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ABSTRACT 

This study aims to evaluate the effect of underground coal mining subsidence on the growth of native vegetation. For this study, an 

underground coal mine of South Eastern Coalfields Limited (SECL), India was selected. Changes in vegetation indices were 

analyzed using three remote sensing data of the previous five years. Three period’s Landsat 8 OLI resolution image data were used 

to calculate Normalized Difference Vegetation Index (NDVI) of the years 2014, 2016 and 2018 in QGIS environment. The study 

showed that the local grassland and forest were affected by the mining exploitation and subsidence but those effects were not 

significant to have an adverse impact on the same. The short-term mining was having an impact on the vegetation growth but the 

effects gradually disappeared with the gradual stabilization of the subsided land and in absence of human interference, vegetation 

recovered well. In long-term, subsidence was not having a major impact on the vegetation growth. Thus, coal resources exploitation 

and subsidence of the said mine of SECL did not bring out an adverse impact on a wide range of forest and grassland ecosystems, 

and these ecosystems could carry the partial destruction and ultimately stabilized ecosystems by self-repair. 

 

1. INTRODUCTION 

Mining plays an important role in productions of raw materials, 

minerals and coal to be used for industrial and domestic needs 

(Brunn et al., 2001, Dittmann et al., 2002). The fuel supply and 

energy creation have a major dependency on the mining 

industry (Brunn et al., 2001) due to which it has a vital role in 

the wellbeing of regional to global economies. There are 

various impacts of mining on its surroundings which may lead 

to a number of geological changes such as collision with 

mining cavities, ground movements and deformations of 

aquifers which ultimately leading to mining subsidence. An 

irreversible damage to soil cohesion may occur due to usage of 

heavy machines in coal extraction processes from mine 

galleries and eventually, compression of soil substrates may 

take place (Brunn et al., 2002, Eikhoff et al., 2007).* Several 

adverse environmental impacts of mining subsidence might be 

also produced such as soil erosion, soil and water 

contamination, flooding due to damages to aquifers and 

inundation at the surface, as well as damages to the 

infrastructures. These all have a cumulative impact on the 

growth and health of the native vegetation. Changes in the 

health of vegetation may also act as vital markers for evaluating 

the land changes in a functioning and reclaimed mining region 

(Jat et al., 2008, Zuo et al., 2014). Geographic Information 

Systems (GIS) and Remote Sensing (RS) techniques have 

shown clear advantage over conventional field inspection and 

lab estimations for evaluating long to short-term landscape 

dynamics (Venkatesan and Padmanaban, 2012, Rajchandar et 

al., 2017), particularly for bigger areas, where ground leveling 

and surveying by Global Positioning System (GPS) are 

expensive, labor-intensive and time-consuming, GIS and RS 

offer quick and effective information on geological variations 

and subsidence (Morfeld et al., 2002).  

                                                           
* Corresponding author 

This study aims to evaluate the effect of underground coal 

mining subsidence on the growth of native vegetation through 

the analyses of short-term i.e. five year’s landscape dynamics 

using RS and GIS techniques. 

2. MATERIALS AND METHODS 

2.1 Study site 

The study area is located in Anuppur district of Madhya 

Pradesh, India at the longitude 81º57’55” and latitude 

23º11’17” (Fig. 1). Area falls under SOI toposheet no. 64E/16 

and 64I/4 and comes under north-west section of SECL 

coalfields region. Anuppur – Chirimiri section of SECL railway 

passes through it. 

 Fig 1: Location map of the study area 
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2.2 Satellite data 

Three LANDSAT 8 OLI imageries, covering years 2014–2018 

with 30m spatial resolution (Visalatchi and Padmanaban, 2012, 

Padmanaban and Sudalaimuthu, 2012, Padmanaban, 2012, 

Padmanaban, and Kumar, 2012) were used for the analysis. To 

be consistent with seasonal variations and vegetation health, 

seasons with very less or zero rainfall were considered for the 

study and images with zero cloud cover at area of interest were 

downloaded from United States Geological Survey (USGS) 

gateway (Padmanaban, 2012, Padmanaban, and Kumar, 2012). 

The selected month for image download was May of 2014, 

2016 and 2018. 

 

2.3 Image Processing 

Topographical map and satellite data sources were used for this 

study. LANDSAT 8 OLI data of 143 paths and 44 rows of the 

study area were downloads from USGS website. The image 

processing was done in one of the very popular open source 

software called QGIS. NDVI was calculated in QGIS 

environment. Five classes were made for NDVI images of the 

study area. The temporal change of NDVI was done for the 

same area with different years. 

 

Fig. 2: Methodology for the analysis of vegetation health 

(NDVI) 

 

2.4 Vegetation health and coverage 

 

NDVI calculation was done using formula (Goslee, 2011, 

Streiner, 1993, Bivand et al., 2008): 

 

NDVI = (NIR – Red) / (NIR + Red) 

 

Where,  NIR = Near Infrared Band value, 

R = Red Band value recorded by the Landsat 8 OLI 

imageries 

 

The NDVI value ranges from -1 to +1 (Walston et al., 2009, 

Dubovyk et al., 2013). Higher value of NDVI shows a highly 

productive healthy vegetation i.e. NDVI value for forest ranges 

from 0.6 to 0.8 (Assal et al., 2014) while lower value shows 

lowly productive vegetation for example, shrub and grassland 

shows NDVI value of 0.2-0.3 (Meza Diaz and Blackburn, 2003, 

Bhowmik and Cabral, 2013). The value closer to -1 represents 

damaged vegetation (e.g. usually water) whereas, less than 0.1 

represents a degraded vegetation (e.g. barren areas such as 

sand, rock and snow). In this study NDVI value ranged from 

0.19 – 0.27 hence, the area of interest was found to be covered 

with shrubs and grasslands. Based on the comparative values of 

NDVI in this category, vegetation with higher NDVI values 

was named as healthy vegetation while vegetation with lower 

NDVI values was named as unhealthy and damaged vegetation. 

The obtained NDVI values were classified into five raster zones 

based on natural breaks. Changes in the area coverage of each 

raster zones during five years were calculated and dynamics in 

vegetation health and coverage were quantified. 

 

3. RESULTS AND DISCUSSION 

A decrease in area coverage of vegetation with higher NDVI 

value (healthy vegetation) was observed during 2014 - 2016. It 

was associated with an increase in the area coverage of 

vegetation with lower values of NDVI (unhealthy vegetation). 

Highest decrease in NDVI values was in between 2014 to 2016, 

i.e. the mean NDVI values reduced from 0.27 to 0.24 (Fig. 3, 

Table 1). The healthy vegetation was decreased from 48.86 % 

to 28.41 % with an annual rate of 6.82 % while the damaged 

and unhealthy vegetation was increased from 51.14 to 71.59 

with an annual rate of 10.23 % (Table 1). Thus, due to mining 

subsidence, an overall increase in damaged and unhealthy 

vegetation was seen during 2014 – 2016.  

 

Fig. 3: NDVI map of the damaged area in May 2014, 2016 and 

2018 

During 2016 – 2018, a substantial increase in area coverage of 

healthy vegetation was seen whereas, the area coverage of 

damaged and unhealthy vegetation had shown a decreasing 

tendency. The healthy vegetation was increased by 38.64 % 

while the damaged and unhealthy by 18.18 %. 
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The change in NDVI values directly reflects the change in the 

greenness of the area under consideration. The changes may be 

due to various factors, like change in soil physical structures 

which includes the texture related components viz. sand, silt 

and clay. These textures unite in different ratio to form various 

types of soils which suits for a specific range of plants. 

The subsidence resulted into deformation of the affected land 

and subsequently a change in the texture composition (Tripathi 

et al., 2009). As discussed earlier, due to this, a change in the 

suitability of textures takes place which resulted into an 

imbalance and improper supply of various soil available 

nutrients to the plants, ultimately affecting the major 

physiological processes of the plants like photosynthesis, 

chlorophyll synthesis, etc. and thus consequently impaired 

chlorophyll synthesis resulted into the discoloration of the 

leaves. Chlorophyll imparts green color to the plants and as 

NDVI measures the greenness, its values decreases abruptly 

due to damages in native vegetation. 

Table 1: Vegetation health changes between 2014 – 2016 and 

2016 – 2018 

NDVI 

Values 

Vegetation area 

change from 2014 to 

2016 

Vegetation area 

change from 2016 to 

2018 

(%) (m2) (%) (m2) 

0.25 - 

0.27 

Decreased 

by 50 % 
9000 

Increased by 

340 % 
30600 

0.24- 

0.25 

Decreased 

by 34.78 % 
7200 No change 0 

0.22 - 

0.24 

Increased by 

23.52 
3600 

Decreased 

by 28.57 
5400 

0.20 - 

0.22 

Increased by 

100 % 
10800 

Decreased 

by 45.83 % 
9900 

0.19 - 

0.20 

Increased by 

12.5 % 
1800 

Decreased 

by 94.44 % 
15300 

 

CONCLUSIONS 

By above analysis of vegetation index changes of previous five 

years from three time’s imagery, it can be seen that from 2014 

to 2016, almost entire vegetation indices indicated a declining 

trend and from 2016 to 2018, the vegetation index had tended 

to increase. This proposes that at the initial stage of mining 

subsidence, damages to surface structures may had a negative 

impact on the vegetation growth, but due to gradual 

stabilization of the subsided land, adequate rainfall and absence 

of human interference in the region, the growth had resumed. 

Thus subsidence impact on the growth of vegetation had 

decreased to a major extent with time. 
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