i+1,k) • R

(
θi,k

)

= Pi,k+1 � T(
−−−−−→
Pi,kPi+1,k) • R

(
θi,k

)
(15)

where T is the translation matrix and R is the rotation matrix.
If Pi,k+1 can be calculated at time k + 1, then Pi+1,k+1 can be
computed. In fact, all the points except the first point have a father
point. If the first point P1,k+1 can be estimated, then the other
points can be calculated by Eq. So the state of the UKF can be
defined as

xk = [P1,k, v1,k, p2,k, θ2,k, ..., pi,k, θi,k, ..., P15,k, θ15,k] (16)

where v1,k =
[
vx, vy, vz

]
is the velocity of the first point P1,k, θi,k

is the rotation angle of Pi+1,k+1 relative to Pi,k+1 with respect to
coordinate X0Y0Z0.
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FIGURE 3 | The status of points from i to i+1.

Define the rotation φi,k about the x0 axis as the roll of Pi
in time k, the rotation Ŵi,k about y0 axis as the pitch and the
rotation ψi,k about z0 axis as the yaw, then θi,k =

[
φi,k,Ŵi,k,ψi,k

]
.

According to Euler’s theorem (Diebel, 2006) of finite
rotations, the conversion from Euler angles to quaternion is:




0qi,k
1qi,k
2qi,k
3qi,k


=




cos (φi,k/2)cos(Ŵi,k/2)cos(ψi,k/2)+sin(φi,k/2)sin(Ŵi,k/2)sin(ψi,k/2)
sin(φi,k/2)cos(Ŵi,k/2)cos(ψi,k/2)- cos (φi,k/2)sin(Ŵi,k/2)sin(ψi,k/2)
cos (φi,k/2)sin(Ŵi,k/2)cos(ψi,k/2)+sin(φi,k/2)cos(Ŵi,k/2)sin(ψi,k/2)
cos (φi,k/2)cos(Ŵi,k/2)sin(ψi,k/2)-sin(φi,k/2)sin(Ŵi,k/2)cos(ψi,k/2)


 (17)

And the four Euler parameters are constrained as:

0qi,k2+1qi,k2+2qi,k2+3qi,k2=1 (18)

where 0qi,k is a scalar and (1qi,k, 2qi,k,3qi,k) is a vector. So the
direction cosine matrix R(θi,k) from the father frame to the child
frame is represented as:

R(θi,k)=




0qi,k
2 + 1qi,k

2 − 2qi,k
2 − 3qi,k

2 2(1qi,kq2 − 0qi,k3qi,k ) 2(0qi,k2qi,k + 1qi,k3qi,k)

2(1qi,k2qi,k + 0qi,k3qi,k) 0qi,k
2 − 1qi,k

2 + 2qi,k
2 − 3qi,k

2 2(2qi,k3qi,k − 0qi,k1qi,k)
2(1qi,k3qi,k − 0qi,k2qi,k) 2(0qi,k1qi,k + 2qi,k3qi,k) 0qi,k

2 − 1qi,k
2 − 2qi,k

2 − 3qi,k
2


 (19)

Subscript i represents the point number, but not the parent
child relation. The parent child relation can be known through
Figure 2. P1,k+1 can be calculated as

P1,k+1 = P1,k + v1,k � t (20)

The state update function can be defined as Equation 15 and
Equation 20. Since the position of the points with respect
to coordinate X0Y0Z0 can be measured by Kinect, then the
observation function can be set as

H = [1, 0, 1, 0, ..., 1, 0] (21)

COLLISION AVOIDANCE

Fast Path Planning Using Artificial
Potential Field Method
Artificial potential field method consists of virtual
attractive and repulsive field, which are used to represent
targets and 5 obstacles. For each moving obstacle, a
dynamic constraint (Ren et al., 2005) of the form can be
employed:

fj(q) =
∣∣q− Pj

∣∣2 − D2
obs ≥ 0 (22)

where q is the position of the robot, Pj is the position of
the moving obstacle j. Dobs is the protective distance of each
detected obstacle. When the obstacle is far away from robot,
virtual repulsive field (22) is ignored by the planning algorithm.
When the distance between the moving obstacle and the robot
are less than the protective distance Dobs, the constraints
become activated and the robot will move along the feasible
motion directions. If unfortunately, all the motion directions are
blocked by the obstacles, the robot will stop until the human
moves away.

Active Collision Avoidance Using Expert
System
Since there is randomness in the human movement, only
using real-time path planning is not able to achieve the
purpose of active obstacle avoidance. Therefore, we adopt
an expert system into this collision avoidance system. An
expert base is used in the expert system, which actually is
a decision-making method (Ren et al., 2005; Won et al., 2010).

There are expert knowledge and rules contained in the knowledge
base.

The proposed approach uses the expert system in three cases
depending on the behavior of the human in the workspace of the
robot (DHR represents the distance between the human and the
robot, which is less than DHR_min the dangerous distance):

Case 1: The human is approaching too fast. When the human
approaches the manipulator at the speed vH > vH_danger m/s (in
which vH_danger is the dangerous speed), the new path which is
planned by the system cannot guarantee the safety of the human
in the next second time. The best decision is to make the robot
keep away from the human, instead of planning a new path at
once.

Case 2: The human is approaching slowly. When the human
approaches the manipulator at the speed (0 < vH ≤
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TABLE 1 | The link parameters in D-H model for the GOOGOL GRB3016 robot.

Joints

D-H a α d θ

1 150 −π/2 250 0

2 570 −π 0 −π/2
3 150 π/2 0 0

4 0 −π/2 650 0

5 0 −π/2 0 −π/2
6 0 0 −200 0

vH_dangerm/s), by using artificial potential field method, the
system needs to predict the human motion trail and generate a
new path to avoid the human. Since human behavior is uncertain,
a bounding sphere containing the entire possible motion trail in a
period will be calculated by the system. In this case, the object for
the robot to avoid is the bounding sphere instead of the human.
If the human accelerated (vH > vH_danger m/s) all of a sudden,
the system should react with case 1.

Case 3: The human is static. At the beginning, the system
makes a judgment whether the humanwill impede themovement
of the robot or not. If the impediment exists, a new path should
be generated by using artificial potential field method. Since the
human is static, there is no need for the robot to avoid a bounding
sphere; a shorter, more efficient path is planned by the system.
If the human moved at the speed vH > vH_danger m/s all of a
sudden, the system should react with case 1. While the speed
(vH ≤ vH_danger m/s), the system should react with case 2.

EXPERIMENT

Environment of Experiment
To verify the proposed active collision avoidance system, we
carried out a series of experiments in real-world application. Our
method was compared with method (Flacco et al., 2012) in term
of time and efficiency. To finish the experiments, we executed the
proposed system on an eight-core CPU. Among the eight cores,
four cores were for the visualization and the control of the robot
movement and the other four were for the calculation of complex
position and planning path.

In the experiments, we used a GOOGOL GRB3016 robot with
6 DOF (degree of freedom). Table 1 shows the link parameters
in D-H model of the robot. As to the robot control system,
we adopted the reverse kinematics algorithm (Antonelli et al.,
2003) to design a working path and controlled the robot to
move along the path repetitively. The Brain Storm Optimization
Algorithm also helps in designing a working path (Li et al.,
2018; Song et al., 2018). Furthermore, we built an emulation
scene including the robot manipulator model and the human
model (Figure 5) in the robot control system. For the purpose
of locating the 3D positions of the human and the robot,
we designed a system to measure the positions with a Kinect
and a calibration board. The Kinect was firmly fixed to a
tripod, which is placed 1.6 meters away in vertical distance,
2.1 meters away in horizontal distance and 1.6 meters height

FIGURE 4 | Experiment environment (the person is Dolin and he consents for

the Publication of the Manuscript).

with respect to the robot base and the calibration board was
tightly attached to the robot near the robot base. The Kinect we
used in experiments is Kinect1.0, which can detect the human
with the built-in infrared camera. The resolution of the Kinect
depth images was 320 × 240 pixels and the capture frequency
is 30Hz. The capture field of Kinect can include the working
space of the robot. The distance for a human detection using
Kinect is from 1.0 to 3.0m. The angle of the Kinect should
be adjusted appropriately before the experiments, to ensure
that the capture of the human skeleton and the calibration
board in real time could be successfully carried out during the
experiments. The position relation of the Kinect and the robot
base is determined by the calibration board. Human Assume
that (xk, yk, zk), (xb, yb, zb) and (xc, yc, zc) are the frames of
the Kinect, robot base and the calibration board respectively.
We attached a calibration target to the robot base (Figure 4)
rigidly. Method (Diebel, 2006) was used to calculated the relative
location between the Kinect frame XKYKZK and the calibration
target frame XCYCZC. Then, we used a ruler to measure the
relative location between the robot base frame XBYBZB and
the calibration target frame XCYCZC. In this case, with the
help of a calibration target, we could determine the Kinect
frame XKYKZK , with respect to the robot base frame XBYBZB.
Before the experiments, we should measure and determine
(Ping and Guang-long, 2011; Guanglong and Ping, 2013) the
transformation from the robot base to the calibration board. In
the experiments, by capturing the images of the calibration board
with the Kinect, we could determine the position of the robot
by detecting the corners of the calibration board. Moreover, we
could obtain the positions of the human by the depth information
from the Kinect.

The goal of the experiments is to keep the robot from crashing
into the human who entered the workspace of the robot. The
parameters which are used for the experiment are: vH_danger =
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FIGURE 5 | Experimental scene (the person is Jetty and he consents for the

Publication of the Manuscript).

0.2 m/s, vR_max=2.0 m/s, DHR_min = 0.2m, where vR_max is the
maximum speed of the robot.

During the experiments, the robot moved along the designed
path all the way (as shown in Old path of Figure 6) and the
robot control system calculated the position of the robot EE
with respect to the Kinect frame in real time. The robot control
system calculated the position of the robot EE by substituting
perθ into the D-H transformation matrix, and multiply by the
six D-H transformation matrices. By the changed position of
the end of the manipulator and the time it takes, the velocity of
one can be obtained. When a person entered the workspace, the
Kinect captured the skeleton of the person instantly. Therefore,
according to the captured human skeleton, the robot control
system was able to determine the human moving speed as well
as the human position with respect to the Kinect frame. The
moment human was found to approach robot, depending on
the human moving speed, the system performed the collision
avoidance. For the purpose of verifying the proposed method, we
carry out the experiment with the human moving at the different
speeds. The process of the experiment is showed as follows:
Firstly, the human got close to the robot at a relative biggish speed
which was more than 0.2 m/s. Afterwards, the human moved to
the robot at the speed between 0 and 0.2 m/s. At the end, the
human left the robot.

Results of Experiment
In the experiment, as we planned, a human attempted to
interrupt the works of the robot. The experimental scene is shown
in Figure 5. A 3D virtual scene was built, in order to monitor
the environment around the robot. There was nothing but a
virtual robot in the Initializing virtual scene. When a human
was detected by the Kinect sensor, the 3D skeleton of the human
would be calculated and then the 2D skeleton would be drawn on
the 2D image and 3D skeleton in the virtual scene. In the virtual
scene, the red ball was the closest point of the human with respect
to the robot.

The 3D trajectory of a human and the robot is shown in
Figure 6. The human tried to approach the robot and then leave
the robot. The red line is the robot’s old path. The dash-dot

FIGURE 6 | The 3D trajectory.

FIGURE 7 | The velocity curve of the human and the robot in the direction of

the connections of the human and the robot.

line is the human movement trajectory. The dashed line is the
robot’s new path. To start with, the human approached the robot
fast and the system detected that the approaching speed of the
human was more than vH_danger , then the robot made a judgment
to avoid the human directly. Figure 6 shows that the avoidance
component of the robot is equal to the approach component of
the human. A bounding sphere was calculated by the system, in
order to plan a new path for the robot, when the human slowed
down.

The velocity curve of the human and the robot in the direction
of the connections of the human and the robot are shown
in Figure 7. At the period between 0 s to 1.1th s, the human
got close to the robot at an increasing speed. The avoidance
component of the robot is 0, since the approach component
is less than vH_danger . In the period PH1 between 1.1st s to
2.9th s, the approach component is more than vH_danger , and
the robot accelerated in order to avoid the human. The avoid
component and the approach component should be equal.
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TABLE 2 | Avoidance results of our method and method (Flacco et al., 2012).

Avoidance

time (s)

Avoidance

number

Increased

route (mm)

Our method 5.1 3 976

Method (Flacco et al., 2012) 12.7 5 963

The human slowed down after 2.9th s (PH2). After 3.9th s
(PH3) the human left the robot. The avoid component keeps
positive until 5.1st s (PR2), since the robot needed to avoid
the human by bypassing the bounding sphere. Then the robot
moved close to the old path (PR3) after the human left the
robot.

After the experiment, our method was compared with the
method (Flacco et al., 2012). In our method and method (Flacco
et al., 2012), one Kinect sensor is used to monitor the workspace
of robot for avoid collision. Method (Flacco et al., 2012) evaluates
distances between the robot and possibly moving obstacles
(including humans) based on the concept of depth space and use
the distances to generate repulsive vectors that are used to control
the robot while executing a generic motion task. While Our
method can make an optimal reaction according to the current
state of the human by expert system and artificial potential field
method. When the human moved close to the robot, in our
method, robot took avoidancemeasures directly, while inmethod
(Flacco et al., 2012) a new path for the robot was constantly
planned. In the period of the human slowing down, the way to
avoid the human in our method was to avoid a bounding sphere,
but in method (Flacco et al., 2012) the system had to plan a
new path for the robot again and again since the human blocked
the robot’s path continuously. On one hand, Because the way
of collect information in our method and method (Flacco et al.,
2012) is the same, this ensures that the difference in experimental
results is only caused by different methods. On the other hand,
by comparison, we can know the impact of speed on collision
avoidance.

Table 2 shows the comparative results between our method
and method (Flacco et al., 2012). The avoidance time means
the time during the robot’s deviating from the old path to
plan the new path until returning to the old one, and the
avoidance numbers means the numbers of avoiding the human
and planning the new path in our method and the numbers of
planning the new path in method (Flacco et al., 2012) during
the avoidance time. In method (Flacco et al., 2012), both the
number of the avoidance and the avoidance time is increased.
A new path for the robot was planned again and again owing
to only considering the distance between the robot and the
human in method (Flacco et al., 2012), more planning path
needs and much calculation time needs. In method (Flacco
et al., 2012), the summary number of planning path is 5 and
the avoidance time is 12.7 s. By comparison, in our method,
the system avoided the human twice and planned new path
once, so the total count of avoidance is 3 and the avoidance
time is 5.1 s. To avoid the human, the robot moved in a newly-
planned path, the route increased compared with the old path.

In method (Flacco et al., 2012), the increased route is 963mm,
while that of our method is 976mm. When the human slowed
down, a bounding sphere is calculated by our system so that
the robot can move around the human fast, which results in
shorter avoidance time. But in the method (Flacco et al., 2012),
the system calculated a new path for the robot again and again so
that the robot could move to avoid the human. The avoidance
time of our method is less than half of method (Flacco et al.,
2012), despite the shorter increased route ofmethod (Flacco et al.,
2012).

DISCUSSIONS

Considering safe interaction, human and robot working in
common workspace is usually forbidden. The robot work cell
needs to be rather static, in the current industrial applications
without sensor surveillance. If a human enters the robot work
cell, ensuring the safety of the human and robot by using
additional strategy is very significant. Existing applications of
coexistence between robots and humans have been commonly
used. In these applications, the robot space is optimized to be less
in the condition that physical barriers or human isn’t involved. In
the complex environment, it is likely that humans are mistaken
for an operation objects, such as work pieces. Because of the lack
of the intelligence, the human environment will be full of danger.
In this paper, a Kinect is employed to detect humans, an expert
system is used to analyze humans and artificial potential field
method is used to avoid humans. The distance detecting human
using Kinect is only from 1.0 to 3.0m and the detection angle is 57
degrees in the horizontal direction and 43 degrees in the vertical
direction, thesemake the detection range very narrow. Therefore,
in actual production applications, we can use a few more Kinects
or other solutions to overcome this limitation. After introducing
the intelligence, it can be achieved that the system provides the
human with protection actively.

In the future research, voice will be introduced into the system
so that the robot is able to have communication with the human
who enters its workspace. In this case, the robot can notice the
behavior intention more clearly. Then the avoidance will be more
efficient.

CONCLUSIONS

This paper proposed an active collision avoidance algorithm.
Thanks to the simple and efficient Kinect sensor, the system can
detect the human who enters the workspace of the robot and take
different measures according to the movement of the human.
The proposed algorithm uses UKF to estimate the skeleton of
the human, and employs an expert system to analyze the human
behavior. Moreover, the algorithm also uses artificial potential
field method to plan a new path for the robot to avoid the human.
Finally, the validity of the proposed algorithm is illustrated by the
experiments and the experimental results demonstrate that this
algorithm has the practical value such as collaborative assembly
of human-robot to safeguard the human who enters the working
space of the robot.
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