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Detection of biomarker genes and their regulatory doses of chemical compounds (DCCs)

is one of the most important tasks in toxicogenomic studies as well as in drug design and

development. There is an online computational platform “Toxygates” to identify biomarker

genes and their regulatory DCCs by co-clustering approach. Nevertheless, the algorithm

of that platform based on hierarchical clustering (HC) does not share gene-DCC two-way

information simultaneously during co-clustering between genes and DCCs. Also it is

sensitive to outlying observations. Thus, this platform may produce misleading results

in some cases. The probabilistic hidden variable model (PHVM) is a more effective

co-clustering approach that share two-way information simultaneously, but it is also

sensitive to outlying observations. Therefore, in this paper we have proposed logistic

probabilistic hidden variable model (LPHVM) for robust co-clustering between genes

and DCCs, since gene expression data are often contaminated by outlying observations.

We have investigated the performance of the proposed LPHVM co-clustering approach

in a comparison with the conventional PHVM and Toxygates co-clustering approaches

using simulated and real life TGP gene expression datasets, respectively. Simulation

results show that the proposed method improved the performance over the conventional

PHVM in presence of outliers; otherwise, it keeps equal performance. In the case

of real life TGP data analysis, three DCCs (glibenclamide-low, perhexilline-low, and

hexachlorobenzene-medium) for glutathione metabolism pathway dataset as well as

two DCCs (acetaminophen-medium and methapyrilene-low) for PPAR signaling pathway

dataset were incorrectly co-clustered by the Toxygates online platform, while only

one DCC (hexachlorobenzene-low) for glutathione metabolism pathway was incorrectly

co-clustered by the proposed LPHVM approach. Our findings from the real data analysis

are also supported by the other findings in the literature.

Keywords: toxicogenomic biomarker, doses of chemical compounds (DCCs), co-clustering, outlying observations,

logistic transformation, probabilistic hidden variable model (PHVM), logistic probabilistic hidden variable model

(LPHVM)
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INTRODUCTION

Toxicogenomics studies combines toxicology with several omics
technologies (genomics, transcriptomics, proteomics, and

metabolomics) to assess the risk of toxins (small molecules,
peptides, or proteins) and chemical agents (drugs, gasoline,
alcohol, pesticides, fuel oil, and cosmetics) in organism (NRC,
2007; Afshari et al., 2011). Through integration of these
omics technologies with bioinformatics, toxicogenomics can
be used to suggest the molecular mechanism of toxicity.
This can reduce the cost in terms of time, labor, compound
synthesis, and animal use which are main limitations of
traditional toxicology work (Nuwaysir et al., 1999; Chen
et al., 2012). In drug discovery and development, it is
also necessary to assess the doses of chemical compounds
(DCCs) toxicity administering these DCCs on individuals
for measuring drugs’ safety. This assessment can be done
by toxicogenomic biomarkers those are upregulated or
downregulated by the influence of a set of DCCs on individuals.
These toxicogenomic biomarkers can be identified from the
extensive gene-treatment expression dataset of target organs of
individuals (Fielden et al., 2007; Uehara et al., 2008; Igarashi
et al., 2015).

An online toxicogenomic data analysis platform “ToxDB”

increases its predictive power based on the pathway level
gene expression data (Hardt et al., 2016). It calculates the
pathway scores for a chemical compound to identify significant
biomarker genes using t-statistic from different pathways.
Nevertheless, there is no facility in this platform to study another
interesting problem of relationship between gene groups and
DCCs groups asserted by Afshari et al. (2011). To address
this problem another online platform “Toxygates” produces co-
clusters between genes and DCCs using hierarchical clustering
(HC) (Nyström-Persson et al., 2017). But HC does not use two-
way (gene-DCC) information simultaneously for co-clustering
and it is sensitive to outlying observations (García-Escudero
et al., 2010). Probabilistic hidden variable model (PHVM) has
been developed for co-clustering between words and documents
in a text mining problem (Hofmann, 2001). It uses two-way
(row-column) information simultaneously during co-clustering.

It was also successfully used in detecting hidden patters of
biological profiling datasets (Joung et al., 2006; Bicego et al.,
2010). Therefore, PHVM would be more effective approach than
HC for co-clustering between genes and DCCs which is also
supported by Joung et al. (2006). However, the PHVM algorithm
is sensitive to outlying observations of gene expression. These
outlying observations often occur in the gene expression dataset
due to several steps involve in the data generating processes
from hybridization to image analysis including scratches or
dust on the surface, imperfections in the glass or imperfections
in the array production (Gottardo et al., 2006; Upton et al.,
2009). The outliers in the dataset may arise following Tukey–
Huber contamination model (THCM; Agostinelli et al., 2015) or
independent contamination model (ICM; Alqallaf et al., 2009).
To overcome the robustness problems of conventional PHVM

approach an attempt is made to propose logistic PHVMapproach
called as LPHVM for robust co-clustering between genes and

DCCs to discover toxicogenomic biomarkers and their regulatory
DCCs.

METHODS AND MATERIALS

Let us consider a toxicogenomic experimental design as
described in Figure 1 that reflects Japanese Toxicogenomics
Project (TGP) (Uehara, 2010) experiment for a single time point
from which the toxygates (Nyström-Persson et al., 2013) data
were collected. According to this design, gene expression data of
both treatment and control group of animal samples are assumed
to be generated. Then the fold change gene expression data for a
single time point are computed from the treatment and control
group of animals. It can measure the actual treatment (DCCs)
effects on the genes. The fold change gene-expression value of a
gene is defined as follows:

Ytlq = log2

(

xtlq

x′tlq

)

= log2
(

xtlq
)

− log2
(

x′tlq
)

, (1)

where Ytlq is the fold change expression value of a gene for the
qth (q = 1, 2, 3) sample under lth (l = Low, Middle, High) dose
level of the tth (t = 1, 2, · · · ,T) chemical compound, xtlq is
the expression value of that gene of mentioned sample under the
treatment group and xtlq

′ is the expression value of the same gene
of the respective control sample. The effect of compound-dose
combination or treatment/DCCs on the animal can be measured
by Y tl. which is the average fold change value over the samples.
In this paper, our objective is to robust co-clustering between
genes and DCCs to discover toxicogenomic biomarkers and their
regulatory DCCs from the fold change gene expression data using
the proposed LPHVM.

Logistic Transformation of Fold Change
Gene Expression Data
There are two ways to obtain robust estimates in presence
of outlying observations (1) applying the robust methods (2)
applying conventional methods on the modified dataset. The
modification of the outlier contaminated dataset can be done
deleting the outlying observations from the dataset or applying
transformation on the dataset. Nonetheless, application of robust
methods is complicated than using the conventional methods
and deletion of outlying observations loses the information of the
dataset. Hence, transformation is the better option for reducing
outlier effects. Several authors (Box and Cox, 1964; Atkinson,
1982; Carroll, 1982) have been proved that transformation
based robust methods outperform the conventional methods in
reducing outlier effects. Thus, in this paper we consider logistic
transformation for reducing outlier effects from the dataset.
Before application of logistic transformation in the dataset we
have taken average value (Y tl.) of the fold change gene expression
(Ytlq) over the samples.We denote this average value by F

(

Gi,Cj

)

for the convenience of further use. In toxicogenomic data the
expression profile of a subset of genes is highly correlated across
a subset of conditions/treatments (Madeira and Oliveira, 2004;
Bicego et al., 2010; Afshari et al., 2011). Interestingly, in the
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FIGURE 1 | A typical toxicogenomic experimental model for a single time point according to which gene expression data of the animal samples can be collected. In

the figure there is a treatment group of animals and a control group of animals from which the fold change gene expression data can be obtained.

FIGURE 2 | Average gene and doses of chemical compounds co-clustering ER are plotted against the rate of outliers, when each of the data sets are simulated 100

times and outliers in the datasets are introduced using THCM. In the figure (A) for D1 dataset and (B) for D2 dataset.

gene expression or average fold change gene expression data
there is a subset of genes which consists an upregulated and a
downregulated clusters of genes which is highly correlated over a
subset of DCCs. Therefore, we take absolute of the average fold
change expression data to merge upregulated and downregulated
clusters of genes into a single cluster/subset which are regulated
by a subset of DCCs. Thereafter, the subset of genes forms a co-
cluster with its regulatory subset of DCCs. Since in this study, we
consider all the biomarker and non-biomarker genes (genes are
not affected by DCCs) in a pathway, the non-biomarker genes
make another co-cluster together with non-regulatory DCCs
(which do not affect the expression patterns of the genes in a
specific pathway). The term co-cluster refers to the clustering
of correlated row (genes) and column (DCCs) simultaneously.
Now we apply logistic transformation on the (

∣

∣F
(

Gi,Cj

)
∣

∣). If

there are extreme values of
∣

∣F
(

Gi,Cj

)
∣

∣ the logistic transformation
bring them within the range of 0–1. The other transformation
methods like Box-Cox family of power transformation returns
unbounded value for the extreme one. The observed n×m (gene-
DCCs) fold change gene expression data matrix consisting of
G = (G1, G2, . . . , Gn) genes and C = (C1, C2, . . . , Cm) DCCs
is transformed using logistic function

#(Gi,Cj) =

(

1

1+ exp(−
∣

∣F(Gi,Cj)
∣

∣

)

× 100

Similar to other works (Joung et al., 2006; Bicego et al., 2010)
we assume the transformed value #(Gi,Cj) as the count value for
applying PHVM.
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FIGURE 3 | Gene and doses of chemical compounds co-clustered view retrieved from the LPHVM generated gene and DCCs joint probability. (A) Represents

glutathione metabolism pathway dataset at 24 h time point. (B) Represents PPAR signaling pathway dataset at 24 h time point. (C) Represents glutathione

metabolism pathway dataset for all time points of Toxygates data.

Number of Co-clusters (k) Prediction
As we see from the previous section “logistic transformation of
fold change gene expression data” in toxicogenomic dataset there
are hidden patters or co-clusters between genes and DCCs. Thus
the number of clusters in the DCCs is equal to the number of
clusters in the genes. Before applying PHVM it is required to
know the number of co-clusters in the dataset. Therefore, in this
study, we consider gap statistic (Tibshirani et al., 2001) the most
popular and reliable algorithm for predicting the number of co-
clusters in the dataset. We use R function “fviz_nbclust” which
required packages “factoextra” and “NbClust” (Malika et al.,
2014) in order to predict number of co-clusters in the dataset via
gap statistic. The detail algorithm of gap statistic is given in the
Supplementary Material.

Robust Co-clustering Using Logistic
Probabilistic Hidden Variable Model
In order to perform robust co-clustering between genes and
DCCs we propose LPHVM approach. We define LPHVM as
the application of PHVM on the count valued dataset which is
obtained transforming absolute value of the fold change gene
expression data by logistic transformation. For this standpoint,
let us consider n × m gene-DCC count valued fold change gene
expression data matrix consisting of G = (G1, G2, . . . , Gn)
genes and C = (C1, C2, . . . , Cm) DCCs. LPHVM assumes that
there prevail a certain number of unobserved hidden co-clusters
or clusters underlying the gene-DCC count valued data matrix.
We have estimated the number of co-clusters (k) in the dataset
using gap statistic algorithm proposed by Tibshirani et al. (2001).
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Introducing the hidden variable H = (H1, H2, . . . , Hk; r =

1, 2, . . . , k) the model quantifies the relationships Pr (Gi|Hr),
Pr(Cj|Hr), and Pr

(

Gi,Cj

)

. The following are the probability
definition and underlying assumptions of LPHVM accordingly:
(1) Pr(Hr) is the probability of the rth co-cluster/cluster and
∑k

r= 1 Pr(Hr) = 1. (2) Pr (Gi|Hr) is the probability of the
ith gene over the rth co-cluster and ∀Hr;

∑n
i= 1 Pr(Gi|Hr) =

1. (3) Pr(Cj|Hr) is the probability of the jth DCC over the
rth co-cluster and ∀Hr;

∑m
j= 1 Pr(Cj|Hr) = 1. (4) Pr

(

Gi,Cj

)

is the joint probability of the ith gene and the jth DCC
and

∑n
i= 1

∑m
j= 1 Pr

(

Gi,Cj

)

= 1. Based on these definition and

assumptions we obtain the joint probability of the gene-DCC
observed pair (Gi,Cj) considering hidden co-cluster Hr as
follows:

Pr
(

Gi,Cj

)

= Pr
(

Cj

)

Pr(Gi|Cj)

Where,

Pr
(

Gi|Cj

)

=
∑k

r= 1
Pr(Gi|Hr)Pr(Hr|Cj)

Applying Bayes’ rule, the gene-DCC joint probability Pr
(

Gi,Cj

)

can be written as

Pr
(

Gi,Cj

)

=
∑k

r= 1
Pr (Gi|Hr) Pr

(

Cj|Hr

)

Pr(Hr)

So as to estimate the parameters of the model, we need to
maximize the total likelihood of the observations:

L(G,C) =
∑n

i=1

∑m

j= 1
#(Gi,Cj) log Pr(Gi,Cj)

We have applied the widely used Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) for estimating the
maximum likelihood parameters of the proposed model. The EM
algorithm starts with a random set of initial parameter values and
iterates both the expectation (E-step) andmaximization (M-step)
step alternatively until a certain convergence criteria is satisfied.
For this study, we have taken the values of initial parameters
from dirichlet distribution and the stopping condition for EM
estimation was set to <0.00001 (difference between two log
likelihood of successive EM iteration). The E and M-step for the
total likelihood can be given as follows:

E-step:

Pr
(

Hr|Gi,Cj

)

=
Pr (Gi|Hr)Pr

(

Cj|Hr

)

Pr(Hr)
∑k

r′ = 1 Pr
(

Gi|Hr
′

)

Pr
(

Cj|Hr′
)

Pr(Hr′ )

M-step:

Pr (Hr) =

∑n
i= 1

∑m
j= 1 #(Gi,Cj)Pr

(

Hr|Gi,Cj

)

∑n
i= 1

∑m
j= 1

∑k
r′ = 1 #(Gi,Cj)Pr

(

Hr′ |Gi,Cj

)

Pr (Gi|Hr) =

∑m
j= 1 #(Gi,Cj)Pr

(

Hr|Gi,Cj

)

∑n
i′ = 1

∑m
j= 1 #(Gi′ ,Cj)Pr

(

Hr|Gi′ ,Cj

)

Pr
(

Cj|Hr

)

=

∑n
i= 1 #(Gi,Cj)Pr

(

Hr|Gi,Cj

)

∑n
i= 1

∑m
j′ = 1 #(Gi,Cj′ )Pr

(

Hr|Gi,Cj′
)

Once the parameters Pr (Gi|Hr) and Pr(Cj|Hr) have been
estimated the genes and DCCs are clustered independently and
co-clustered simultaneously. The gene (Gi) and DCC (Cj) will
belong to co-cluster r if

Pr (Gi|Hr) = argmaxr′Pr (Gi|Hr′) ; i = 1, 2,

· · · , n; r = 1, 2, . . . , k and

Pr
(

Cj

∣

∣Hr

)

= argmaxr′Pr
(

Cj

∣

∣Hr′
)

; j = 1, 2,

. . . , m; r = 1, 2, . . . , k

At the same time, if the gene (Gi) and the DCC (Cj) is grouped
into a co-cluster (r) and this pair has the highest joint probability
Pr
(

Gi,Cj

)

in that co-cluster (Figure 3).

Extraction of Toxicogenomic Biomarker
Genes and Their Regulatory Doses of
Chemical Compounds
As described in section “logistic transformation of gene
expression data” the biomarker genes form co-clusters with
their respective regulatory DCCs. Additionally, the non-
biomarker genes in a pathway form another co-cluster with
non-regulatory DCCs. The LPHVM grouped the genes and
DCCs simultaneously to their respective co-clusters. Zhu
et al. (2005) has shown that the PHVM generated co-
occurrence probabilities between correlated genes and chemical
compounds which co-occur more frequently are higher than
others. Biological relationship among these correlated genes and
chemical compounds is also stronger. Therefore, we ranked
the co-clusters based on the average LPHVM generated joint
probability

(

Pr
(

Gi,Cj

))

of gene-DCC within the co-clusters.
The co-cluster having largest average joint probability contains
most important biomarker genes and their regulatory DCCs and
so on. The non-biomarker genes and non-regulatory DCCs in
a dataset of a particular pathway are filtered in a co-cluster
by LPHVM which have the smallest average joint probability.
Except this co-cluster (co-cluster having smallest average joint
probability) others are the co-clusters of biomarker genes and
their regulatory DCCs and we define these co-clusters as
biomarker co-clusters. We extract the toxicogenomic biomarker
genes and their regulatory DCCs from these biomarker co-
clusters.

Up/Down-Regulated Biomarker Genes and
Ranking of Doses of Chemical Compounds
The biomarker co-clusters consisting of biomarker genes and
their regulatory DCCs are separated from the whole gene-DCC
fold change data matrix which is discussed in the previous
section. Within this co-clustering matrix a subset of biomarker
genes may be upregulated corresponding to a subset of DCCs
or downregulated corresponding to another subset of DCCs.
These can be observed from the average fold change value
(Y tl.) of the co-clustering matrix. For example, a biomarker
is define as up or down-regulated gene corresponding to the
lth dose level of the tth chemical compounds if Y tl. > 0 or
Y tl. < 0. Then this dose of chemical compound is said to
be a regulatory DCC. Furthermore, for ranking the biomarker
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gene regulatory DCCs and their relationships with biomarker
genes we have separated a sub matrix of biomarker genes and
their regulatory DCCs (biomarker co-clusters) from the LPHVM
generated gene-DCC joint probability Pr

(

Gi,Cj

)

matrix. The
biomarker gene regulatory DCCs are ranked according to their
average joint probability value over all biomarkers. We also rank
the relationships among biomarker genes and their regulatory
DCCs based on their joint probability. The ranking is made
considering the formula:

(

Zj/i,j

max
(

Zj/i,j
)

)

× 100

where Zj is the average joint probability of a DCC over the
biomarkers or Zi,j is the joint probability of gene Gi and DCC
Cj within the biomarker co-clusters.

Robustness of the Proposed Algorithm
We investigate the robustness of the proposed (LPHVM)
algorithm and conventional PHVM using simulated datasets
in absence and presence of outliers in the dataset based
on the co-clustering /clustering error rate (ER). The genes
and DCCs which are considered in one co-cluster/cluster in
the simulated data are incorrectly assigned in another co-
cluster/cluster by the PHVM or LPHVM is considered as
the miss co-clustered/clustered observations. The ER is the
percentage of miss co-clustered/clustered observations which is
calculated as:

(

tolal miss co− clustered/clustered observations

Total observations

)

× 100

Computational Steps of LPHVM at a
Glance
For detecting the toxicogenomic biomarker genes and their
regulatory DCCs from the pathway level toxicogenomic dataset
using LPHVM the following steps are to be considered for desired
outputs:

Step 1: Obtain gene expression data of treatment
and control group of animals from the toxicogenomic
experiment (Figure 1). Thereafter, compute fold change
gene expression data using Equation (1) and then make it
absolute.

Step 2: Apply logistic transformation on the dataset obtain
from step 1 and assume the transformed value as count
value.

Step 3: Estimate the number of co-clusters in the dataset
which is obtained from step 2.

Step 4: Obtain robust co-clusters applying PHVM on the
dataset obtained from step 2 using the number of co-clusters
which we get from step 3.

Step 5: Calculate average joint probability of gene-DCC
within the co-clusters and ranked them.

Step 6: Separate the co-clusters of biomarker genes and their
regulatory DCCs from the co-cluster which have smallest average
joint probability of gene-DCC.

Step 7: The genes and DCCs in the separated co-clusters
which we get from step 6 are the toxicogenomic biomarkers and
their regulatory DCCs.

Step 8: A biomarker gene obtains from step 7 may
be upregulated corresponding to a DCC or downregulated
corresponding to another DCC. A biomarker gene is said to
be a up or down-regulated if its average fold change value
corresponding to the lth dose level of the tth chemical compound
is Y tl. > 0 or Y tl. < 0.

Simulated Datasets
To investigate the performance of the proposed LPHVM
algorithm over the conventional PHVM we have simulated two
sets of pathway level fold change gene expression data D1(n =

50 × m = 30) and D2(n = 50 × m = 60) imitating the
toxicogenomic experiment given in Figure 1. Alongside these a
pathway level dataset considering all time points of toxygates
data are analyzed in the real data section. According to this
experiment the fold change gene expression data (Ytlq) have been
generated using the following model:

DCCs

group-1

DCCs

group-2

DCCs

group-3

Gene

group-11

+F11 0 0

Gene

group-12

–F12 0 0

Ytlq = Gene

group-21

0 +F21 0 +N(0, σ2)

Gene

group-22

0 –F22 0

Gene

group-3

0 0 0 (2)

In the above model, +F11and +F21 represent the fold change
expression values for upregulated genes under the DCCs group
1 and 2, respectively. Similarly, –F12, and –F22 represent the
fold change expression values for the downregulated genes
under the DCCs group 1 and 2, respectively. The 0s represent
there is no compound effects on the respective gene group
and N(0, σ 2) represents the random error term generated from
normal distribution with mean 0 and variance σ 2. Now if we
take absolute value of the fold change gene expression data
generated from the above data generating model (2), the fold
change gene expression data +F11 and –F12 will merge into a
single gene group-1 and make a co-cluster with their correlated
DCCs group-1. Accordingly, +F21 and –F22 will merge into a
single gene group-2 and make a co-cluster with their correlated
DCCs group-2. The rest of the genes which are not regulated
by any DCCs make a gene group-3 and the DCCs that do not
regulate the expression pattern of genes make a DCCs group-
3. The gene group-3 and DCCs group-3 together will make
another co-cluster. These co-clusters can be retrieved by the
LPHVM. In the simulated datasets n represents the number of
genes (Gi; i = 1, 2, . . . , n) andm represents the number of DCCs
(Cj; j = 1, 2, . . . ,m). The data generation procedures for D1 and
D2 datasets are given in the Supplementary Material.
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Real Datasets
Several studies proved that molecular network or pathway based
analysis improved the predictive power of gene expression data
(Yildirimman et al., 2011; Hofree et al., 2013). Hardt et al. (2016)
also analyzed the pathway level data from in vitro and in vivo
experiment of human and rat model. Presently, pathway based
analysis in cancer research has also advanced promptly since
pathway level analysis able to produce more stable biomarkers
(Kim, 2017). Since performance of any method cannot be
measured without known dataset. Besides the simulation study,
to investigate the performance of the proposed method compare
to other existing methods we use two known datasets of
glutathione metabolism and PPAR signaling pathways. The fold
change expression data of the TGP experiment for glutathione
metabolism and PPAR signaling pathway for some selected
DCCs of the respective pathway at 24 h time point have
been downloaded from toxygates (https://toxygates.nibiohn.
go.jp/toxygates/#columns). Because the compounds’ toxicity
at 24 h time point is more visible compare to other time
points (Nyström-Persson et al., 2013). Alongside these a
dataset consisting of glutathione metabolism pathway genes and
glutathione depleting and non-glutathione depleting compounds
(Nyström-Persson et al., 2013) for all time points is also
considered for analysis to know about the toxicity of DCCs in
other time points.

RESULTS

Simulation Study
We investigate the performance of our proposed method
(LPHVM) by comparing it with the conventional PHVM using
simulated datasets D1 and D2 in absence and presence of
outlying observations for robust co-clustering between genes and
DCCs to discover biomarker genes and their regulatory DCCs.
The number of co-clusters/clusters for both of the simulated
datasets is estimated as 3 via gap statistic as per the datasets
are simulated (Figure S1). For calculating average co-clustering
and clustering ER we have simulated each of the datasets 100
times. Every time of data simulation outliers are introduced
in the dataset using the data contamination methods THCM
and ICM at the same time ER are calculated for PHVM
and LPHVM applying these methods on the datasets. The
description of the data contamination by outliers, THCM and
ICM are given in the Supplementary Material. Here it should

be mentioned that in the case of THCM we have contaminated
the simulated datasets by 5–50% rate of outliers. Similarly, in
the case of ICM we have considered the range of probability
of at least one component of the dataset is to be contaminated
is 0.14–0.60 for D1 dataset and 0.165–0.5962 for D2 dataset.
Figure 2 visualizes the average co-clustering ER between genes
and DCCs for datasets D1 and D2 in absence and presence of
outliers when the datasets are contaminated by outliers using
the THCM. The Table 1 shows the average co-clustering ER
between genes and DCCs in absence and presence of outliers
for the simulated datasets D1 and D2 when the datasets are
contaminated by outliers using ICM. Figure S2 and Table S1

in the Supplementary Material show the average clustering ER
for gene and DCCs. It is observed from the mentioned figures
and tables that in absence of outlier both of the proposed
LPHVM and conventional PHVM approaches produce 0 ER.
However, in presence of outlaying observations in the datasets the
proposed approach produce far smaller ER than the conventional
approach for both of the data contamination methods (THCM
and ICM). The simulated data structure, structure of the data
when row (gene) and column (DCCs) entities are randomly
allocated and proposed method recovered structure of the data
are given in the Supplementary Material (Figures S3, S4) for the
datasets D1 and D2. From these figures it is observed that the
proposed algorithm is efficient for co-clustering between genes
and DCCs of the pathway level fold change gene expression
data. Figure S3C represents the dataset D1 where all the genes
and DCCs are grouped into three co-clusters (co-clusters 1,
2, and 3) and within co-cluster average joint probability of
gene-DCC are given in Table 3. From where it is found that
co-cluster-1 produces the smallest average joint probability of
gene-DCC. Therefore, co-cluster 2 and 3 are the co-cluster of
biomarker genes and their regulatory DCCs for the dataset
D1. Similarly, for D2 dataset co-cluster-3 produces the smallest
average joint probability of gene-DCC (Table 3). Thus, co-cluster
1 and 2 are the biomarker co-clusters consisting of biomarker
genes and their regulatory DCCs. The biomarker genes and
their regulatory DCCs that we get from the biomarker co-
clusters of the simulated datasets are given in the Table S9.
Ranking of the biomarker regulatory DCCs are performed
based on the biomarker gene-DCC joint probability matrix of
biomarker co-clusters following the raking method described in
sub section (Up/Down-regulated Biomarker Genes and Ranking
of Doses of Chemical Compounds). The results are given in

TABLE 1 | Average values of the gene and doses of chemical compounds co-clustering ER for the simulated datasets D1 and D2 when each of the datasets are

simulated 100 times and contaminated by outlier using ICM.

Dataset Method Probability of at least one component in the dataset to be contaminated (ε)

0.00 0.14 0.26 0.36 0.45 0.53 0.60

D1 PHVM 0.175 24.675 28.950 32.912 33.500 35.125 38.487

Proposed 0.025 0.387 0.612 0.725 1.0 1.862 2.500

0.00 0.165 0.3031 0.4187 0.5154 0.5962

D2 PHVM 0.00 25.390 26.563 29.554 32.172 39.754

Proposed 0.00 0.163 0.945 1.481 1.600 2.072
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TABLE 2 | Upregulated and downregulated biomarker genes and their regulatory

doses of chemical compounds for real life datasets.

Dataset Biomarker genes Biomarker gene regulatory DCCs

Glutathione

metabolism

pathway

Gsta4, Gstm1, Sms, Rrm1,

Odc1, Gsta2/Gsta5, Gss,

Gstm4,

LOC100912604/Srm, Gclm,

Gclc, Mgst2, Gstp1, Gsr,

Gpx2, G6pd, Gsta5, Hpgds,

Mgst3, Gstm7, Oplah, Ggt5

hexachlorobenzene_Low

acetaminophen_Low

nitrofurazone_Middle

methapyrilene_High

acetaminophen_Middle

nitrofurazone_High

acetaminophen_High

PPAR

signaling

pathway

Dbi, Acsl1, Acadl, Hmgcs2,

Plin2, Slc27a2, Acadm,

Fads2, Fabp3, Me1,

Sorbs1, Acsl3, Cyp4a2,

Aqp7, Cpt1a, Cyp8b1,

OC100365047,

LOC100910385, Angptl4,

Cpt1b, Cpt2, Plin5, Cyp4a3,

Acaa1a, Cyp4a1, Ehhadh,

Pdpk1, Apoa5, Fabp4,

Cyp27a1, Cpt1c, Fabp5

benzbromarone_Middle

gemfibrozil_Middle

gemfibrozil_High aspirin_Low

aspirin_Middle

aspirin_High

WY14643_Low

benzbromarone_High

clofibrate_High

WY14643_Middle

WY14643_High

TABLE 3 | Average values of the Gene and DCCs joint probabilities within the

co-clusters generated by the proposed LPHVM algorithm for the simulated and

real life datasets.

Dataset Co-cluster-1 Co-cluster-2 Cocluster-3

D1 0.0006095721 0.0010120670 0.0010117088

D2 0.0005162618 0.0005163485 0.0003147069

Glutathione metabolism pathway 0.0006196723 0.0005331547

PPAR signaling pathway 0.0004471087 0.0003704091

the Supplementary Material (Table S10) for both D1 and D2

datasets.

Analysis of Glutathione Metabolism
Pathway Data
Reactive oxygen species (ROS) are produced by living organisms
as a normal product as a result of normal cellular metabolism.
However, in presence of environmental pollutants or toxic
chemical the production of ROS increased dramatically. It is
highly reactive molecules and can damage cell structures such as
carbohydrates, nucleic acids, lipids, and proteins and alter their
functions. In the liver, glutathione is an important antioxidant;
a major detoxification player which scavenges ROS. Thus
imbalance in the abundance of ROS and glutathione/antioxidant
in favor of ROS in the liver in presence of toxic chemicals/drugs
causes’ drug induced liver injury. Subsequently, gene expression
changes occur simultaneously in response to the glutathione
depletion or after the glutathione depletion (Gao et al.,
2010; Birben et al., 2012; Nyström-Persson et al., 2013). In
order to identify glutathione depletion related biomarker
genes and their regulatory DCCs as well as to investigate the
performance of the proposed LPHVM approach we use known
fold change gene expression dataset of glutathione metabolism
pathway. The fold change gene expression dataset consists

TABLE 4 | Biomarker genes regulatory doses of chemical compounds ranking for

real datasets (glutathione metabolism and PPAR signaling pathway).

Dataset Doses of chemical

compounds

Percent score

Glutathione metabolism

pathway

acetaminophen_High 100.00

nitrofurazone_High 99.59

acetaminophen_Middle 95.98

methapyrilene_High 88.66

nitrofurazone_Middle 82.24

acetaminophen_Low 77.84

hexachlorobenzene_Low 74.57

PPAR signaling pathway WY14643_High 100.00

WY14643_Middle 97.59

clofibrate_High 93.25

aspirin_High 92.91

benzbromarone_High 92.25

WY14643_Low 91.19

aspirin_Middle 87.93

aspirin_Low 86.41

gemfibrozil_High 85.51

gemfibrozil_Middle 84.52

benzbromarone_Middle 79.07

62 glutathione metabolism pathway genes, three glutathione
depleting compounds (acetaminophen, methapyrilene, and
nitrofurazone) and seven non-glutathione depleting compounds
(erythromycin, hexachlorobenzene, isoniazid, gentamicin,
glibenclamide, penicillamine, and perhexilline) (Nyström-
Persson et al., 2013) along with the dose levels (low, middle,
and high) for 24 h time point. The number of co-clusters
which is required in applying LPHVM for this dataset is
estimated as 2 (Figure S1) via gap statistic. Figure 3A shows
actual co-clusters in the glutathione metabolism pathway
dataset. The genes and DCCs in the co-clusters are given in
the Table S2. The average joint probabilities of gene-DCC
within the co-clusters are 0.0006196723 and 0.0005331547
(Table 3), respectively for co-cluster-1 and co-cluster-2.
Thus, Co-cluster-1 is the co-cluster of biomarker genes and
glutathione depleting DCCs as it produces highest average
joint probability. The biomarker genes and their regulatory
DCCs in co-cluster-1 are given in Table 2. Additionally, the
upregulated and downregulated biomarker genes corresponding
to their regulatory DCCs are presented in the Figure S7A. For
the same dataset the clustering results (heatmap) produced
by toxygates are given in Figure S5 where glibenclamide-low,
perhexilline-low, and hexachlorobenzene-medium dose level
are incorrectly co-clustered whereas only hexachlorobenzene-
low dose is incorrectly co-clustered by the proposed LPHVM
approach according to Nyström-Persson et al. (2013). The
biomarker genes in co-cluster-1 are functionally annotated
by the online database DAVID (Huang da et al., 2009) and
the results are given in the Tables S5, S6. The results show
that the biomarker genes are significant in different biological

Frontiers in Genetics | www.frontiersin.org 8 November 2018 | Volume 9 | Article 516

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hasan et al. Robust Co-clustering to Discover Toxicogenomic Biomarkers

TABLE 5 | Top 20 (ranked) biomarker gene and their regulatory doses of chemical compound relationships for glutathione metabolism pathway and PPAR signaling

pathway datasets.

Glutathione metabolism pathway PPAR signaling pathway

Chemical compound and dose

combination

Biomarker gene Ranking score Chemical compound and dose

combination

Biomarker gene Ranking score

acetaminophen_High Gsta5 100.00 WY14643_High Ehhadh 100.00

nitrofurazone_High Gsta5 96.26 WY14643_High Cyp4a1 97.29

acetaminophen_Middle Gsta5 91.69 WY14643_Middle Ehhadh 95.32

acetaminophen_High G6pd 90.85 WY14643_Middle Cyp4a1 93.17

acetaminophen_High Gpx2 89.67 WY14643_High Acaa1a 92.41

nitrofurazone_High G6pd 89.48 clofibrate_High Ehhadh 88.93

nitrofurazone_High Gpx2 89.29 WY14643_Middle Acaa1a 88.47

acetaminophen_Middle Gpx2 86.05 clofibrate_High Cyp4a1 87.34

acetaminophen_Middle G6pd 85.91 benzbromarone_High Ehhadh 87.04

acetaminophen_High Gsr 85.19 WY14643_High Cyp4a3 86.68

acetaminophen_High Gstp1 83.54 WY14643_Low Ehhadh 86.65

nitrofurazone_High Gsr 83.25 WY14643_High Plin5 85.99

nitrofurazone_High Gstp1 81.53 benzbromarone_High Cyp4a1 85.67

acetaminophen_High Mgst2 80.46 WY14643_Low Cyp4a1 85.17

acetaminophen_High Gclc 80.38 WY14643_High Cpt2 84.46

methapyrilene_High Gsta5 80.23 WY14643_High Cpt1b 84.45

acetaminophen_Middle Gsr 79.71 WY14643_High Angptl4 83.99

acetaminophen_High Gclm 79.56 aspirin_High Ehhadh 83.60

methapyrilene_High Gpx2 79.47 WY14643_Middle Cyp4a3 83.54

nitrofurazone_High Gclc 78.93 aspirin_High Cyp4a1 83.10

functions or processes including glutathione metabolism
pathway. Ranking of biomarker gene regulatory DCCs and top
20 gene-DCCs relationship along with their ranking score for
glutathione metabolism pathway dataset are given in Tables 4,
5. From the tables it is observed that acetaminophen_High,
nitrofurazone_High, and acetaminophen_Middle dose etc. are
the most important glutathione depleting compounds and Gsta5,
G6pd, Gpx2, Gsr, Mgst2, Gstp1, Gclc etc. are the most important
biomarker genes. The detail ranked relationships results are
given in Table S12. Besides this we have analyzed the same
dataset considering all time points (3, 6, 9, and 24 h) by LPHVM
to know about toxicity mechanism of the glutathione depleting
compounds in other time points. The co-clusters produced by
LPHVM are given in Figure 3C. The detail analyzed results of
this dataset are given in Tables S4, S11. The proposed LPHVM
identified 25 genes for the dataset at 24 h time points and 21
genes for the dataset where all time points are considered as
biomarker in the glutathione metabolism pathway among which
18 are common.

Analysis of PPAR Signaling Pathway Data
Peroxisome proliferator-activated receptors (PPARs)
PPAR∝, PPARβ/δ , and PPARγ are transcription factors which
are activated by ligand/drug. They regulate the expression
of target genes in response to endogenous and exogenous
ligands/chemicals. The PPAR ligands may produce toxicity via
receptor-dependent and/or off-target-mediated mechanism(s)

(Peraza et al., 2006). To discover PPARs regulated biomarker
genes and their regulatory DCCs as well as to investigate
the performance of the proposed LPHVM approach we
consider known dataset consisting 88 PPAR signaling pathway
genes and PPARs related gene regulatory compounds (WY-
14643, clofibrate, gemfibrozil, benzbromarone, and aspirin)
(Kiyosawa et al., 2006) and some other randomly selected
compounds (cisplatin, diltiazem, methapyrilene, phenobarbital,
and triazolam) along with their dose levels low, middle and
high. The number of hidden co-clusters for this dataset is 2
estimated via gap statistic (Figure S1). The LPHVM generates
co-clusters of the PPAR signaling pathway dataset which is
shown in Figure 3B. The average joint probabilities of gene-
DCC within co-clusters are 0.0004471087 and 0.0003704091
where co-cluster-1 has the larger value than the co-cluster-
2. Therefore, co-cluster-1 is the biomarker co-cluster of
biomarker genes and their regulatory DCCs. The non-regulated
genes and non-regulatory DCCs consist in co-cluster-2. The
detail co-clustering results are given in the Table S3. The
biomarker genes and their regulatory DCCs in co-cluster-1 are
given in Table 2. Additionally, up/down-regulated biomarker
genes corresponding to their regulatory DCCs are depicted
in the Figure S7B For the same dataset the toxygates co-
clustering result using HC given in Figure S6 which shows that
acetaminophen-middle and methapyrilene-low are incorrectly
co-clustered whereas our proposed method properly co-cluster
the DCCs (Table 2) according to the statement of Kiyosawa
et al. (2006). Biomarker genes in co-cluster-1 are functionally
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annotated via DAVID the results are given in the Tables S7,
S8. WY14643-High, WY14643-Middle and clofibrate-High are
the top most DCCs for regulating PPARs related biomarker
genes for detail see Table 4. Top 20 (ranked) relationships
between biomarker genes and their regulatory DCCs are given
in Table 5 from where it is observed that Ehhadh, Cyp4a1,
Acaa1a, Plin5 etc. are the most important biomarker genes
and WY14643_High, clofibrate_High, benzbromarone_High,
aspirin_High etc. are their important regulatory DCCs in PPAR
signaling pathway. The detail results of these relationships are
given in the Table S13.

DISCUSSION AND CONCLUSIONS

Identification of biomarker genes and their regulatory DCCs is
one of the most important tasks in the toxicogenomics studies
as well as in drug design and development as mentioned before.
In this article, we have proposed a robust co-clustering approach
based on logistic probabilistic hidden variable model (LPHVM)
to detect important biomarker genes and their regulatory DCCs.
The proposed LPHVM approach is robust against outlying gene
expressions and more flexible and effective than the application
of one-way classical clustering approaches (e.g., k-means, fuzzy,
HC, etc.) for co-clustering. The proposed method produces
robust results by using the logistic transformation of fold-change
gene expression data into the conventional PHVMapproach. The
logistic transformation reduces unusual/outlying observations
into the reasonable space without changing the original hidden
patterns of genes and DCCs in the dataset. Thus the proposed
LPHVM approach produces robust results.

We investigated the performance of the proposed LPHVM
method in a comparison with the traditional PHVM and
Toxygates online computational platform using simulated
and real life TGP gene expression data, respectively. The
simulation results showed that the proposed method improves
the performance over the conventional PHVM in presence
of outlying observations; otherwise, they perform equally. We
also demonstrated the performance of the proposed method
in a comparison with the online computational platform
“Toxygates” using the real life pathway based fold change gene

expression datasets collected from the “Toxygates” database. We
observed that three DCCs (glibenclamide-low, perhexilline-low,
and hexachlorobenzene-medium) for glutathione metabolism
pathway dataset as well as two DCCs (acetaminophen-
medium and methapyrilene-low) for PPAR signaling pathway
dataset were incorrectly co-clustered by the Toxygates online
platform, while only one DCC (hexachlorobenzene-low) for
glutathione metabolism pathway was incorrectly co-clustered by
the proposed LPHVM approach. Our findings from the real
life data analysis are also supported by the other findings in
the literature (Kiyosawa et al., 2006; Nyström-Persson et al.,
2013). Thus the proposed LPHVM outperform over the classical
PHVM and “Toxygates” online coputational platform to detect
toxicogenomic biomarkers and their regulatory DCCs.
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