

33

JIRAE, Vol. 1, No. 1, September 2016, 33-37 DOI: 10.9744/JIRAE.1.1.33-37

e-ISSN 2407-7259

Optimization of Units Movement in Turn-Based Strategy Game

Kristo Radion Purba

a
, Liliana

b
, Johan Pranata

c

Department of Informatics, Petra Christian University, Surabaya, Indonesia
a
kristo@petra.ac.id,

b
lilian@petra.ac.id,

c
tomochin.johan48@gmail.com

Abstract. Each game has an artificial intelligence that is used to fight the player, which will provide more

challenge. But in some strategy games, unit movements are usually done using simple considerations. For

example the rest of unit lives, unit strength, and so forth. In this study, a turn based strategy game is designed

using genetic algorithm to control the movement of the enemy armies. In each turn, the enemy will move

based on the potential level of produced damage to and from the opponent, the distance between the units, and

the distance to the opponent’s building. The genetic algorithm’s chromosome for each unit contains the

following information: the position where the unit will move, who is the target, and the distance to the armies’

centroid. Distance to centroid (midpoint) is used to force the units to remain in the set. The genetic algorithm

process is used to control when and where the units will move or attack. From the test results, the genetic

algorithm can create a more powerful enemy than the randomly moving enemy because it creates a higher

winning chance of enemy units and acts more efficiently, in terms of the usage of money, the damage

produced to the opponent, and the received damage.

Keywords: Artificial Intelligence, Genetic Algorithm, Turn-based strategy game, Units Movement.

1. Introduction

Computer game has many types/genre that is currently

evolving, such as strategy games. Strategy game is usually

played by a human player, organizing buildings and armies,

defending its base, and attacking enemy’s base. Strategy

game is a genre that uses careful planning to achieve victory

[1]. Turn-based strategy game, which is the expansion of the

strategy genre, grows quite rapidly, because this game genre

is challenging; every bad or good move can affect the entire

war. The intensity of the graphics, gameplay, mechanical

factors, and enemy intelligence are the key to success for

this kind of game [2].

Each game has an artificial intelligence implemented in

the enemies to fight the player, but in some strategy games,

units movements are made based on brief thoughts. For

example, the units’ remaining lives, the strength of the

armies, the enemy units which will be targeted, and so forth,

are usually the factors that a human player considers when

playing. Strategy game has so many possibilities that can be

optimized in terms of enemy AI [3].

This study designed a turn based strategy game that uses

a genetic algorithm to regulate the movement of the enemy,

with consideration of the condition of all the player’s armies

and the enemy at a time. The conditions are the potential

level of damage to the opponent, the potential damage from

the opponent, the distance between the units, and the

distance to the opponent’s main building.

1.1 Genetic Algorithm

Genetic algorithms are suitable for optimizing a search-

ing space that is uncertain and broad [4]. Genetic algorithm

is a stochastic search algorithm based on biological

evolution. The basic principle of Genetic Algorithm is the

selection, crossover, and mutation of individuals with the

aim of generating a better generation than ever before [5].

Here are the steps of the genetic algorithm:

1. Randomization of initial individual.

2. Calculation of the fitness of each individual.

3. Select a pair of chromosome for mating. The selection is

done using a roulette method.

4. Do crossover. Every two (a pair of) individuals will be

mated with certain chance.

5. Do mutations in individuals with certain chance, and

select random genes to be mutated.

6. Do elitism process. The individual with the worst fitness

will be replaced by an individual with the best fitness

(i.e. the elite) before roulette. This elite is used to adapt

with the dynamic environment after the mating pro-

cesses [6].

7. Current result of individuals will be used for the next

iteration as a new population.

8. Steps 2-7 will be repeated continuously, until condition

9 is satisfied.

9. The process of genetic algorithm is terminated after

certain conditions, such as the maximum fitness is stable

three times in a row.

2. Research Methods

The game designed in this study takes the type of turn-

based strategy in which two players take turns controlling

their units alternately. The player who succeeds in achieving

his/her goal becomes the winner. The game is using grid

system (50x50 grids), which means a unit can move or

attack based on the grid positions.

The game begins with each player having one main

building as a place to make units. The main building also

needs to be protected because if the main building belonging

to a player is destroyed, the game will end and the player is

declared the loser.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201629534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Purba, K.R. et al. / Optimization of Units Movement in Turn-Based Strategy Game / JIRAE, Vol. 1, No. 1, September 2016, pp. 33–37

 34

If a player is currently in turn, he or she can create units
or move units. Created units will appear around the main
building. In this game, to limit the searching space, a unit
can be created instantly (i.e. no training time) if there is a
sufficient amount of money.

The player and the enemy get the same amount of
money at the beginning, and on each turn, players earn extra
money. The money is used to make the units in the main
building. If a unit has killed an enemy unit, the unit’s owner
receives the money. Players can end a turn by pressing the
end turn on the UI (User interface). Once a player ends the
turn, the turn will be switched to the opposing player.

2.1 Units Type

In this game, there are various types of units, which have
statistics i.e. attack, attack type, attack range and the armor
type. In addition, each unit has different creating/training
costs. Also, each unit has different repercussions when it
attacks certain unit types. There are 3 types of armies based
on armor type, i.e. infantry, fortified, and mechanical. There
are 3 types of attack, i.e. melee, bullet, and explosive.
Relevance of attack type with defense type is as follow:
• Melee attacks will inflict more damage to mechanical

armor (+50%). Melee will cause lower damage to forti-
fied armor (-50%).

• Bullet attacks will inflict more damage to infantry armor
(+50%). Bullet will cause lower damage to mechanical
armor (-50%).

• Explosive attacks will inflict more damage to fortified
armor (+50%). Explosive will cause minimal damage to
infantry armor (-50%).

Names and statistics of the designed armies can be seen
in Table 1.

Table 1. Units Type

Name Atk Type Rng Armor HP Move

Infantry 15 Melee 1 Infantry 20 5
Cavalry 20 Melee 1 Infantry 20 4

Musketeer 25 Bullet 4 Fortified 25 3
Artillery 30 Explosive 4 Mechanical 30 2

Notes:
• Atk = Attack, means the attack damage that is caused to

an opponent in a single attack
• Type = Attack type. Melee means close-ranged unit,

bullet means ranged unit that attacks the enemy using a
hand gun, explosive means ranged unit that attacks the
enemy using a cannon or an explosion.

• Rng = Attack range. For example, value 4 means the
attack range is 4 grids.

• Armor = Armor type. Infantry means simple armor
attached to a human body; fortified means concrete/
building armor; mechanical means the artillery/tank/
other vehicle type armor.

• HP = Health points, means the amount of health. If the
HP reaches 0 or below, the unit will be dead.

• Move = Move count. For example, value 5 means it can
move up to 5 grids in a single turn.

2.2 Genetic Algorithm for Movement

In the planning of unit movements (attack included),

genetic algorithms are used to determine the steps that will

be controlled by AI. The desired output is that each unit
causes an optimal damage to an opponent unit, and the
potential damage inflicted by the opponent should be as low
as possible. Optimal damage means the most advantageous
(see 2.1) and the shortest move to attack. There are four
criteria that must be met:
• Potential damage produced to the opponent units.

• Potential damage received from the opponent units.

• The average distance to the centroid of the entire units.

• The average distance of each unit to the opponent’s

main building.

The reason in choosing these criteria is to produce

maximum damage to the opponent units and to achieve

victory faster. Besides the damage produced, the potential

damage from the enemy should be a consideration, so that

ally units can live longer. The units are required to be in

group, not separated too far with each other, because the

closer the unit with others, the more quickly the unit can

help when the ally units are being attacked by opponent

units.

With the criteria that must be fulfilled in the AI, the

resulting chromosome for genetic algorithm design is shown

in Figure 1.

Figure 1. Individual design for units

In the design of the individual, the length of the chromo-

some is adapted to the number of units owned by AI. There

are three parts of the chromosome, which are the position of

the movement to be performed (Move Pos), the ID of the

enemy unit to be attacked (Target ID), and the unit distance

to the centroid of entire units (Distance to Centroid). The

example of individual design can be seen in Figure 2.

Figure 2. Example of individual design for units

Notes:

• The first 3 genes represent the unit index 0, next 3 genes

represent unit index 1, and so on.

• The number 25 (1
st
 gene) means, the unit #0 will move

to grid ID 25. Each grid in the game is given an ID. The

top left grid is given ID 0, the right of it is 1, continuing

horizontally to the right side, before continuing to the

next row.

• The number 3 (2
nd

 gene) means, the unit #0 will attack

opponent unit #3. Each opponent unit is given an ID.

• The number 103 (3
rd
 gene), means the unit position after

moved to grid #25 (1
st
 gene) will have the distance of

103 grids to the centroid.

The following steps of implementation of unit move-

ments using genetic algorithms can be explained in sub

section 2.2.1 up to 2.2.9.

Purba, K.R. et al. / Optimization of Units Movement in Turn-Based Strategy Game / JIRAE, Vol. 1, No. 1, September 2016, pp. 33–37

 35

2.2.1 Generate Individuals

In the first generation, each individual will have rando-

mized genes. There will be 10 individuals generated. The

results of random numbers will be converted into the

position of the movement to be performed, while the

distance from the centroid is calculated using Euclidian

distance.

In determining the Target ID, all opponent units will be

checked if any of them is in the unit’s attack range. If any

opponent unit is in range, the AI will prioritize the target that

can be killed with one hit. When an enemy unit is killed, AI

earns money.

2.2.2 Fitness Value Factors

The potential damage (to and from opponent units),

distance to enemy building, and distance to centroid are

values that contribute to the fitness value. The average

distance of each unit to the opponent’s main building can be

calculated using the mean of Euclidean distance, shown in

the following formula:

 (1)

Notes:

• n = Units count

• xi and yi = The (x,y) position of unit-i

• xb and yb = The (x,y) position of opponent’s main

building

The potential level of damages from the opponent units

is calculated from averaging the level of damage of all

opponent units against each ally unit in the chromosome,

also considering:

• Number of turns required to attack the enemy unit.

Fewer turns are better.

• Attack range of unit. Higher range is better, because it

has a higher chance to attack.

The formula for potential damage from opponent units

is shown on the following pseudo code.

Notes:

• selfLoss = Potential damage from opponent units

• dmg(i,j) = The amount of damage that is caused by

enemy-i to enemy-j, considering the attack type and

armor type (see chapter 2.1)

• turn(i,j) = Number of turns that is required for enemy-i

to attack enemy-j (move to reach the target and then

attack).

• rng(i) = Attack range of enemy-i.

The potential damage to opponent units (enemy loss) is

using the same formula, but the unit side is reversed.

The third factor that contributes to the fitness value is the
average distance of units’ position to centroid, and it is
calculated using the following formula:

 (2)

Notes:
• n = Units count
• xi and yi = The (x,y) position of unit-i
• xm and ym = The (x,y) position of centroid, calculated by

averaging X of all ally units and averaging Y of all ally
units

2.2.3 Fitness Function

Calculation of fitness in each individual is based on the

following formula:

 (3)

The formula can be described as follows:
• enemyLoss represents the total potential damage pro-

duced to the enemy. This variable is multiplied by 10,
which means it is valued the most.

• dist represents the average distance of each unit in the
individual to the opponent’s main building. dist becomes
a factor that lowers the individual fitness, because the
greater the distance, the more difficult it is for the AI
units to siege the opponent’s main building.

• selfLoss represents the total average of potential damage
that all opponent units inflict on the units of the current
individual. selfLoss is a factor that lowers the individual
fitness, because the higher the number of attacks
received by AI units, the greater the danger that awaits.

• avgToC represents the average distance of each AI in an
individual against a centroid (midpoint). The farther the
average distance, the more difficult it is for the AI units
to perform backups on the besieged units.

The higher the fitness value generated, the better the

individual is.

2.2.4 Roulette Selection

The selection on the individuals uses the roulette wheel

to define the next generation. Only the top 5 (best fitness) of

the population (50% of total population) will enter the

roulette to speed up finding a solution. Roulette wheel

method uses fitness as the probability of a chromosome

being selected in the next generation. The following formula

determines the chance of a chromosome to be selected in the

roulette:

 (4)

The roulette will choose 10 chromosomes that will go to

the next step. The chromosomes will be chosen based on the

probability. For example, the probability of the top five is

(35, 25, 20, 10, and 10). These top five will be picked using

roulette until the count of chromosome is 10. Thus, the same

chromosome can be picked more than once. The roulette

can have the following results: 3,1,2,1,4,0,2,4,1,2 (unit

index).

selfLoss = 0

Loop opponent units (as i)

 Loop ally units (as j)

 selfLoss += dmg(i,j) × (1/turn(i,j)) ×

rng(i)

 Next j

Next i

selfLoss /= n

Purba, K.R. et al. / Optimization of Units Movement in Turn-Based Strategy Game / JIRAE, Vol. 1, No. 1, September 2016, pp. 33–37

 36

2.2.5 Crossover

The GA process will do the crossover between two

individuals (a pair) with a 70% chance. The crossover
occurs by choosing two random integers (from one to the
number of genes) as the start index and the end index. Then,
between the two individuals, genes from start to end index
will be exchanged, resulting in two new individuals in each
copulation.

2.2.6 Mutation

After the crossover, each individual will be mutated with
a 10% chance. The mutations are performed on Move Pos
variable of each unit on the individual. Since the Move Pos
is the index of grid, there is a chance that the chosen grid is
an area that cannot be occupied (because of tress/rocks,
etc.). In this case, the index of grid will be re-randomized.
Once the mutation is done, Target ID, Distance to Centroid,
and the final fitness value will be recalculated, due to the
possibility that their values change.

2.2.7 Elitism

Elitism is done by adding one chromosome with the
highest fitness value to replace the worst chromosome in the
next generation. This process occurs by a 100% chance.

2.2.8 Iteration

Step 2.2.2 to 2.2.7 will be repeated until it meets the
specified number of generations. The maximum number of
generations used for the unit movement are 20 generations,
or it will stop if the maximum fitness is stable for three
generations consecutively. Twenty is chosen as the number
of generations because if it is higher, the process will be too
CPU intensive, causing a lot of lag. Based on 10 trials of the
GA, eight of them stop at iteration around 15-18, because
the fitness value is stable. So, the limit of 20 is adequate for
limiting the CPU usage.

2.2.9 Final Result

At the final stage, the best individual (maximum fitness)
of the last generation is picked out and used to determine AI
actions on any unit movement.

3. Result and Discussion

This section will discuss the testing procedures and the

results. Genetic Algorithm AI of the game will be compared

with the random AI method, where the opponent moves

randomly. Comparisons were made covering several

aspects, i.e. comparison of the financial terms, produced and

received damage, created and killed units, and number of

turns to win.

3.1 Player Battle Test versus AI (AI uses Infantries and

Cavalries only)

This chapter is used to test the genetic algorithm of the

AI where the player can use all unit types, whilst the AI

(enemy) can only use infantries and cavalries. The test is

carried out until the game is finished, and any data generated

in the game will be logged. The test is done using two types

of AI: the random AI and genetic algorithm AI. Game

results are recorded in Table 2.

Table 2 compares the results of testing both methods of

AI. In the aspect of the unit created, it is evident that genetic

algorithm was capable of suppressing the number of units

made by the player with a fewer number of units than that

required by random AI. In the aspect of unit loss, random AI

was not able to defeat any player unit, while genetic

algorithm could beat eight of them, with the number of units

lost far less than the AI Random.

In the aspect of money used, the player used more

money battling against AI genetic algorithm than AI

random, but AI genetic algorithm used less money than

random AI did. In the aspect of money earned, there is a

drastic change. The money generated by the player

opposing the AI genetic algorithms was much less than

when the player battled against AI random. Similarly, the AI

genetic algorithm could earn more money than AI random

did.

In the aspect of damage, the damage produced by the

player’s units was much lower than the damage produced by

the enemy’s, when the player was battling against the AI

genetic algorithm.

In the aspect of the number of turns in this test, there was

no difference.

Table 2. Game Result – Player versus Infantries and Cavalries

Aspect AI Random AI Genetic Algorithm Increase Value*

 Player Enemy Player Enemy Player Enemy

Unit Created 13 19 8 13 -5 -6

Unit Dead 0 17 8 3 8 -14

Money Used 265 250 200 245 -65 -5

Money Earned 810 330 319 724 -491 394

Damage Produced 778 156 134 525 -644 369

Damage Received 156 778 525 134 369 -644

Total Turn 14 14

Winner Player Enemy

* The increase value is obtained by comparing the results of both AI. Comparison is done by finding the difference of AI

Random and Genetic Algorithm.

Purba, K.R. et al. / Optimization of Units Movement in Turn-Based Strategy Game / JIRAE, Vol. 1, No. 1, September 2016, pp. 33–37

 37

3.2 Player Battle Test versus AI (AI uses All Unit Types)

This chapter is used to test genetic algorithm of the AI

where the player and the enemy can use all unit types. The
human player would attempt to make the units in the same
orders as what the player did in the previous test (chapter
3.1). The results can be seen in Table 3. It compares the
results of testing of both methods of AI. The numbers of
turns for AI random and genetic algorithms were not the
same; 36 versus 15. Because of the difference, values for the
AI random would be normalized to assume it were using 15
turns. The numbers in parentheses are the normalized
values. The normalization is done to make the comparison
easier.

In this test case, AI random could last up to 36 turns, but
because of regulation on the manufacturing units and unit
movements, AI random could not make a decision carefully,
so the AI random was defeated. In contrast, the AI genetic
algorithm was able to produce results that were much better
than the AI random.

4. Conclusion

During the planning, analysis, design, and programming

through journal writing, there are several conclusions which
can be derived:
• The use of genetic algorithm of AI is more suitable

when it is used in the turn-based strategy genre (rather
than the real time strategy), because of the time to carry
out the process of picking a best move that requires a
long time.

• Applying genetic algorithm in a game is influenced
greatly by the statistics of every unit in the game, so the
AI should be tested thoroughly. Also, due to the very
broad searching space of a strategy game, the GA can be
tweaked more.

• The use of genetic algorithms for AI is proved to be

better than the random method, because the AI can

review all of its and the player’s conditions.

• This research can be further expanded by adding more

clans with more variations of units to make the

optimization process even more challenging. Adding air,

ground, and sea units are also interesting.

• The GA in this research can be combined with another

AI method, such as Fuzzy and Neural network, to make

the optimization process faster, because predetermined

expert data is included.

References

1. Adams, E., Fundamentals of Game Design, 3
rd
 ed., New

Riders Publishing, Thousand Oaks (CA, USA), 2013.

2. Fabricatore, C., Gameplay and Game Mechanics

Design: A Key to Quality in Video Games, Proc. of the

OECD-CERI Expert Meeting on Videogames and

Education, Santiago (Chile), Oct 2007.

3. Weber, B.G., Mateas, M., and Jhala, A., Building

Human-Level AI for Real-Time Strategy Games, Proc.

of the AAAI Fall Symposium on Advances in Cognitive

Systems, Arlington (VA, USA), Nov 2011, pp. 329–336.

4. Sivanandam, S.N. and Deepa, S.N., Introduction to

Genetic Algorithms, Springer, Berlin Heidelberg

(Germany), 2008.

5. Negnevitsky, M., Artificial Intellegence: A Guide to

Intelligent Systems, 3
rd
 ed., Pearson Education, Canada,

2011.

6. Yang, S., Genetic Algorithms with Elitism-Based Immi-

grants for Changing Optimization Problems, Proc. of

EvoWorkshops 2007, Valencia (Spain), LNCS: 4448,

Apr 2007, pp. 627–636.

Table 3. Game Result – Player versus All Unit Types

Aspect
AI Random AI Genetic Algorithm Increase Value*

Player Enemy Player Enemy Player Enemy

Unit Created 22 (9.17) 23 (9.58) 7 14 -2.17 4.42

Unit Dead 14 (5.84) 24 (10) 8 2 2.16 -8

Money Used 645 (268.75) 610 (254.17) 210 300 58.75 -45.83

Money Earned 1157 (482.08) 691 (287.92) 177 895 -365.08 607.08

Damage Produced 1054 (439.17) 622 (259.17) 126 550 -313.17 290.83

Damage Received 622 (259.17) 1054 (439.17) 550 126 290.83 -313.17

Total Turn 36 (15) 15

Winner Player Enemy

