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Abstract. Each game has an artificial intelligence that is used to fight the player, which will provide more 

challenge. But in some strategy games, unit movements are usually done using simple considerations. For 

example the rest of unit lives, unit strength, and so forth. In this study, a turn based strategy game is designed 

using genetic algorithm to control the movement of the enemy armies. In each turn, the enemy will move 

based on the potential level of produced damage to and from the opponent, the distance between the units, and 

the distance to the opponent’s building. The genetic algorithm’s chromosome for each unit contains the 

following information: the position where the unit will move, who is the target, and the distance to the armies’ 

centroid. Distance to centroid (midpoint) is used to force the units to remain in the set. The genetic algorithm 

process is used to control when and where the units will move or attack. From the test results, the genetic 

algorithm can create a more powerful enemy than the randomly moving enemy because it creates a higher 

winning chance of enemy units and acts more efficiently, in terms of the usage of money, the damage 

produced to the opponent, and the received damage. 
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1. Introduction 

 

Computer game has many types/genre that is currently 

evolving, such as strategy games. Strategy game is usually 

played by a human player, organizing buildings and armies, 

defending its base, and attacking enemy’s base. Strategy 

game is a genre that uses careful planning to achieve victory 

[1]. Turn-based strategy game, which is the expansion of the 

strategy genre, grows quite rapidly, because this game genre 

is challenging; every bad or good move can affect the entire 

war. The intensity of the graphics, gameplay, mechanical 

factors, and enemy intelligence are the key to success for 

this kind of game [2]. 

Each game has an artificial intelligence implemented in 

the enemies to fight the player, but in some strategy games, 

units movements are made based on brief thoughts. For 

example, the units’ remaining lives, the strength of the 

armies, the enemy units which will be targeted, and so forth, 

are usually the factors that a human player considers when 

playing. Strategy game has so many possibilities that can be 

optimized in terms of enemy AI [3]. 

This study designed a turn based strategy game that uses 

a genetic algorithm to regulate the movement of the enemy, 

with consideration of the condition of all the player’s armies 

and the enemy at a time. The conditions are the potential 

level of damage to the opponent, the potential damage from 

the opponent, the distance between the units, and the 

distance to the opponent’s main building.  

 

1.1 Genetic Algorithm 

 

Genetic algorithms are suitable for optimizing a search-

ing space that is uncertain and broad [4]. Genetic algorithm 

is a stochastic search algorithm based on biological 

evolution. The basic principle of Genetic Algorithm is the 

selection, crossover, and mutation of individuals with the 

aim of generating a better generation than ever before [5]. 

Here are the steps of the genetic algorithm: 

1. Randomization of initial individual. 

2. Calculation of the fitness of each individual. 

3. Select a pair of chromosome for mating. The selection is 

done using a roulette method. 

4. Do crossover. Every two (a pair of) individuals will be 

mated with certain chance. 

5. Do mutations in individuals with certain chance, and 

select random genes to be mutated. 

6. Do elitism process. The individual with the worst fitness 

will be replaced by an individual with the best fitness 

(i.e. the elite) before roulette. This elite is used to adapt 

with the dynamic environment after the mating pro-

cesses [6]. 

7. Current result of individuals will be used for the next 

iteration as a new population. 

8. Steps 2-7 will be repeated continuously, until condition 

9 is satisfied. 

9. The process of genetic algorithm is terminated after 

certain conditions, such as the maximum fitness is stable 

three times in a row. 

 

2. Research Methods 

 

The game designed in this study takes the type of turn-

based strategy in which two players take turns controlling 

their units alternately. The player who succeeds in achieving 

his/her goal becomes the winner. The game is using grid 

system (50x50 grids), which means a unit can move or 

attack based on the grid positions. 

The game begins with each player having one main 

building as a place to make units. The main building also 

needs to be protected because if the main building belonging 

to a player is destroyed, the game will end and the player is 

declared the loser. 
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If a player is currently in turn, he or she can create units 
or move units. Created units will appear around the main 
building. In this game, to limit the searching space, a unit 
can be created instantly (i.e. no training time) if there is a 
sufficient amount of money. 

The player and the enemy get the same amount of 
money at the beginning, and on each turn, players earn extra 
money. The money is used to make the units in the main 
building. If a unit has killed an enemy unit, the unit’s owner 
receives the money. Players can end a turn by pressing the 
end turn on the UI (User interface). Once a player ends the 
turn, the turn will be switched to the opposing player. 
 

2.1 Units Type 
 

In this game, there are various types of units, which have 
statistics i.e. attack, attack type, attack range and the armor 
type. In addition, each unit has different creating/training 
costs. Also, each unit has different repercussions when it 
attacks certain unit types. There are 3 types of armies based 
on armor type, i.e. infantry, fortified, and mechanical. There 
are 3 types of attack, i.e. melee, bullet, and explosive. 
Relevance of attack type with defense type is as follow: 
• Melee attacks will inflict more damage to mechanical 

armor (+50%). Melee will cause lower damage to forti-
fied armor (-50%). 

• Bullet attacks will inflict more damage to infantry armor 
(+50%). Bullet will cause lower damage to mechanical 
armor (-50%). 

• Explosive attacks will inflict more damage to fortified 
armor (+50%). Explosive will cause minimal damage to 
infantry armor (-50%). 
 

Names and statistics of the designed armies can be seen 
in Table 1. 
 

Table 1. Units Type 

Name Atk Type Rng Armor HP Move 

Infantry 15 Melee 1 Infantry 20 5 
Cavalry 20 Melee 1 Infantry 20 4 

Musketeer 25 Bullet 4 Fortified 25 3 
Artillery 30 Explosive 4 Mechanical 30 2 

Notes: 
• Atk = Attack, means the attack damage that is caused to 

an opponent in a single attack 
• Type = Attack type. Melee means close-ranged unit, 

bullet means ranged unit that attacks the enemy using a 
hand gun, explosive means ranged unit that attacks the 
enemy using a cannon or an explosion. 

• Rng = Attack range. For example, value 4 means the 
attack range is 4 grids. 

• Armor = Armor type. Infantry means simple armor 
attached to a human body; fortified means concrete/ 
building armor; mechanical means the artillery/tank/ 
other vehicle type armor. 

• HP = Health points, means the amount of health. If the 
HP reaches 0 or below, the unit will be dead. 

• Move = Move count. For example, value 5 means it can 
move up to 5 grids in a single turn.  

 
2.2 Genetic Algorithm for Movement 

 
In the planning of unit movements (attack included), 

genetic algorithms are used to determine the steps that will 

be controlled by AI. The desired output is that each unit 
causes an optimal damage to an opponent unit, and the 
potential damage inflicted by the opponent should be as low 
as possible. Optimal damage means the most advantageous 
(see 2.1) and the shortest move to attack. There are four 
criteria that must be met: 
• Potential damage produced to the opponent units. 

• Potential damage received from the opponent units. 

• The average distance to the centroid of the entire units. 

• The average distance of each unit to the opponent’s 

main building. 

 

The reason in choosing these criteria is to produce 

maximum damage to the opponent units and to achieve 

victory faster. Besides the damage produced, the potential 

damage from the enemy should be a consideration, so that 

ally units can live longer. The units are required to be in 

group, not separated too far with each other, because the 

closer the unit with others, the more quickly the unit can 

help when the ally units are being attacked by opponent 

units. 

With the criteria that must be fulfilled in the AI, the 

resulting chromosome for genetic algorithm design is shown 

in Figure 1. 

 

 

Figure 1. Individual design for units 

 

In the design of the individual, the length of the chromo-

some is adapted to the number of units owned by AI. There 

are three parts of the chromosome, which are the position of 

the movement to be performed (Move Pos), the ID of the 

enemy unit to be attacked (Target ID), and the unit distance 

to the centroid of entire units (Distance to Centroid). The 

example of individual design can be seen in Figure 2. 

 

 

Figure 2. Example of individual design for units 

 

Notes: 

• The first 3 genes represent the unit index 0, next 3 genes 

represent unit index 1, and so on. 

• The number 25 (1
st
 gene) means, the unit #0 will move 

to grid ID 25. Each grid in the game is given an ID. The 

top left grid is given ID 0, the right of it is 1, continuing 

horizontally to the right side, before continuing to the 

next row. 

• The number 3 (2
nd

 gene) means, the unit #0 will attack 

opponent unit #3. Each opponent unit is given an ID. 

• The number 103 (3
rd
 gene), means the unit position after 

moved to grid #25 (1
st
 gene) will have the distance of 

103 grids to the centroid. 

 

The following steps of implementation of unit move-

ments using genetic algorithms can be explained in sub 

section 2.2.1 up to 2.2.9. 
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2.2.1 Generate Individuals 

 

In the first generation, each individual will have rando-

mized genes. There will be 10 individuals generated. The 

results of random numbers will be converted into the 

position of the movement to be performed, while the 

distance from the centroid is calculated using Euclidian 

distance. 

In determining the Target ID, all opponent units will be 

checked if any of them is in the unit’s attack range. If any 

opponent unit is in range, the AI will prioritize the target that 

can be killed with one hit. When an enemy unit is killed, AI 

earns money. 

 

2.2.2 Fitness Value Factors 

 

The potential damage (to and from opponent units), 

distance to enemy building, and distance to centroid are 

values that contribute to the fitness value. The average 

distance of each unit to the opponent’s main building can be 

calculated using the mean of Euclidean distance, shown in 

the following formula: 

      
         

         
  

   

 
 (1) 

Notes: 

• n = Units count 

• xi and yi = The (x,y) position of unit-i 

• xb and yb = The (x,y) position of opponent’s main 

building 

 

The potential level of damages from the opponent units 

is calculated from averaging the level of damage of all 

opponent units against each ally unit in the chromosome, 

also considering: 

• Number of turns required to attack the enemy unit. 

Fewer turns are better. 

• Attack range of unit. Higher range is better, because it 

has a higher chance to attack. 

 

The formula for potential damage from opponent units 

is shown on the following pseudo code. 

 

 
Notes: 

• selfLoss = Potential damage from opponent units 

• dmg(i,j) = The amount of damage that is caused by 

enemy-i to enemy-j, considering the attack type and 

armor type (see chapter 2.1) 

• turn(i,j) = Number of turns that is required for enemy-i 

to attack enemy-j (move to reach the target and then 

attack).  

• rng(i) = Attack range of enemy-i.  

 

The potential damage to opponent units (enemy loss) is 

using the same formula, but the unit side is reversed. 

The third factor that contributes to the fitness value is the 
average distance of units’ position to centroid, and it is 
calculated using the following formula: 

        
         

         
  

   

 
 (2) 

Notes: 
• n = Units count 
• xi and yi = The (x,y) position of unit-i 
• xm and ym = The (x,y) position of centroid, calculated by 

averaging X of all ally units and averaging Y of all ally 
units 

 

2.2.3 Fitness Function 
 
Calculation of fitness in each individual is based on the 

following formula: 

   
               

                               
 (3) 

 
The formula can be described as follows: 
• enemyLoss represents the total potential damage pro-

duced to the enemy. This variable is multiplied by 10, 
which means it is valued the most. 

• dist represents the average distance of each unit in the 
individual to the opponent’s main building. dist becomes 
a factor that lowers the individual fitness, because the 
greater the distance, the more difficult it is for the AI 
units to siege the opponent’s main building. 

• selfLoss represents the total average of potential damage 
that all opponent units inflict on the units of the current 
individual. selfLoss is a factor that lowers the individual 
fitness, because the higher the number of attacks 
received by AI units, the greater the danger that awaits. 

• avgToC represents the average distance of each AI in an 
individual against a centroid (midpoint). The farther the 
average distance, the more difficult it is for the AI units 
to perform backups on the besieged units. 
 
The higher the fitness value generated, the better the 

individual is. 

 

2.2.4 Roulette Selection 
 

The selection on the individuals uses the roulette wheel 

to define the next generation. Only the top 5 (best fitness) of 

the population (50% of total population) will enter the 

roulette to speed up finding a solution. Roulette wheel 

method uses fitness as the probability of a chromosome 

being selected in the next generation. The following formula 

determines the chance of a chromosome to be selected in the 

roulette: 

           
            

            
 (4) 

 

The roulette will choose 10 chromosomes that will go to 

the next step. The chromosomes will be chosen based on the 

probability. For example, the probability of the top five is 

(35, 25, 20, 10, and 10). These top five will be picked using 

roulette until the count of chromosome is 10. Thus, the same 

chromosome can be picked more than once. The roulette 

can have the following results: 3,1,2,1,4,0,2,4,1,2 (unit 

index). 

 

selfLoss = 0 

Loop opponent units (as i) 

 Loop ally units (as j) 

  selfLoss += dmg(i,j) × (1/turn(i,j)) × 

rng(i) 

 Next j 

Next i 

selfLoss /= n 
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2.2.5 Crossover 

 
The GA process will do the crossover between two 

individuals (a pair) with a 70% chance. The crossover 
occurs by choosing two random integers (from one to the 
number of genes) as the start index and the end index. Then, 
between the two individuals, genes from start to end index 
will be exchanged, resulting in two new individuals in each 
copulation. 
 

2.2.6 Mutation 
 

After the crossover, each individual will be mutated with 
a 10% chance. The mutations are performed on Move Pos 
variable of each unit on the individual. Since the Move Pos 
is the index of grid, there is a chance that the chosen grid is 
an area that cannot be occupied (because of tress/rocks, 
etc.). In this case, the index of grid will be re-randomized. 
Once the mutation is done, Target ID, Distance to Centroid, 
and the final fitness value will be recalculated, due to the 
possibility that their values change. 
 

2.2.7 Elitism 
 

Elitism is done by adding one chromosome with the 
highest fitness value to replace the worst chromosome in the 
next generation. This process occurs by a 100% chance. 
 

2.2.8 Iteration 
 

Step 2.2.2 to 2.2.7 will be repeated until it meets the 
specified number of generations. The maximum number of 
generations used for the unit movement are 20 generations, 
or it will stop if the maximum fitness is stable for three 
generations consecutively. Twenty is chosen as the number 
of generations because if it is higher, the process will be too 
CPU intensive, causing a lot of lag. Based on 10 trials of the 
GA, eight of them stop at iteration around 15-18, because 
the fitness value is stable. So, the limit of 20 is adequate for 
limiting the CPU usage. 
 

2.2.9 Final Result 
 

At the final stage, the best individual (maximum fitness) 
of the last generation is picked out and used to determine AI 
actions on any unit movement. 

3. Result and Discussion 

 

This section will discuss the testing procedures and the 

results. Genetic Algorithm AI of the game will be compared 

with the random AI method, where the opponent moves 

randomly. Comparisons were made covering several 

aspects, i.e. comparison of the financial terms, produced and 

received damage, created and killed units, and number of 

turns to win. 

 

3.1 Player Battle Test versus AI (AI uses Infantries and 

Cavalries only) 

 

This chapter is used to test the genetic algorithm of the 

AI where the player can use all unit types, whilst the AI 

(enemy) can only use infantries and cavalries. The test is 

carried out until the game is finished, and any data generated 

in the game will be logged. The test is done using two types 

of AI: the random AI and genetic algorithm AI. Game 

results are recorded in Table 2. 

Table 2 compares the results of testing both methods of 

AI. In the aspect of the unit created, it is evident that genetic 

algorithm was capable of suppressing the number of units 

made by the player with a fewer number of units than that 

required by random AI. In the aspect of unit loss, random AI 

was not able to defeat any player unit, while genetic 

algorithm could beat eight of them, with the number of units 

lost far less than the AI Random. 

In the aspect of money used, the player used more 

money battling against AI genetic algorithm than AI 

random, but AI genetic algorithm used less money than 

random AI did. In the aspect of money earned, there is a 

drastic change. The money generated by the player 

opposing the AI genetic algorithms was much less than 

when the player battled against AI random. Similarly, the AI 

genetic algorithm could earn more money than AI random 

did. 

In the aspect of damage, the damage produced by the 

player’s units was much lower than the damage produced by 

the enemy’s, when the player was battling against the AI 

genetic algorithm. 

In the aspect of the number of turns in this test, there was 

no difference. 

Table 2. Game Result – Player versus Infantries and Cavalries 

Aspect AI Random AI Genetic Algorithm Increase Value* 

 Player Enemy Player Enemy Player Enemy 

Unit Created 13 19 8 13 -5 -6 

Unit Dead 0 17 8 3 8 -14 

Money Used 265 250 200 245 -65 -5 

Money Earned 810 330 319 724 -491 394 

Damage Produced 778 156 134 525 -644 369 

Damage Received 156 778 525 134 369 -644 

Total Turn 14 14  

Winner Player Enemy  

* The increase value is obtained by comparing the results of both AI. Comparison is done by finding the difference of AI 

Random and Genetic Algorithm. 
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3.2 Player Battle Test versus AI (AI uses All Unit Types) 
 
This chapter is used to test genetic algorithm of the AI 

where the player and the enemy can use all unit types. The 
human player would attempt to make the units in the same 
orders as what the player did in the previous test (chapter 
3.1). The results can be seen in Table 3. It compares the 
results of testing of both methods of AI. The numbers of 
turns for AI random and genetic algorithms were not the 
same; 36 versus 15. Because of the difference, values for the 
AI random would be normalized to assume it were using 15 
turns. The numbers in parentheses are the normalized 
values. The normalization is done to make the comparison 
easier. 

In this test case, AI random could last up to 36 turns, but 
because of regulation on the manufacturing units and unit 
movements, AI random could not make a decision carefully, 
so the AI random was defeated. In contrast, the AI genetic 
algorithm was able to produce results that were much better 
than the AI random. 
 
4. Conclusion 

 
During the planning, analysis, design, and programming 

through journal writing, there are several conclusions which 
can be derived: 
• The use of genetic algorithm of AI is more suitable 

when it is used in the turn-based strategy genre (rather 
than the real time strategy), because of the time to carry 
out the process of picking a best move that requires a 
long time. 

• Applying genetic algorithm in a game is influenced 
greatly by the statistics of every unit in the game, so the 
AI should be tested thoroughly. Also, due to the very 
broad searching space of a strategy game, the GA can be 
tweaked more. 

 

 

 

 

 

 

 

 

 

 

 

• The use of genetic algorithms for AI is proved to be 

better than the random method, because the AI can 

review all of its and the player’s conditions. 

• This research can be further expanded by adding more 

clans with more variations of units to make the 

optimization process even more challenging. Adding air, 

ground, and sea units are also interesting. 

• The GA in this research can be combined with another 

AI method, such as Fuzzy and Neural network, to make 

the optimization process faster, because predetermined 

expert data is included. 
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Table 3. Game Result – Player versus All Unit Types 

Aspect 
AI Random AI Genetic Algorithm Increase Value* 

Player Enemy Player Enemy Player Enemy 

Unit Created 22 (9.17) 23 (9.58) 7 14 -2.17 4.42 

Unit Dead 14 (5.84) 24 (10) 8 2 2.16 -8 

Money Used 645 (268.75) 610 (254.17) 210 300 58.75 -45.83 

Money Earned 1157 (482.08) 691 (287.92) 177 895 -365.08 607.08 

Damage Produced 1054 (439.17) 622 (259.17) 126 550 -313.17 290.83 

Damage Received 622 (259.17) 1054 (439.17) 550 126 290.83 -313.17 

Total Turn 36 (15) 15  

Winner Player Enemy  

 


