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Head and neck squamous cell carcinoma (HNSCC) is the sixth most common

malignancy worldwide with a poor prognosis and high mortality. More than two-thirds

of HNSCC patients still have no effective control of clinical progression, and the five-

year survival rate is <50%. Moreover, patients with platinum-refractory HNSCC have a

median survival of <6 months. The significant toxicity and low survival rates of current

treatment strategies highlight the necessity for new treatment modalities. Recently, a

large number of studies have demonstrated that programmed cell death protein-1 (PD-

1) and its ligand, programmed cell death protein ligand-1 (PD-L1) play an essential

role in tumor initiation and progression. PD-1/PD-L1 blockade has shown a desired

and long-lasting therapeutic effect in the treatment of HNSCC and other malignancies.

However, only a small number of patients with HNSCC can benefit from PD-1/PD-L1

blockade monotherapy, while the majority of patients do not respond. To overcome

the unsatisfactory therapeutic effect of PD-1/PD-L1 blockade monotherapy, combining

other treatment options for HNSCC (including chemotherapy, radiotherapy, targeted

therapy, and immunotherapy) in the treatment scheme has become a commonly used

strategy. Herein, the potential mechanisms underlying the crosstalk between PD-1/PD-

L1 blockade and its combinatorial therapies for HNSCC were reviewed, and it is hoped

that the improved understanding of the crosstalk process would provide further ideas for

the design of a combinatorial regimen with a higher efficiency and response rate for the

treatment of HNSCC and other malignancies.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) includes squamous cell carcinomas that occurs
in the nasopharynx, oropharynx, hypopharynx, and throat. Its incidence rate is ranked 6th among
common malignancies worldwide (1). Tumor recurrence and metastasis occurs in more than 50%
of patients with HNSCC within three years. Only few choices exist for the treatment of recurrent or
metastatic (R/M)HNSCC, leading to its poor prognosis. In addition, a higher proportion of patients
with R/M HNSCC often have tumor-related symptoms, including pain, hemorrhage, respiratory,
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and nutritional disorders, which seriously affect the quality of
life of patients and the choice of follow-up treatment (2). In
2016, the US Food and Drug Administration (FDA) approved the
PD-1-targeted monoclonal antibodies (mAbs), pembrolizumab,
and nivolumab, for the treatment of R/M HNSCC. The
new edition of the National Comprehensive Cancer Network
incorporated these two drugs for the treatment of HNSCC
(3). Compared with traditional therapies, the emerging PD-1
blockade immunotherapy exhibited an encouraging therapeutic
efficacy for patients with advanced HNSCC (4).

Due to the inherent genetic inheritance and high somatic
mutation in HNSCC, alterations in the protein repertoire can be
introduced, which usually result in the expression of neoantigens
that can be recognized by T cells and tumor cell clearance by
immune surveillance system (5, 6). In addition, in addition to
the neoantigen pathway generated by cancer genome mutations,
HNSCC associated with HPV infection can also be detected
by T cells due to the viral antigen expression, thereby eliciting
an anti-tumor immune response (7). Similarly, recent studies
have revealed that HNSCC exhibits an enriched tumor immune
landscape, and when HNSCC showed a clinical progression,
the immune response elicited by the strong immunogenicity
of HNSCC is usually suppressed. Immunosuppressive cells,
such as bone marrow-derived suppressor cells (MDSCs), M2-
type tumor-associated macrophages (TAMs), and regulatory T
cells (Tregs) can build an immunosuppressive state in HNSCC
tumor microenvironment (TME). At the same time, with the
introduction of the concept of immune checkpoints, a series of
inhibitory immune checkpoints including PD-1, CTLA-4, TIM-
3, IDO, KIR, and TIGIT, have been proved to be involved in the
construction of HNSCC immunosuppressive microenvironment
(8). The blockade of immune checkpoint PD-1/PD-L1 could
reduce the population and activity of MDSCs and Tregs (9), and
restore the cytotoxicity of T cells and NK cells (10), ultimately
relieving the tumor immune escape and inhibiting tumor growth.

A high expression of PD-L1 was commonly observed in
HNSCC cells (40–70%) (11, 12), coinciding with the upregulation
of PD-1 on the majority of CD8+ tumor-infiltrating lymphocytes
(TILs) (11). Yu et al. found that PD-1 expression increased in
samples from patients with HNSCC, in comparison with normal
oral mucosa samples (13), which implied that the PD-1 blockade
should be more effective at boosting the antitumor immune
response in HNSCC. However, data from recent clinical trials
revealed a modest overall response rate (ORR) to the PD-1
blockade of less than 20% (4, 14), and a lack of dramatic responses
in most patients (15) when compared with the more impressive
ORRs of up to 57% in other advanced/pretreated indications,
such as non-small cell lung cancer and melanoma (16, 17). Thus,
only a small number of patients with HNSCC can benefit from
PD-1/PD-L1 blockade therapy.

A growing number of preclinical and clinical trials have
confirmed that traditional cancer therapies can promote the
release of tumor-associated antigens (TAAs), increase antigen
presentation, as well as enhance the expression of PD-1/PD-L1
axis. In the treatment of tumors with PD-1/PD-L1 blockade,
combination with other therapies can provoke the antitumor
immune response, which helps to improve the efficacy of

FIGURE 1 | Synergistic effects between PD-1/PD-L1 blockade and its

combinatorial therapies.

PD-1/PD-L1 blockade. Thus, combinatorial immunotherapy
represents a promising approach to boost antitumor activity
in HNSCC as well as other malignancies. Therefore, it is
especially important to understand the dynamic changes in the
TME after standard treatment in order to design a rational
combination treatment plan involving PD-1/PD-L1 blockade
(18). In this review, we summarized its combination with other
current treatment options for HNSCC (including chemotherapy,
radiotherapy, targeted therapy, and immunotherapy) from their
crosstalk in the TME (Figure 1) to the ongoing clinical trials
(Table 1), in order to better understand the mechanism of
interaction between PD-1/PD-L1 blockade and other cancer
therapies, and to provide further ideas for the design of
combinatorial regimen with a higher efficiency and response rate
in HNSCC and other malignancies.

COMBINED WITH CHEMOTHERAPY

Chemotherapy, which has been known to induce systemic
immunosuppression due to the bone marrow toxicity, is used
as a traditional therapy to control the growth of tumors and
block the proliferation of tumor cells due to its cytotoxicity (19).
However, recent studies have found that many chemotherapeutic
agents exerted a stimulating effect on the antitumor immune
response beyond their cytotoxicity, thereby aiding the immune
system in the elimination of tumor cells (20). From the tumor
side, chemotherapy can promote the release of a series of TAAs
by dying cells and increase the sensitivity of tumor cells to
cytotoxic immune cells to promote inflammatory response. Also,
from the immune side, multiple types of chemotherapeutic
agents have been shown to promote lymphocyte infiltration
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TABLE 1 | Ongoing clinical trials (registered in ClinicalTrials.gov) involving combinatorial PD-1/PD-L1 blockade therapy in recurrent/metastatic head and neck squamous

cell carcinoma as of June 2018.

Clinical Trials.

gov identifier

Mechanisms of

action

Regimen (treatment arms) Phase Estimated

enrolment

Primary

completion date

NCT03085719 Anti PD-1

Radiotherapy

Pembrolizumab + Radiation 2 26 2020/10/31

NCT03317327 Anti PD-1

Radiotherapy

Nivolumab + Radiation 1,2 20 2023/11/2

NCT02289209 Anti-PD-1

Radiotherapy

Pembrolizumab + Reirradiation 2 48 2018/12/1

NCT03313804 Anti-PD-1

Radiotherapy

Nivolumab or Pembrolizumab or Atezolizumab + Radiation 2 57 2018/6/30

NCT03058289 Anti-PD-1

Chemotherapy

A: INT230-6 (Cisplatin + Vinblastine + Cell Permeation Enhancer)

B: Anti-PD-1 + INT230-6

1,2 60 2019/7/1

NCT02358031 Anti-PD-1

Chemotherapy

A: Pembrolizumab

B: Pembrolizumab + Cisplatin+5-fluorouracil

C: Cetuximab + Cisplatin + 5-fluorouracil

3 825 2018/12/31

NCT02710396 Anti-PD-1

Chemotherapy

A: Pembrolizumab

B: Pembrolizumab + Carboplatin + Nab-paclitaxel

C: Pembrolizumab + Carboplatin + Pemetrexed

2 90 2019/3/31

NCT02759575 Anti-PD-1

Chemotherapy

Radiotherapy

Pembrolizumab + Cisplatin + Radiation 1,2 47 2020/1/1

NCT03040999 Anti-PD-1

Chemotherapy

Radiotherapy

A: Pembrolizumab + Cisplatin + Radiation

B: Placebo + Cisplatin + Radiation

3 780 2021/4/16

NCT02819752 Anti-PD-1

Chemotherapy

Radiotherapy

Pembrolizumab + Cisplatin + Radiation 1 36 2018/3/1

NCT03082534 Anti-PD-1

Anti-EGFR

Pembrolizumab + Cetuximab 2 83 2019/5/27

NCT02646748 Anti-PD-1

JAK inhibitor

PI3K-δ

A: Pembrolizumab + Itacitinib(JAK Inhibitor)

B: Pembrolizumab + INCB050465(PI3K-δ Inhibitor)

1 237 2019/6/1

NCT03532737 Anti-PD-1

Anti-EGFR

Chemotherapy

Radiotherapy

Pembrolizumab + Cisplatin/Cetuximab + Intensity modulated

radiotherapy (IMRT)

2 50 2021/9/30

NCT02764593 Anti-PD-1

Anti-EGFR

Chemotherapy

Radiotherapy

A: Nivolumab + Cisplatin + IMRT

B: Nivolumab + High Dose Cisplatin + IMRT

C: Nivolumab + Cetuximab + IMRT

D: Nivolumab + IMRT

1 120 2019/3/1

NCT03051906 Anti-PD-L1

Anti-EGFR

Radiotherapy

Durvalumab + Cetuximab + IMRT 1,2 69 2022/1/1

NCT03292250 Anti-PD-L1

Anti-CTLA-4

Durvalumab + Tremelimumab 2 259 2020/1/1

NCT02834013 Anti-PD-1

Anti-CTLA-4

Nivolumab + Ipilimumab 2 707 2020/8/31

NCT03463161 Anti-PD-1

IDO Inhibitor

Pembrolizumab + Epacadostat 2 30 2020/3/1

NCT03325465 Anti-PD-1

IDO Inhibitor

A: Pembrolizumab

B: Pembrolizumab + Epacadostat

2 44 2020/6/1

NCT03358472 Anti-PD-1

IDO Inhibitor

A: Pembrolizumab

B: Pembrolizumab + Epacadostat

C: Cetuximab + Cisplatin or Carboplatin + 5-fluorouracil

3 625 2021/1/27

NCT03343613 Anti-PD-L1

IDO Inhibitor

LY3381916 (IDO1 Inhibitor) + LY3300054 (Anti-PD-L1) 1 290 2019/9/1

NCT02903914 Anti-PD-1

Arginase Inhibitor

A: INCB001158 (Arginase Inhibitor)

B: Pembrolizumab + INCB001158

1,2 346 2019/5/1

(Continued)
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TABLE 1 | Continued

Clinical Trials.

gov identifier

Mechanisms of

action

Regimen (treatment arms) Phase Estimated

enrolment

Primary

completion date

NCT03454451 Anti-PD-1

Anti-CD73

A: CPI-006 (CD73 Inhibitor)

B: CPI-006 + CPI-444 (Adenosine-A2A Receptor Inhibitor)

C: Pembrolizumab + CPI-006

1 378 2022/3/1

NCT03162224 Anti-PD-L1

Vaccine

Durvalumab + MEDI0457 (a HPV DNA vaccine) 1b/2a 40 2020/3/2

NCT02432963 Anti-PD-1

Vaccine

Pembrolizumab + p53MVA Vaccine (modified vaccinia virus

Ankara vaccine expressing p53)

1 19 2018/4/1

NCT03260023 Anti-PD-L1

Vaccine

Avelumab + TG4001 (a HPV vaccine) 1,2 52 2020/5/1

NCT02526017 Anti-PD-1

Anti-CSF-1R

A: Cabiralizumab

B: Nivolumab + Cabiralizumab

1 295 2019/5/1

NCT02452424 Anti-PD-1

Anti-CSF1R

Pembrolizumab + PLX3397 1,2 80 2018/5/1

NCT02335918 Anti-PD-1

CD-27 Agnoist

Nivolumab + Varlilumab 1,2 175 2019/4/1

NCT02475213 Anti-PD-1

Anti-B7-H3

Pembrolizumab + Enoblituzumab 2 75 2018/8/1

NCT02952989 Anti-PD-1

Fucosylation

Inbihitor

Pembrolizumab + SGN-2FF (Fucosylation Inbihitor) 1 308 2019/12/1

NCT03474497 Anti-PD-1

IL-2

Radiotherapy

Pembrolizumab + IL-2 + Radiotherapy 1,2 45 2020/7/1

NCT03518606 Ant-PD-L1

Anti-CTLA-4

Chemotherapy

Durvalumab + Tremelimumab + Metronomic Vinorelbine 1,2 150 2020/12/29

NCT02551159 Anti-PD-L1

Anti-CTLA-4

Anti-EGFR

Chemotherapy

A: Durvalumab

B: Durvalumab + Tremelimumab

C: Cetuximab + 5-fluorouracil + Cisplatin + Carboplatin

3 823 2018/12/31

NCT02643303 Anti-PD-L1

Anti-CTLA-4

TLR3 agonist

Durvalumab + Tremelimumab + Poly ICLC(a TLR3 agonist) 1,2 102 2022/8/1

NCT03019003 Anti PD-L1

Anti-CTLA-4

Chemotherapy

Durvalumab + Tremelimumab + Azacitidine 1B/2 59 2020/7/1

NCT03283605 Anti-PD-L1

Anti-CTLA-4

Radiotherapy

Durvalumab + Tremelimumab + Stereotactic Body Radiotherapy

(SBRT)

1,2 45 2019/12/1

NCT03085914 Anti-PD-1

IDO-inhibitor

Chemotherapy

A: Pembrolizumab + Epacadostat + mFOLFOX6 (oxaliplatin,

leucovorin, 5-fluorouracil)

B: Pembrolizumab + Epacadostat + Gemcitabine +

Nab-paclitaxel

C: Pembrolizumab + Epacadostat + Carboplatin + Paclitaxel

D: Pembrolizumab + Epacadostat + Pemetrexed + Platinum

E: Pembrolizumab + Epacadostat + Cyclophosphamide

F: Pembrolizumab + Epacadostat + Gemcitabine + Platinum

G: Pembrolizumab + Epacadostat + 5-fluorouracil + Platinum

1,2 421 2021/4/1

NCT03236935 Anti-PD-1

NO Synthase

Inhibitor

Pembrolizumab + L-NMMA 1 12 2019/2/1

NCT03245489 Anti-PD-1

Anti-platelet

A: Pembrolizumab + Clopidogrel + Acetylsalicylic Acid Follwed by

Pembrolizumab alone

B: Pembrolizumab alone Follwed by Pembrolizumab +

Clopidogrel + Acetylsalicylic Acid

1 20 2020/12/30

NCT02636036 Anti-PD-1

Oncolytic Virus

Nivolumab + Enadenotucirev 1 30 2019/3/1

Frontiers in Oncology | www.frontiersin.org 4 November 2018 | Volume 8 | Article 532

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lin et al. Combinatorial PD-1 Blockade Therapies for HNSCC

FIGURE 2 | Interactions between radiochemotherapy and PD-1/PD-L1 blockade in the TME. Radiochemotherapy can increase the release of TAAs and DAMPs,

improve the expression of PD-L1 on the tumor surface. Some chemotherapeutic agents can also deplete immunosuppressive cells (Tregs and MDSCs), promote the

function of APCs, and increase the sensitivity of tumors to cytotoxic immune cells, thereby improving the therapeutic efficacy of PD-1/PD-L1 blockade immunotherapy.

into the tumor site, deplete immunosuppressive cells, and
directly increase the activity of antigen presenting cells
(APCs). The improvement in the TME following treatment
with chemotherapeutic agents suggests an attractive synergy
between cytotoxic chemotherapy and PD-1/PD-L1 blockade
(Figure 2).

Improvement of Tumor Immunogenicity
Some antineoplastic drugs including 5-fluorouracil (5-FU) and
cisplatin could increase the expression of MHC I on the surface
of tumor cells (21). Moreover, the expression of tumor antigens
(carcinoembryonic antigen, CEA) could also be promoted by
5-FU (21, 22). Treatment with platinum and paclitaxel could
increase the production of macrophage chemoattractant protein-
1 (MCP-1) thus recruiting infiltrating macrophages into the
tumor site (23).

Using chemotherapeutic agents, some types of cell death
have been demonstrated to induce an immune response against
antigens released from dying cells, commonly referred to as
immunogenic cell death (ICD): the dying tumor cells can release
a series of damage-associated molecular patterns (DAMPs),
including calrectin (CRT) (24), adenosine triphosphate (ATP)
(25), and high mobility group box 1 (HMGB1) (26), which
plays an important role in the immune response elicited by
ICD. DAMPs that are exposed to a large number of dead tumor
cell surfaces or released into the TME can be recognized by
APCs surface receptors such as toll-like receptor-4 (TLR-4),
calrectin receptor (CRTR), and purinergic receptor P2RX7
(20), thereby promoting the maturation and proliferation of
APCs, and sequentially leading to the activation of cytotoxic
lymphocytes.

Sensitization of Tumor Cells
A variety of chemotherapeutic drugs can upregulate the
expression of death receptors on the surface of tumor cells,
thereby increasing the sensitivity of tumor cells to the attack from
immune cells expressing death receptor ligands.

Cyclophosphamide chemotherapy could sensitize tumor
cells to the tumor necrosis factor-related apoptosis-inducing
ligand receptor (TRAILR) dependent CD8+ T cell-mediated
immune attack, resulting in the suppression of tumor growth
(27). Furthermore, treatment with 5-FU was demonstrated
to upregulated FasR expression and sensitized tumor cells to
low-avidity cytotoxic lymphocytes (28). In addition, paclitaxel,
cisplatin, doxorubicin could upregulate the expression of
mannose-6-phosphate receptor (M6PR) on the surface of tumor
cells, thereby increasing the permeability of cell membrane to
granzyme B, making the cytotoxicity of lymphocytes to tumor
cells independent of perforin (29).

Recruitment of Effector Cells
The recruitment and infiltration of effector cells to the tumor
site determines the efficiency of the antitumor immune response
and the prognosis of PD-1/PD-L1 blockade immunotherapy.
Preclinical investigations suggested that chemotherapy acts as
a promoter and facilitator for the recruitment and infiltration
of effector cells. The administration of low-dose cisplatin and
paclitaxel could also trigger the recruitment of macrophages
and tumor-specific CD8+ T-cells into the tumor site (30). Thus,
the infiltration of CD3+ T cells into the tumor mass increased
after preconditioning with cisplatin, markedly enhancing the
efficacy of adoptively transferred cytokine-induced killer (CIK)
cells (31). In addition to promoting the homing of transferred
lymphocytes to secondary lymphoid organs and tumor mass,
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treatment with cyclophosphamide treatment also favored the
homeostatic proliferation/activation of transferred B and T
lymphocytes (32). Moreover, sequential chemotherapy (cisplatin
and gemcitabine) in mice previously treated with adenovirus-
based immunotherapy increased the number and activity of both
systemic and intratumoral CD8+ T cells (33).

Inhibition of Immunosuppressive Cells
Chemotherapeutic agents, especially when applied at low-dose,
may selectively inhibit immunosuppressive cells (including Tregs
and MDSCs) with little adverse effects on immune effector cells.

Intratumoral and splenic Tregs in multiple types of tumors
could be depleted after treatment with cisplatin, gemcitabine
treatment (34), while paclitaxel chemotherapy selectively
decreased the size of the Treg population rather than that
of other subsets including cytotoxic T cells by upregulating
Fas and Bcl-2/Bax mediated apoptosis (35, 36). Moreover,
metronomic chemotherapy with paclitaxel could deplete Tregs
and simultaneously inhibit tumor angiogenesis, instead
of displaying direct cytolytic effects (37). Furthermore,
the application of metronomic chemotherapy involving
cyclophosphamide in patients with advanced tumors not only
depleted Tregs, but also restored the function of T cells and NK
cells (38).

Various chemotherapeutic agents showed the selective
depletion of MDSCs at non-cytotoxic doses, including 5-FU,
paclitaxel, gemcitabine, doxorubicin, and platinum (22). Apart
from the depletion of MDSCs, treatment with ultralow-dose
paclitaxel treatment also promoted the maturation of MDSCs
into DCs, which exhibit a higher expression of MHC II and
CD86/CD40 co-stimulatory molecules (39). A sequential
treatment with gemcitabine and cisplatin could also prevent
the increase in the number of systemic immunosuppressive
cells induced by adenoviral-based immunotherapy. After
immunotherapy, the number of MDSCs, Tregs and B cells
in spleen was significantly upregulated, while the addition of
chemotherapy reduced the number of those immunosuppressive
cells (33).

Promotion of APCs Functions
Several chemotherapeutic agents may promote antigen
presentation by directly stimulating the maturation and
activation of DCs. Treatment with low-dose cyclophosphamide
could increase the potency of DCs with respect to antigen
presentation and cytokine secretion (40). Cyclophosphamide at
a non-myeloablative doses could also promote the compensatory
myelopoiesis and alter DCs homeostasis, thus leading to a
higher secretion of IL-12 and a lower secretion of IL-10, and
eventually priming the T cell activation and inhibiting Tregs
(41). When transfected with low dose 5-FU-treated tumor
RNA, DC activation markers increased, leading to a significant
increase in the IFN-γ producing T cells in tumor-bearing
mice (42). Moreover, the expression of the co-stimulatory
factors, such as CD80, CD86, CD40, and MHC-II, on DCs
could also be stimulated by various chemotherapeutic agents
including vinblastine, paclitaxel, doxorubicin, and methotrexate
at nontoxic concentrations, which directly enhanced DCs

maturation and their activation of T cells, eventually initiating a
more effective antitumor immune response (43, 44).

Combining Chemotherapy With
PD-1/PD-L1 Blockade
Although various chemotherapeutic agents have been shown
to promote antitumor immune responses, tumor cells tend
to acquire resistance after chemotherpay, which may be
caused by tumor immune escape. Some chemotherapeutic
drugs can lead to a high expression of PD-1/PD-L1 through
the MAPK/ERK kinase pathways in patients with HNSCC
(45), thereby promoting the tumor immune escape. The high
expression of PD-1/PD-L1 as a result of chemotherapy provides
the possibility of combining chemotherapy with PD-1/PD-L1
blockade. A large number of preclinical and clinical studies have
confirmed that combination therapy is superior to monotherapy
in controlling tumor growth and improving survival time.

In a syngeneic murine model of HNSCC, the concurrent use
of cisplatin and PD-1/PD-L1 blockade delayed tumor growth and
enhanced survival without significantly reducing the number or
function of TILs or increasing the cisplatin-induced toxicity (46).
Moreover, taxane and 5-FU treatment upregulated the expression
of PD-L1, thus inhibiting the function of antigen-specific T cells
and promoting PD-L1-mediated T cell apoptosis in breast
cancer cell (47). A significant increase of PD-L1 expression
was observed after docetaxel, platinum, and fluorouracil
(TPF) treatment. The mean density of tumor-infiltrating
CD8+ T cells also significantly increased after TPF treatment
(45). Also, PD-L1 expression was significantly upregulated
in patients with HNSCC after carboplatin chemotherapy,
suggesting that these patients may benefit from the sequential
PD-1/PD-L1 immunotherapy (48). In addition to increasing
PD-1/PD-L1 expression and improving the TME, some
chemotherapeutic agents may also induce the production of
immunosuppressive cells. Despite the immunostimulatory effect
of cyclophosphamide, it could also induce an increase of MDSCs
(CPM-MDSCs) (49), leading to an immunosuppressive effect.
Doxorubicin combined with cyclophosphamide chemotherapy
could increase the number of MDSCs in breast cancer patients
(50). Combining with PD-1/PD-L1 blockade could eliminate
the CPM-MDSCs-mediated immunosuppression, enhance
antigen-specific immune responses, increase the intratumoral
ratios of CD8+/Tregs and CD4+ Foxp3+/Tregs, and prolong
the CPM inhibition of Tregs, thus leading to a long-lasting
antitumor effect (51, 52).

In summary, the above evidence suggests a strong synergistic
effect between chemotherapy and PD-1/PD-L1 blockade
immunotherapy. Regrettably, no studies have been conducted to
compare the effects of different combinations of chemotherapy
drugs with PD-1/PD-L1 blockade so far. However, low-dose,
metronomic chemotherapy is recommended in this review
because tumor-associated antigen presentation is promoted
while the patient’s immune system function can be better
protected. Similarly, some chemotherapeutic drugs, such as
gemcitabine, paclitaxel, have been shown to promote immune
responses at tumor sites in a variety of ways in the treatment
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of other solid tumors, thereby synergistically interacting with
PD-1/PD-L1 blockade. As common chemotherapeutic drugs for
HNSCC, they are also supposed to exhibit a similar synergistic
effect with PD-1/PD-L1 blockade in HNSCC, but further clinical
analysis still needs to be carried out. Therefore, combining
PD-1/PD-L1 with chemotherapy can be an effective strategy to
improve clinical outcomes.

COMBINED WITH RADIOTHERAPY

Radiotherapy, alone or in combination with chemotherapy plays
an important role in the treatment of early and advanced
HNSCC by locally controlling of tumor progression. While
destroying tumor cells, radiotherapy can also damage immune
cells in the affected area. Similar to chemotherapy, radiotherapy
has been generally considered to inhibit the immune system
in the past. Recent studies have found that radiotherapy
could also induce antitumor immune responses similar to
chemotherapy. While destroying tumor cells and tumor stromal
cells, radiotherapy could promote the release of a large number
of TAAs (53). At the same time, radiotherapy could also induce
ICD, thereby promoting the activation and maturation of DCs,
and upregulating MHC I expression on tumor cells (54, 55).
Thus, T-cell priming in draining lymphoid tissues dramatically
increased after radiotherapy, leading to the reduction of the
primary tumor or distant metastases in a CD8+ T cell-
dependent fashion (56). In addition, the increase in TILs
after radiotherapy also demonstrated the activation of the
immune system following radiotherapy. Therefore, considering
the immunostimulatory properties of radiotherapy, a combined
application of radiotherapy and immunotherapy is feasible (57).

In patients with HNSCC, fractionated conformal radiation
increased the number of circulating CD8+ T cells, and
significantly decreased serum CXCL10 and CXLC16 levels.
Moreover, radiation-induced tumor lysis led to a decrease in
tumor CXCL10 secretion, while the levels of CXCL16 secreted
by the APCs into the circulation increased, thereby attracting
T cells to the TME and increasing the number of TILs (58).
However, radiotherapy also increased the number of MDSCs,
Tregs, and T cells expressing checkpoint receptors (particularly
PD-1) (58, 59). Interferon-γ (IFN-γ) produced by CD8+ T
cells after ionizing radiation was responsible for mediating the
upregulation of PD-L1, resulting in a PD-1/PD-L1-mediated
CD8+ T cell inactivation and depletion (59, 60). Furthermore,
the increased secretion of transforming growth factor-β (TGF-
β) after radiotherapy contributed to the infiltration of Tregs into
the TME and then suppressed the immune response (61, 62).
Stereotactic radiotherapy in combination with PD-1 blockade
could reduce the number of Tregs and increase the proportion
of CD8+ T cells, thereby enhancing the cytotoxicity toward
tumor cells (63). Combinatorial therapy could also enhance the
specific antitumor immune response by cross-presenting TAAs
(63), inhibit the local accumulation of MDSCs, and reconstruct
the TME (64). In a murine orthotopic model of HNSCC,
fractionated conformal radiotherapy could sensitize anti-PD-L1-
resistant tumors, and a combination of radiotherapy with PD-L1

blockade resulted in a significant enhancement in tumor control
and improvement in survival when compared with monotherapy
(65).

PD-1/PD-L1 blockade in combination with radiotherapy
could also suppress the metastatic tumors via abscopal effect. A
combination of ablative radiotherapy with PD-1 blockade led to
a 66% reduction in the size of non-irradiated tumors in mice with
melanoma (66). In mice with breast cancer undergoing ionizing
irradiation together with PD-L1 blockade, not only the tumor
at the radiotherapy site but also the metastatic tumors outside
the irradiated site were significantly reduced, and a long-lasting
immunememory was elicited (67). These synergistic effects could
be attributed to the fact that radiotherapy promoted the release of
a large number of TAAs, thereby activating the immune system
and inhibiting tumors outside of radiotherapy site.

COMBINED WITH TARGETED THERAPY

Several commonly used IgG1 antibodies (represented by
cetuximab) have been shown to modulate the TME via
antibody-dependent cellular cytotoxicity (ADCC) and promote
the antitumor immune response (68, 69). Distinct from the
tumor targeted IgG1 antibodies, anti-angiogenic drugs could
regulate the blood perfusion into the tumor site, adjusting
the oxygen concentration and the pH, and eventually affecting
the TME. Combining targeted drugs with immune checkpoint
inhibitors resulted in a satisfactory antitumor efficacy. Herein, the
mechanisms of tumor/vascular targeting drugs in combination
with PD-1/PD-L1 blockade for the treatment of HNSCC are
described below (Figure 3).

Tumor Targeting mAbS
EGFR was highly expressed in various types of tumor tissues,
and the overexpression of EGFR could be detected in more
than 90% of HNSCC cases (70). Cetuximab, a humanized IgG1
mAb targeting EGFR, was approved by the FDA in 2006 for
the treatment of head and neck malignancies. The crosstalk of
ADCC effect and host immune response suggested the feasibility
of combining cetuximab with immune checkpoint inhibition
therapy (69).

NK cells and DCs represent the main immune cells that
mediate the ADCC effect. The antibody IgG Fc receptor
(FcγRIIIa) is mainly expressed on the NK cells, therefore, when
cetuximab specifically binds to the antigen on the target cell
through its Fab segment, the naked Fc segment binds to Fc
receptors on NK cells. The antibody could act as a bridge between
target cells and NK cells, activating NK cells and promoting
the release of cytotoxic mediators (perforin and granzymes),
eventually leading to the lysis of target cells (71). Except for
NK cells, the IgG Fc receptor (FcγRIIa) has been found to be
expressed on DCs and neutrophils, which may also mediate
several important downstream immunological responses (72).
TAAs released by the lysed tumor cells can be cross-presented
by DCs to cytotoxic T cells, thereby triggering the activity of
cytotoxic T cells (73). In addition, activated NK cells can secrete
cytokines to promote DCs maturation. In turn, the stimulation
of NK cells can be greatly enhanced through the stimulation
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FIGURE 3 | Interactions between targeted therapies (including tumor targeting IgG mAbs and vascular targeting drugs) and PD-1/PD-L1 blockade in the TME. Tumor

targeting IgG mAbs (represented by cetuximab) can recruit and activate NK cells via ADCC effect, thereby lysing tumor cells. Activated NK cells can also promote

antitumor immune responses by secreting cytokines to facilitate the crosstalk with dendritic cells (DCs) and other immune cells (macrophages, other NK cells).

Appropriate doses of vascular targeting drugs can restore blood perfusion at the tumor site, and then improve the hypoxic and acidic TME, which is beneficial for the

function of antitumor immune cells.

by cytokines and surface molecules from mature DCs (72).
Moreover, the crosstalk between NK cells and other immune cells
is important for promoting the infiltration of cytotoxic T cells
into the tumor site, which perform their lytic activity on tumor
cells and further stimulate long-term immune responses (74).

Similar to chemotherapy and radiotherapy, PD-1 expression
on CD8+ TILs significantly increased in patients treated with
cetuximab; this was inversely correlated with the clinical
outcome of cetuximab therapy (75). The recruitment of
immunesuppressive cells after cetuximab treatment might also
explain the resistance to EGFR-targeted therapy. Among patients
who exhibit poor responses to cetuximab treatment, a significant
increase in the number of Tregs in peripheral blood and TILs
was observed (76). Moreover, there was a negative correlation
between the activation of NK cells and the expansion of the Treg
population, which in turn inhibited the ADCC effect (77). In a
patient with poorly differentiated HNSCC, a clinical remission of
invasion was observed after a combined application of cetuximab
and nivolumab for 6 months (78). These evidences suggested
that the anti-EGFR-resistant patients might benefit from PD-
1 blockade immunotherapy. Notably, PD-L1 expression was
significantly lower in EGFR-mutant tumors than that in EGFR-
wild-type tumors; therefore, patients with EGFR mutations
might not benefit from the combination therapy. Therefore, a
combined PD-1 therapy is not recommended as a regimen to
enhance the treatment efficacy in these patients (79, 80).

Consequently, treatment with cetuximab could drive ADCC
and other immune effects, thus leading to immunosuppression
by initiating immune checkpoints (PD-1/PD-L1 axis). When

combined with PD-1 blockade, cetuximab treatment resulted
in the recruitment of immune cells to the TME, while PD-
1/PD-L1 blockers could attenuate the Tregs or MDSCs-mediated
inhibition of effector T cells and NK cells. However, in patients
with EGFRmutations, the expression of PD-L1 is downregulated,
and a combined PD-L1 blockade therapy might not achieve
satisfactory therapeutic effects. Therefore, the combinatorial
therapy is considered to be an ideal therapeutic strategy for the
treatment of EGFR-wild-type HNSSC.

Vascular Targeted Drugs
The formation of tumor vessels is crucial for the process of tumor
growth and metastasis, which is regulated by various cytokines,
such as vascular endothelial growth factor (VEGF), angiostatin,
and endostatin. Moreover, it is associated with the regulation of
complex factors such as the hypoxic microenvironment, tumor
suppressor genes, and oncogenes. VEGFR is highly expressed in
HNSCC and associated with tumor progression and metastasis.
As an independent prognostic factor, VEGFR overexpression is
negatively correlated with the survival rates. Therefore, VEGFR
has attracted increasing attention as an important target in
HNSCC (81).

Although vascular targeting drugs treatment can prevent the
development of tumors, the hypoxic environment, and acidosis
environment caused by the treatment may not only affect the
tumor cells, but also seriously compromise normal immune
clearance function of the immune effector cells. This leads to
the preferential recruitment of immunosuppressive cells that
promote tumor growth, such as Tregs, MDSCs, and M2-type
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TAMs (81). Clinical evidence suggested that vascular targeting
therapy increased PD-L1 expression and led to tumor resistance
to anti-angiogenic therapy (82). The dose of vascular antagonists
is closely related to its influence on the TME. The targeting of
the tumor vasculature at lower vascular-normalizing doses but
not high anti-angiogenic doses by an anti-VEGFR2 antibody
resulted in the polarization of TAMs from an immune inhibitory
M2-like phenotype toward an immune stimulatory M1-like
phenotype. Moreover, it facilitated the infiltration of CD4+

and CD8+ T cells into the tumor site, thus synergizing with
cancer vaccine immunotherapy (83). Normalized tumor vessels
facilitated the infiltration of effector T cells, while reducing
MDSC accumulation. In addition, improvements in blood
perfusion polarized TAMs to an immune stimulatory M1-like
phenotype, consequently re-engineering the TME and improving
the efficacy of cancer immunotherapy (84). Standard (high doses)
of sorafenib treatment modestly delayed the growth of tumors,
but also induced hypoxia, thus increasing the tumor infiltration
of Tregs, MDSCs, and M2-type TAMs, as well as the expression
PD-L1. When combined with PD-L1 blockade, the activation
and tumor infiltration of cytotoxic CD8+ T cells were enhanced
(85). Furthermore, a clinical study in patients with metastatic
renal cell carcinoma revealed that atezolizumab (an anti-PD-L1
antibody) combined with bevacizumab increased the number of
intratumoral CD8+ T cells and the migration of antigen-specific
T cells (86).

In summary, vascular targeting therapy can improve the TME
and might enhance the therapeutic efficacy of immunotherapy,
providing a new strategy for the design of PD-1/PD-L1 blockade
combination therapies.

COMBINED WITH IMMUNOTHERAPY

Pembrolizumab and nivolumab as the only immunotherapeutic
drugs approved by the FDA for the treatment of platinum-
refractory recurrent/metastatic HNSCC, have shown promising
prospects for the treatment of advanced HNSCC. However, the
immune escape mechanisms of tumors are quite complex,
which always involves in multiple factors in the TME.
Therefore, for different patients, personalized combined
immunotherapy regimens according to pathological reports are
supposed to be designed to achieve higher response rates and
therapeutic effects. At present, a series of therapeutic schedules
involving the combination of the PD-1/PD-L1 blockade
with other co-inhibitory/co-stimulatory checkpoints or other
immunotherapies are being explored (Figure 4).

Co-inhibitory Checkpoints
The activation of co-inhibitory immune checkpoints can produce
a series of inhibitory signals, resulting in the inhibition of the
corresponding immune response. To improve the antitumor
efficacy, mutual combinations of immune checkpoint inhibitory
antibodies are commonly adopted. Among these, the most
widely studied is the synergistic interaction between cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4) blockade and PD-1
blockade.

CTLA-4

CTLA-4 (CD152) is similar to PD-1 as an immune checkpoint
molecule, which is expressed on the surface of activated CD4+

and CD8+ T cells and exerts a negative regulatory role in the
initial stage of T cell activation. Since CTLA-4 ligands (CD80
and CD86) are only expressed on APCs, but not on the tumor
cell surface, the CTLA-4-mediated inhibition of T cell activation
occurs in secondary immune organs (lymph nodes). Unlike
CTLA-4, PD-1 mainly acts on the immune microenvironment,
thus a combined blockade of CTLA-4 and PD-1 may produce a
synergistic effect (87).

The analysis of peripheral blood and tumor tissue
specimens in patients receiving anti-PD-1, anti-CTLA-4, or
the combinatorial therapy demonstrated that CTLA-4 blockade
induced a proliferative signature in a subset of memory T
cells. Conversely, PD-1 blockade resulted in changes in the
expression of genes involved in T cells or NK cells functions
(88). In a phase 1 study in patients with advanced melanoma,
the ORR was 61% in the group receiving both ipilimumab
and nivolumab vs. 11% in the group receiving ipilimumab
and placebo, demonstrating that a combination of the two
could significantly improve the ORR (89). In the treatment of
refractory HNSCC with ipilimumab and nivolumab, complete
remission was achieved after 4 months of therapy (90). A series
of clinical trials combining CTLA-4 and PD-1/PD-L1 blockades
for the treatment of HNSCC confirmed the superiority of the
combinatorial therapy vs. monotherapy (Table 1).

TIM-3

Similar to CTLA-4 and PD-1, T cell immunoglobulin-3 (TIM-
3) is also one of the most studied inhibitory checkpoints. TIM-3
blockade could effectively induce antitumor immune responses
by enhancing T cell effects and depleting MDSCs in a murine
HNSCC model (91).

In an anti-PD-1 resistant murine tumor model, the high
expression of TIM-3 on T cells was detected in TILs. Moreover,
TIM-3 positive expression was also significantly correlated
with anti-PD-1 treatment time. The expression of TIM-3 was
low before and during the treatment-sensitive period, while it
significantly increased after drug resistance (92). Treatment with
anti-TIM-3 antibodies after PD-1 blockade overcame anti-PD-
1 resistance and significantly increased median survival time
in tumor-bearing mice. In the further clinical study, TIM-
3 was also found to be highly expressed on the surface of
TILs in patients with resistance to PD-1 blockade therapy,
suggesting that a combined anti-TIM-3 therapy had the potential
to overcome resistance to anti-PD-1 therapy (92, 93). In patients
with advanced HNSCC, PD-1 blockade might promote the
expression of TIM-3, which triggered the resistance to anti-
PD-1 therapy in the TME. To further explore the feasibility of
TIM-3 blockade for overcoming PD-1 resistance, PD-1 blockade
combined with TIM-3 blockade was applied in murine HNSCC
models. This combinatorial therapy significantly improved the
antitumor effect when compared with anti-PD-1 monotherapy
(18).

Frontiers in Oncology | www.frontiersin.org 9 November 2018 | Volume 8 | Article 532

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lin et al. Combinatorial PD-1 Blockade Therapies for HNSCC

FIGURE 4 | Interaction between immunotherapy and PD-1/PD-L1 blockade in the TME. PD-1/PD-L1 blockade in combination with other co-inhibitory checkpoints,

co-stimulatory checkpoints, or other immunotherapies such as tumor vaccines or oncolytic viruses may overcome the tumor resistance to PD-1/PD-L1, thereby

enhancing the antitumor immune response.

Other Co-inhibitory Checkpoints
The blockade of other inhibitory immune checkpoints such as
lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin
and ITIM domain protein (TIGIT), and their combination with
PD-1/PD-L1 blockade for the treatment of malignancies are also
being explored (94, 95). However, only a few studies have focused
on HNSCC, and more basic experiments and clinical studies still
need to be carried out.

Overall, in the treatment of HNSCC, PD-1/PD-L1 blockade
may result in a further upregulation of the inhibitory checkpoints
on the surface of TILs, thus supporting a circuit of compensatory
signaling and potentially permitting immune escape from PD-
1/PD-L1 blockade in the TME. Therefore, combining inhibitory
checkpoint blockade with PD-1/PD-L1 blockade may provide an
effective strategy to overcome acquired resistance to PD-1/PD-L1
blockade, as well as to increase the ORR and therapeutic efficacy.

Co-stimulatory Checkpoints
Unlike co-inhibitory checkpoints, co-stimulatory checkpoints
can induce immunostimulatory effects by activating members
of the tumor necrosis factor receptor superfamily on T cells
(96). The most studied stimulatory checkpoint receptors and
their ligands to date are mainly OX40, 4-1BB, and CD27, whose
agonist in combination with PD-1/PD-L1 blockade are also being
developed for the treatment of HNSCC (97, 98).

OX40

OX40 and its ligand OX40L are important co-stimulatory
molecules in the immune response, which can improve the

immunosuppressive effect in the TME and enhance the
cytotoxicity of the effector lymphocytes (99). In a PD-1
treatment-resistant murine model of ovarian cancer, PD-1
blockade combined with an OX40 agonistic antibody treatment
led to a promising ORR of 60% (100).

CD27

Similar to OX40L, CD70 (ligand of CD27) is found on activated
T cells, leading to CD27-CD70 interactions that may involve
direct cellular communication between T cells and APCs (101).
CD27 agonists synergized with PD-L1 blockade by enhancing
CD8+ T cell proliferation and effector cytokine generation,
while simultaneously downregulating the expression of multiple
quiescence-related genes (102). In human CD27 transgenic mice,
varlilumab (an CD27 agonist mAb), similarly synergized with
PD-L1 blockade in protecting against lymphoma (103). An
ongoing phase I/II clinical trial (NCT02335918) is designed
to determine the clinical benefit, safety, and tolerability of
combining varlilumab and nivolumab in advanced refractory
solid tumors including HNSCC.

4-1BB

4-1BB (CD137) is expressed on a variety of immune cells
including T cells, B cells, NK cells, and DCs. 4-1BB signaling
can enhance the proliferation and activation of T ligands bitory
PD-1 and TIM-3 checkpoints (104). For advanced giant tumors
that could not be controlled by anti-PD-1 monotherapy, its
combination with CD137 agonist therapy resulted in a complete
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rejection (105). Moreover, a phase Ib study (NCT02179918)
has already demonstrated the safety, tolerability, and clinical
activity of utomilumab (a 4-1BB agonist mAb) in combination
with pembrolizumab in the treatment of advanced solid tumors
including HNSCC (106).

Other Immunotherapies
In addition to immune checkpoints, other therapies targeting
the immune system, such as the indoleamine 2,3-dioxygenase
1 (IDO1) inhibitor, tumor vaccines, oncolytic viruses, and NK
cell Ig-like receptor (KIR) in combination with PD-1/PD-L1
blockade are also under development.

IDO1 is a rate-limiting enzyme in the catabolism of
tryptophan, which can induce the apoptosis or dysfunction of
T cells and NK cells, thereby weakening the antitumor immune
response. The inhibition of IDO1 activity could restore the
function of T cells and NK cells and overcome the tumor
immune tolerance (107). In patients with oral squamous cell
carcinoma, PD-L1 and IDO1 were overexpressed. Moreover,
the expression of PD-L1 and IDO1 was higher in patients
without alcohol and tobacco history, suggesting that patients
with HNSCC that do not smoke or drink may benefit more
from PD-L1 and IDO1 inhibition (108). In a phase II clinical
trial, a limited benefit from the PD-1 blockade was observed
in selected patients with advanced soft-tissue sarcoma and
gastrointestinal stromal tumors. This could be explained by an
immunosuppressive TME resulting frommacrophage infiltration
and the activation of IDO1 pathway (109). A combined PD-
L1 and IDO1 blockade could increase the percentage of CD8+

T cells in TILs and enhance the antitumor effects and survival
time (110). A series of clinical trials combining IDO inhibitors
with PD-1/PD-L1 blockade in the treatment of head and neck
cancers are currently underway (NCT03463161, NCT03325465,
NCT03358472, NCT03343613).

Cancer vaccines could provide antigens to activate the
immune system, initiate antitumor immune responses, and
overcome tumor-induced immunosuppression (111). Although
tumor vaccine-induced immune responses have been observed in
most studies, in clinical studies tumor vaccines were insufficient
as a monotherapy. Therefore, combining tumor vaccines with
other therapies such as PD-1/PD-L1 blockade might lead to
better clinical outcomes (112), and several ongoing clinical trials
are investigating the efficacy of tumor vaccines in combination
with PD-1/PD-L1 blockade for the treatment of HNSCC
(NCT03162224, NCT02432963, NCT03260023).

Oncolytic virus therapy represents a novel tumor
immunotherapy that utilizes the virus to specifically replicate in
tumor cells resulting in the lysis of tumor cells, which can lead to
ICD and stimulate specific antitumor immune responses (113).
Talimogene laherparepvec (TVEC) is a genetically modified
type I herpes simplex virus engineered to selectively replicate
within tumors and to produce the granulocyte-macrophage
colony stimulation factor (GM-CSF), thus enhancing systemic
antitumor immune responses (114). The results of a phase I
clinical trial showed that combining an oncolytic virus with
pembrolizumab could improve the efficacy of anti-PD-1 therapy
by improving the TME, without increasing the toxicity in

patients with advanced melanoma (115). An ongoing clinical
trial has been established to further evaluate the safety and
efficacy of the combination of TVEC with pembrolizumab for
the treatment of R/M HNSCC (NCT02626000).

SPECIFIC LANDSCAPE FOR HNSCC

In addition to the above-mentioned several commonly applied
solid tumor treatment strategies, due to the specific etiology of
HNSCC, some treatments for HNSCC have also been developed,
and these therapies are blocked with PD-1/PD-L1. The efficacy of
the combined application is also being evaluated.

Tobacco, alcohol consumption, and human papillomavirus
infection (HPV) are considered to be the major risk factors
for HNSCC. Toxic-induced and HPV-induced HNSCC are
described as two different clinical entities with different oncologic
pathways and prognosis in the 2017 WHO classification (116).
Furthermore, there is also a high rate of somatic mutation in
HNSCC (117). Therefore, the immunogenicity of HNSCC differs
depending on tumor intrinsic antigen, neoantigen derived from
the mutations, or the expression of the antigen induced by the
HPV infection. Tumor immune microenvironment also differs
in terms of the mutations load and viral infection (118). Cancer
genomic analysis of different patients is important for the design
of PD-1/PD-L1 blockade combinatorial therapy.

HPV Infection in Combinatorial Therapy in
PD-1/PD-L1 Blockade
As HPV-induced HNSCC is considered as a distinct clinical
entity in terms of clinical presentation, response to treatment and
prognosis, the specificities in its microenvironment need to be
more precisely characterized in order to stratify patients. Due to
the specificity of HPV-induced HNSCC in clinical manifestations
and response to treatment, there are significant differences
in tumor immune microenvironment among HNSCC patients
based on HPV infection status, thus the ORRs to PD-1/PD-L1
blockade are also different.

HPV-positive HNSCC samples showed a significantly higher
number of invasive CTLs, dendritic cells and pro-inflammatory
chemokines, which was considered to be positively correlated
with a favorable prognosis. In addition, TIL in HPV-positive
tumors has significantly higher PD-1 expression (119, 120). In
patients treated with pembrolizumab for advanced HNSCC, the
response rate for HPV-positive populations was 32%, compared
with 14% for HPV-negative populations. Of patients that
responded, the 6-months progression-free survival rate for HPV-
positive population was 37%, compared with 20% for HPV-
negative populations, suggesting that the efficacy of PD-1/PD-L1
blockade is related to HPV infection status (14). In the treatment
of E6/E7 expressing ovarian cancer burden mice, when HPV-
E6/E7 vaccine was combined with PD-L1 blockade, most tumor
growth was effectively controlled (121). However, the ORR was
only 33% when treating HNSCC patients with HPV vaccine and
PD-1 blockade (122). To the inconsistency with the results of
preclinical studies, the investigators speculated that although the
HPV-16-specific T cells increased after vaccine injection, these
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vaccine-induced T cell populations may be necessary, but not
sufficient to enhance the ORR in combination of nivolumab,
and additional immunosuppressive pathways might still exist.
Further clinical trials to verify the superiority of the HPV vaccine
in combination with PD-1 blockade are still needed.

Cancer Genomics for Designing
Combinatorial Strategies
High-load mutations in HNSCC can lead to the expression
of neoantigens and changes in TME, which may serve as
new therapeutic targets. And the detection of common tumor
mutation genes can also provide a reliable basis for the choice
of treatment plan for patients with HNSCC. Studies on cancer
genomics showed the loss of cell cycle regulation was an
important driver for HNSCCs.

The most reported cell cycle regulation genes and their
molecular pathways include TP53, pRB, CCND1, and CKN2A
(123, 124). HPV infection also plays an important role in
HNSCC oncogensis. The E6 and E7 oncogenes in HPV can
lead to mutation and inactivation of TP53 and pRB, respectively
(125). In fact, mutations in TP53 are detected in most HPV-
negative HNSCC cases (126). Likewise, CDKN2A is inactivated
bymutation ormethylation inmost HPV-negative HNSCC cases.
Also, 32% of HPV-negative HNSCCs had CCND1 amplification
whereas only 6% of that was observed in HPV-positive samples
(123). Similarly, increased cell growth and proliferation pathway
activation also plays an important role in HNSCC tumorigenesis.
One of the key regulators of proliferation identified in HNSCC
is EGFR. Other common mutant genes in cell growth pathway,
including PIK3CA, PTEN, FGFR, and other growth factor
receptors or their ligands, are also important for tumorigenesis
(123).

PD-L1 membranous expression on tumor cells can result
either from an adaptive immune phenomenon or from
intrinsic oncogenic events in HNSCC. Several oncogenic
mechanisms have been associated with PD-L1 expression, such
as tumor-suppressive PTEN gene mutation or deletion, pro-
oncogenic PI3K path activation, AKT/mTOR, NF-kB, and
MAPK (mitogen-activated protein kinase, MEK/ERK) pathways
deregulation. Either adaptive immune responses or mutations
from endogenous carcinogenesis-related genes in HNSCC can
lead to the upregulation of PD-L1 expression on tumor cells.
Several carcinogenesis mechanisms are associated with PD-L1
expression, including tumor suppressor PTEN gene mutations
or deletions, oncogene PI3K pathway activation, AKT/mTOR,
NF-kB and MAPK pathway dysregulation (127).

Based on the researches on the HNSCC cancer genomics,
several targeted drugs have been developed and extended to
clinical applications such as EGFR which has been described
above. Gene therapy drugs such as liposome or virus based
TP53 gene delivers have also been developed for treatment
of HNSCC (128, 129). It has been proved that transduction
of p53 gene to HNSCC cells induced loss of cell viability
while increased the immunogenicity and expression of PD-
L1 on tumor cells, which synergized with PD-1 blockade
(128).

FUTURE PERSPECTIVES

PD-1 blockade could prevent the negative regulatory signals
generated by T cells to relieve immunosuppression and enhance
the antitumor efficacy of T cells. In addition, it may also
abnormally enhance the autoimmune response, thereby leading
to an imbalance of immune tolerance. Common autoimmune
inflammatory reactions induced by PD-1 blockade involving
normal tissues includes the skin symptoms, hypothyroidism, and
hyperthyroidism (130). When combined with other therapies,
although the therapeutic efficacy is enhanced, more serious
side effects may also be triggered, for example an increase in
the incidence of fatal myocarditis (131). Targeted delivery can
be achieved by loading the anti-PD-1/PD-L1 antibodies within
engineered carriers, thereby reducing the side effects of the
PD-1/PD-L1 blockade combinatorial therapy and improving
antitumor efficacy. PD-1/PD-L1 inhibitors and other drugs
could be loaded into the nanoparticles to enrich drugs at
the tumor site (132), or encapsulated into the hydrogels for
local treatment by peritumoral injections (133). Satisfactory
therapeutic outcomes effects with reduced off-target and adverse
effects have been achieved, demonstrating that smart delivery
of PD-1/PD-L1 inhibitors in combination with other drugs
via engineered carriers could represent a promising strategy
for reducing side effects as well as enhancing antitumor
efficacy.

In conclusion, PD-1/PD-L1 blockade has shown good and
long-lasting therapeutic effects in the treatment of HNSCC and
other malignancies, but only a small subset of patients can benefit
from the monotherapy. To enhance the response rate and the
therapeutic effect of PD-1/PD-L1 blockade, numerous preclinical
experiments, and clinical trials exploring the combinatorial
therapies involving PD-1/PD-L1 blockade are underway. In this
review, we summarized the current status of the combined
application of chemotherapy, radiotherapy, targeted therapy,
and immunotherapy in combination with PD-1/PD-L1 blockade
in the field of HNSCC. Moreover, the potential mechanisms
underlying the crosstalk process between PD-1/PD-L1 blockade
and combinatorial cancer therapies in the TME was described.
Furthermore, it is hoped that the improved understanding of
the crosstalk would provide further ideas for the design of
PD-1/PD-L1 combinatorial therapies for HNSCC and other
malignancies.
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