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Closeness centrality in some splitting networks

Vecdi Aytaç Tufan Turacı

Abstract

A central issue in the analysis of complex networks is the
assessment of their robustness and vulnerability. A variety of
measures have been proposed in the literature to quantify the
robustness of networks, and a number of graph-theoretic param-
eters have been used to derive formulas for calculating network
reliability. Centrality parameters play an important role in the
field of network analysis. Numerous studies have proposed and
analyzed several centrality measures. We consider closeness cen-
trality which is defined as the total graph-theoretic distance to
all other vertices in the graph. In this paper, closeness central-
ity of some splitting graphs is calculated, and exact values are
obtained.

Keywords: Graph theory, network design and communica-
tion, complex networks, closeness centrality, splitting graphs.

1 Introduction

Most of the communication systems of the real world can be represented
as complex networks, in which the nodes are the elementary compo-
nents of the system and the links connect a pair of nodes that mutu-
ally interact exchanging information. A central issue in the analysis of
complex networks is the assessment of their robustness and vulnerabil-
ity. One of the major concerns of network analysis is the definition of
the concept of centrality. This concept measures the importance of a
node’s position in a network. In social, biological, communication, and
transportation networks, among others, it is important to know the
relative structural prominence of nodes to identify the key elements in
the network.
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There are several centrality measures like degree centrality, close-
ness centrality, residual closeness, vertex-betweenness centrality, edge-
betweenness centrality, etc. [1]–[9]. Centrality is a complex notion that
requires a clear definition. For example, a node has high centrality if
it can communicate directly with many other nodes, or if it serves as
an intermediary point in communication among other nodes. Degree
centrality is defined as the number of links incident upon a node. It is
a straightforward and efficient metric; however, it is less relevant since
a node having a few high influential neighbors may have much higher
influence than a node having a larger number of less influential neigh-
bors. A node with larger degree is likely to have higher influence than a
node with smaller degree. However, in some cases, this method fails to
identify influential nodes since it considers only very limited informa-
tion. For example, as it is shown in Figure 1, although node 1 has the
largest degree among all 15 nodes, the information, if it origins at node
1, may not spread the fastest or the most broadly since all neighbors of
node 1 have a very low degree. In contrast, node 15 may be of higher
influence although it has lower degree comparing with node 1.

Figure 1. A graph with 15-vertices and 21-edges

Although some well-known global metrics such as betweenness and
closeness centralities can give better results, due to the very high com-
putational complexity, they are not easy to manage very large-scale
online social webs [2], [5], [8]. For a network G = (V, E) with n = |V |
nodes and m = |E| edges, time complexities of betweenness and close-
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ness centralities are O(nm) and O(n3), respectively [10]. Closeness
can be considered as a measure of how long it will spread information
from a given node to other reachable nodes in the network. Calcula-
tion of closeness for simple graph types is important because if one can
break a more complex network into smaller networks, then under some
conditions the solutions for the optimization problem on the smaller
networks can be combined to a solution for the optimization problem
on the larger network and by calculating the closeness centrality for
some real networks very good practical results can be achieved. Thus,
we want to find exact values, upper bounds or lower bounds for metrics
which are difficult to compute.

Graph theory has become one of the most powerful mathematical
tools in the analysis and study of the architecture of a network. As
usual, a network is described by an undirected simple graph. For ex-
ample, if we want to occur a computer network with graph topologies
the following correspondences are used: vertices represent computers
and edges represent connections between computers.

We consider simple finite undirected graphs without loops and
multiple edges in this paper. Let G = (V ; E) be a graph with
vertex set V and edge set E. We also specify the vertex set of
G by V (G) and the edge set by E(G) instead of V and E, re-
spectively. For vertices u and x of a graph G, the open neigh-
borhood of u is N (u) = {v ∈ V (G) |uv ∈ E (G)} and Nx (u) =
{v ∈ V (G− x) |uv ∈ E (G− x)}, the G − x graph corresponds to the
graph from which the x vertex is removed from G. The closed neigh-
borhood of u is N [u] = N(u) ∪ {u}. For a set S ⊆ V (G), its open
neighborhood is the set N(S) =

⋃

v∈S N(v), and its closed neighbor-
hood is the set N [S] = N(S) ∪ S. A set S ⊆ V (G) is a dominating set
of G, if N [S] = V (G), that is a set S ⊆ V (G) is a dominating set if
every vertex in V (G) − S is adjacent to at least one vertex in S. The
domination number γ(G) is defined as the minimum cardinality of a
dominating set of G. The diameter of G, denoted by diam (G) is the
largest distance between two vertices in V (G). The degree degG (v) of
a vertex v ∈ V (G) is the number of edges incident to v. The maximum
degree of G is ∆ (G) = max {degG (v) |v ∈ V (G)} and the minimum
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degree of G is δ (G) = min {degG (v) |v ∈ V (G)}. The distance d(u, v)
between two vertices u and v in G is the length of a shortest path be-
tween them. If u and v are not connected, then d(u, v) = ∞, and for
u = u, d(u, u) = 0 [11].

Our aim in this paper is to consider the computing of the close-
ness centrality of some splitting graphs. In Section 2, some definitions
and results for closeness centrality are given. In Section 3, closeness
centralities of some splitting graphs are determined.

2 Closeness centrality

In a network, even nodes with the same available resources, vary in their
importance due to their different locations. It is reasonable to choose,
firstly, the substrate nodes with the same available resources in a more
important location. Furthermore, the importance of a node is more
complex when the network is dynamically changing. The current states
of all the elements in the global network determine the importance of
a node. Centrality analysis provides effective methods for measuring
the importance of nodes in a complex network and it has been widely
used in complex network analysis [5].
Closeness centrality can be considered as a measure of how long it will
spread information from a given node to other reachable nodes in the
network. Closeness centrality of node v is defined as the reciprocal of
the sum of geodesic distances to all other nodes of V (G). This definition
was modified by Dangalchev in [3], [4]. The closeness centrality of a
graph is defined as

C(G) =
∑

v∈V (G)

C (v),

where C (v) is the closeness centrality of a vertex v, and C (v) =
∑

t∈(V −v)

1
2d(v, t)

[4], [11]. Next, we give some results for closeness cen-

trality.

Theorem 1. [1], [3], [4], [9] The closeness centrality of

a) the complete graph Kn with n vertices is C (Kn) = (n (n− 1))/2 ;
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(a) (b)

Figure 2. a) The graph P6 (b) The graph µ(P6)

b) the star graph Sn with n vertices is C (Sn) = (n− 1) (n+ 2)/4;

c) the path Pn with n vertices is C (Pn) = 2n− 4 + 1/2n−2;

d) the cycle Cn with n vertices

C(Cn) =

{

n
(

2− 3/2n/2
)

, if n is even;

2n
(

1− 1/2(n−1)/2
)

, if n is odd;

e) the wheel Wn with n+ 1 vertices is C (Wn) = n(n+ 5)/4;

f) the gear graph Gn with 2n+1 vertices is C (Gn) = n(9n+49)/16;

g) the friendship graph fn with 2n+1 vertices is C (fn) = n (n+ 2);

h) the fan Fn with n vertices is C (Fn) =
(

n2 + 3n − 6
)

/4 .

Definition 1. [12] Let G be a graph with vertex set V (G) = {v1, v2, ...,
vn}. The Mycielski graph of G, denoted µ(G), has for its vertex set
V (µ(G)) = {v1, v2, ..., vn, v

′
1, v

′
2, ..., v

′
n, u}. As for adjacency, vi is

adjacent with vj in µ(G) if and only if vi is adjacent with vj in G, vi is
adjacent with v′j in µ(G) if and only if vi is adjacent with vj in G, and
v′i is adjacent with u in µ(G) for all i = 1, n. We display the Mycielski
graph µ(P6) in Figure 2.
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V. Aytaç, T. Turacı

(a) (b)

Figure 3. (a) The graph P6 (b) The graph S′(P6)

Theorem 2. [6] The closeness centrality of Mycielski graphs of

a) the cycle Cn with n vertices for n ≥ 8 is C(µ(Cn)) = (9n2 +
77n)/16;

b) the wheel Kn with n vertices for n ≥ 3 is C(µ(Kn)) = (7n2+n)/4;

c) the star graph Sn with n vertices for 4 is C(µ(Sn)) = (2n2+5n−
3)/2;

Definition 2. [13] For a graph G on vertices V (G) = {v1, v2, ..., vn}
and edges E(G), let splitting graph S′(G) be the graph on ver-
tices and edges V (G) ∪ V ′(G) = {v1, v2, ..., vn, v

′
1, v

′
2, ..., v

′
n} and

E(G)∪{viv
′
j | vivj ∈ E(G)}, respectively. We display the Splitting graph

S′(P6) in Figure 3.

In this paper, the following notations will be used throughout the
article to make the proof of the given theorems understandable. Let
the vertex-set of graph S′(G) be V (S′(G)) = V1 ∪ V2, where:

V1: The set contains the vertices of the graph G, that is, V1 =
{vi ∈ V (G), 1 ≤ i ≤ n} .

V2: The set contains the new vertices which are obtained by def-
inition of splitting graph, that is, V2 = {v′i ∈ V (G′), 1 ≤ i ≤ n}
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Lemma 1. [11] Let G be any connected graph of order n and size m.
Then,

n
∑

i=1

degG(vi) = 2m.

Theorem 3. Let G be any connected graph of order n and size m. If
γ(G) = 1 and δ(G) ≥ 2, then C(S′(G)) = (2n2 + 3m− n)/2.

Proof. Since the structure of the splitting graph S′(G) and definition of
the domination number, the distance between two vertices is at most 2.
Let vi ∈ V (G). Clearly, the distance from the vertex vi to 2degG(vi)-
vertices is 1, similarly the distance from the vertex vi to ((2n − 1) −
2degG(vi))-vertices is 2. Thus we get

C(vi) = 2degG(vi) 2
−1 + (2n− 1− 2 degG(vi)) 2

−2

for every vertices of vi ∈ V1, where i = 1, n.

Similarly, we get

C(v′i) = degG(v
′
i) 2

−1 +
(

2n− 1− degG(v
′
i)
)

2−2

for every vertices of v′i ∈ V2, where i = 1, n.
Thus,

C(S′(G)) =

n
∑

i=1

C(vi) +

n
∑

i=1

C(v′i)

=

n
∑

i=1

degG(vi) +
1

4

n
∑

i=1

(2n − 1− 2degG(vi)) +
1

2

n
∑

i=1

degG(v
′
i)

+
1

4

n
∑

i=1

(2n − 1− degG(v
′
i)).

By Lemma 1, we have

C(S′(G)) = 2m+
2n2 − n

2
−

2m

4
=

2n2 + 3m− n

2
.
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Corollary 1. Let G be any connected graph of order n and size m. If
γ(G) = 1, then C(S′(G)) ≥ C(S′(Sn)).

Proof. Star graph Sn with n vertices provides the requirement of the
theorem. γ(Sn) = 1 and star graph Sn has (n − 1)-vertices with de-
gree 1. Thus, we get lower bound of the C(S′(G)) of any graph G
whose domination number is 1. As a result, C(S′(G)) ≥ C(S′(Sn)) is
obtained.

Corollary 2. Let G be any connected graph of order n. Then,
C(µ(G) − {u}) = C(S′(G)), where the vertex u is the vertex u of the
definition of the Mycielski graph µ(G).

Proof. It is clear.

3 Calculation of closeness centrality of some

splitting graphs

In this section, we consider the closeness centrality of the splitting
graphs S′(G) when G is a specified family of graphs.

Theorem 4. The closeness centrality of S′(Cn) is

C(S′(Cn)) =

{

n
(

31/4− 12/2n/2
)

, if n is even

n
(

31/4 − 8/2(n−1)/2
)

, if n is odd.

Proof. We have two cases depending on the vertices of S′(Cn):

Case1. If n is even, then we have also two cases:

Case1.1. For any vertex of vi
(

i = 1, n
)

of V1 in the graph S′(Cn).
Hence, the closeness centrality of subgraph S′(Cn)\V2 is

C(vi) =
∑

vj 6=vi
vj∈V1

2−d(vi,vj) +
∑

v′j 6=vi
v′j∈V2

2−d(vi,v′j), (1)
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where the first and second sums are denoted by C1 and C2, re-
spectively, that is C(vi) = C1 + C2. Furthermore, let S1 be
nC (vi). It is clear that C1 is equal to the closeness centrality of
the path Cn with n vertices for n even by Theorem 2(a).
To calculate C2, the closeness centrality of each vertex vi of V1 is
determined by the sum of the minimum distances from vi to all
the other vertices v′i ∈ V2 in the graph S′(Cn). Hence, we obtain

C2 = 2/21 + 3/22 + 2/23 + ...+ 1/2diam(Cn)

= 2/21 + 3/22 + 2/23 + ...+ 2/2(n/2)−1 + 1/2n/2

= 2

n
2
−1

∑

j=1

1/2j + 1/22 + 1/2n/2 . (2)

To calculate the sum (1), we use the formula of the finite geo-
metric series. As a result, we get, C2 = 9/4 − 3/2n/2 .
Consequently, we get the following result:

S1 = n
(

2− 3/2n/2
)

+ n
(

9/4 − 3/2n/2
)

= 17n/4− 6n/2n/2. (3)

Case1.2. For any vertex of v′i
(

i = 1, n
)

of V2 in the graph S′(Cn).
Hence, the closeness centrality of subgraph S′(Cn)\ V1 is

C(v′i) =
∑

vj 6=v′i
vj∈V1

2−d(v′ i,v
′
j) +

∑

v′j 6=v′i
v′j∈V2

2−d(v′i,v
′
j), (4)

where the first and second sums are denoted by C ′
1 and C ′

2,
respectively, that is C(v′i) = C ′

1 + C ′
2. Let S2 be nC (v′i). It

is clear that C ′
1 is 9/4 − 3/2n/2 by the Case 1.1. To calculate

C ′
2, we consider only the distance d(v′i, v

′
j) between v′i and v′j

in the graph S′(Cn). Then we get C ′
2
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C ′
2 = 2/22 + 4/23 + 2/24 + 2/25 + . . .

+ 2/2diam(Cn)−1 + 1/2diam(Cn)

= 2/22
(

1 + 1/21 + 1/22 + . . .

+1/2(n/2)−3
)

+ 2/23 + 1/2n/2. (5)

To calculate the sum (5), we use the formula of the finite geo-
metric series. So, we get C ′

2 = 5/4 −3/2n/2 . Consequently, we
get the following result:

S2 = n
(

9/4 − 3/2n/2
)

+ n
(

5/4 − 3/2n/2
)

= 7n/2− 6n/2n/2. (6)

Clearly, C(S′(Cn)) = S1 + S2. By summing (3) and (6), we
obtain the closeness centrality of S′(Cn) for n is even as follows:

C(S′(Cn))= 17n/4 − 6n/2n/2 + 7n/2− 6n/2n/2 =

= n
(

31/4− 12/2n/2
)

.

Case2. If n is odd, then the proof is similar to that of n is even.
Hence, by using the Theorem 1.(d), the closeness centrality for
each vertex vi

(

i = 1, n
)

of V1 is C(vi) = 4
(

1− 1/2(n−1)/2
)

+1/4 ,
and also the closeness centrality for each vertex v′i

(

i = 1, n
)

of

V2 is C(v′i) = 7/2 − 4/2(n−1)/2 . Consequently, the closeness
centrality of S′(Cn) for n is odd,

C(S′(Cn)) = nC(vi) + nC(v′i) = n
(

31/4− 8/2(n−1)/2
)

.

Theorem 5. The closeness centrality of S′(Pn) is

C(S′(Pn)) = 4
(

2n− 4 + 1/2n−2
)

− (n− 3)/4.
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Proof. The proof is similar to that of Theorem 4. Hence, similarly we
have two cases depending on the vertices of S′(Pn):

Case1. For any vertex of vi
(

i = 1, n
)

of V1 in the graph S′(Pn).
Hence, the closeness centrality of subgraph S′(Pn)\V2 is as like
the equation (1), where the first and second sums are denoted by
C1 and C2, respectively, that is C(vi) = C1 + C2. Furthermore,
let S1 be the sum of the all C(vi), where i = 1, n.
The value of C2, due to the structure of the S′(Pn) graph, is
C2 =

∑

vj 6=vi
vj∈V1

2−d(vi,vj) + n/22 . Thus, the closeness centrality of

each vertex vi in S′(Pn) is

C(vi) = 2
∑

vj 6=vi
vj∈V1

2−d(vi,vj) + n/22. (7)

It is clear that the equation (7) is equal to the closeness centrality
of the path Pn with n vertices by Theorem 1.(c). Consequently,
we get the following result:

S1 = 2
(

2n − 4 + 1/2n−2
)

+ n/22. (8)

Case2. For any vertex of v′i
(

i = 1, n
)

of V2 in the graph S′(Pn).
Hence, the closeness centrality of subgraph S′(Pn)\V1 is as like
the equation (4), where the first and second sums are denoted by
C ′

1 and C ′
2, respectively, that is C(v′i) = C ′

1 + C ′
2. Further-

more, let S2 be the sum of the all C(v′i), where i = 1, n.
By the Case 1, we have

C ′
1 = (9n − 16)/4 + 1/2n−2. (9)

To calculate C ′
2, we get

C ′
2 = 2(n − 2)/22 + 2(n − 3)/23 + ...+ 2.2/2n−2 + 2.1/2n−1+

2(n− 2)/23 + 2/23.
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By using Theorem 1.(c), we get

C ′
2 =

(

2n − 4 + 1/2n−2
)

− 2(n − 1)/21 + (n− 2)/22 + 1/22

=
(

2n − 4 + 1/2n−2
)

− 3(n − 1)/4. (10)

Consequently, we get the following result:

S2 = (9n− 16)/4 + 1/2n−2 +
(

2n − 4 + 1/2n−2
)

− 3(n − 1)/4

= 2
(

2n− 4 + 1/2n−2
)

+ (3−2n)/4. (11)

Clearly, C(S′(Pn)) = S1 + S2. By summing (8) and (11), we
obtain the closeness centrality of C(S′(Pn)) as follows:

C(S′(Pn)) = 4
(

2n− 4 + 1/2n−2
)

+ (n−3)/4.

Theorem 6. The closeness centrality of S′(Wn) is

C(S′(Wn)) =
(

2n2 + 9n+ 1
)

/2 .

Proof. The proof is similar to that of Theorem 4. The wheel Wn with
n+1 vertices contains an n-cycle and a central vertex c that is adjacent
to all vertices of the cycle. Then, we have degG(vc) = n. Hence, we
have two cases depending on the vertices of S′(Wn):

Case1. For any vertex of vi
(

i = 1, n+ 1
)

of V1 in the graph S′(Wn).
Clearly we have |N(vi)| = 6, except the central vertex vc of V1.
Thus, the closeness centrality of subgraph S′(Wn)\V2 is as like
the equation (1), where the first and second sums are denoted by
C1 and C2, respectively, that is C(vi) = C1 + C2.
Furthermore, let S1 be the sum of the all C(vi), where i =
1, n+ 1. It is clear that C1 is equal to the closeness centrality
of the path Wn by Theorem 2(b). To calculate C2, we have two
cases depending on the vertices of survival subgraph S′(Wn)\V2:
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Case1.1. Let vi be a vertex of an n-cycle. Since N(vi) = {vm, vt, vc,
v′m, v′t, v

′
c}, where vm, vt are the vertices of an n-cycle and vc

is the central vertex of S′(Wn)\V2 = Wn, also vi is adjacent to
v′m, v′t and v′c in V2. Each of these vertices, v′m, v′t and v′c, is
the vertex in the copy S′(Wn). Since d (vi, v

′
m) = d (vi, v

′
t) =

d (vi, v
′
c) = 1, vi is at distance 2 to other n − 2 vertices of V2.

Thus,

C (vi) =
∑

v′j 6=vi
v′j∈V2

2−d(vi,v′j) = 3/21 + (n − 2)/22

= (n+ 4)/4. (12)

Case1.2. If vc is the central vertex of S′(Wn)\V2=Wn, then |N (vc)| =
n. Nv1 (c)={v′1, v

′
2, ..., v

′
n}, where v′i ∈ V2,

(

i = 1, n
)

. So,
there remains only one vertex v′c in G′ is at distance 2 from vc.
Thus, we have

C (vc) =
∑

v′j 6=vc
v′j∈V2

2−d(vc,v′j) = n/21 + 1/22 = n/2 + 1/4

= (2n+ 1)/4. (13)

By Summing (12) and (13), we have the value of C2, that is C2 =
n ((n+ 4)/4) + (2n+ 1)/4. Consequently, we get the following
result:

S1 = n(n+ 5) + n(n+ 4)/4 + (2n+ 1)/4

= (2n2 + 11n + 1)/4. (14)

Case2. For any vertex of v′i ∈ V2

(

i = 1, n+ 1
)

in the graph S′(Wn).
Clearly the vertices of V2 except v′c, |N (v′i)| = 3,

(

i = 1, n
)
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and |N (v′c)| = n. Hence, the closeness centrality of subgraph
S′(Wn)\V1 is as like the equation (4), where the first and second
sums are denoted by C ′

1 and C ′
2, respectively, that is C(v′i) =

C ′
1+C ′

2. Furthermore, let S2 be the sum of the all C(v′i), where
i = 1, n + 1.
It is clear that the value of C ′

1 is C2 in Case1, that is C ′
1 =

n ((n+ 4)/4) + (2n+ 1)/4. So, we must calculate C ′
2. Since

each of the vertices in V2 is at distance 2 from v′i, we get n/22.
Consequently, we get the following result:

S2 = n(n+ 4)/4 + (2n+ 1)/4 + (n + 1)(n/4 )

= (n2 + 4n+ 2n+ 1 + n2 + n)/4

= (2n2 + 7n+ 1)/4. (15)

Clearly, C(S′(Wn)) = S1 + S2. By summing (14) and (15), we
obtain the closeness centrality of C(S′(Wn)) as follows:

C(S′(Wn)) = (2n2 + 11n + 1)/4 + (2n2 + 7n+ 1)/4 =

= (2n2 + 9n+ 1)/2.

Theorem 7. The closeness centrality of S′(Sn) is C(S′(Sn)) =
(

4n2 + 11n+ 2
)

/4.

Proof. We have two cases depending on the vertices S′(Sn):

Case1. For any vertex of vi ∈ V1 in the graph S′(Sn). The vertices
of V1 are of two kinds: vc and vi

(

i = 1, n
)

. The vertex vc will
be referred to as central vertex and the vertex vi – as minor
vertex. For the central vertex vc, clearly it is exactly adjacent to
2n vertices except v′c of S′(Sn). Thus |N(vc)| = 2n. The vertex
vc is at distance 2 to other remaining one vertex v′c of S′(Sn).
Then, the closeness centrality for the vertex vc is

C(vc) =
∑

vi 6=vc

2−d(vi,vc) = 2n/21 + 1/22

= (4n+ 1)/4. (16)
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For minor vertex vi of V1 i = 1, n. vi is exactly adjacent to 2
vertices of S′(Sn), named vc and v′c. Thus |N(vi)| = 2. The
other remaining n + (n − 1) vertices are at distance 2 from vi.
Hence, we get:

C(vi) = 2/21 + (2n− 1)/22 = (2n+ 3)/4. (17)

Let S1 be the sum of the all C(vi), where i = 1, n + 1. Then, we
get the following:

S1 = (4n+ 1)/4 + n((2n+ 3)/4)

= (2n2 + 7n + 1)/4. (18)

Case2. For any vertex of v′i ∈ V2 in the graph S′(Sn). For the central
vertex v′c of V2, v

′
c is adjacent to n minor vertices of V1 in S′(Sn).

Thus, |N(v′c)| = n. The other remaining n minor vertices of V2

and central vertex vc of V1 are at distance 3 and 2, respectively,
from v′c. Hence, we get:

C(v′c) = n/21 + n/23 + 1/22 = (5n + 2)/8. (19)

For minor vertex v′i of V2 i = 1, n. v′i is adjacent to one central
vertex vc of V1 in S′(Sn).Thus |N(v′i)| = 1. The other remaining
2n−1 vertices of S′(Sn) and central vertex v′c of V2 are at distance
2 and 3, respectively from v′i. Hence, we get:

C(v′i) = 1/21 + (2n− 1)/22 + 1/23 = (4n+ 3)/8. (20)

Let S2 be the sum of the all C(v′i), where i = 1, n + 1. Then, we
get the following:

S2 = (5n+ 2)/8 + n((4n+ 3)/8)

= (4n2 + 8n+ 2)/8. (21)

Clearly, C(S′(Sn)) = S1 + S2. By summing (18) and (21), we
obtain the closeness centrality of C(S′(Sn)) as follows:

C(S′(Sn)) = (2n2 + 7n+ 1)/4 + (4n2 + 8n+ 2)/8

= (4n2 + 11n + 2)/4.
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Theorem 8. The closeness centrality of S′(Kn) is C(S′(Kn)) =
(7n2 − 5n)/4.

Proof. We have two cases depending on the vertices S′(Kn):

Case1. For any vertex of vi ∈ V1 in the graph S′(Kn). Then |N(vi)| =
2(n−1). The vertex v′i is a copy of the vertex vi in S′(Kn). Since
the vertex vi is adjacent to every vertex except v′i in S′(Kn), the
vertex v′i is at distance 2 from vi. Thus, the closeness centrality
for the vertex vi is

C(vi) =
∑

vj 6=vi

2−d(vi,vj) = 2(n− 1)/21 + 1/22 = (4n− 3)/4.

Let S1 be the sum of the all C(vi), where i = 1, n. Then, we get
the following:

S1 = n((4n− 3)/4) = (4n2 − 3n)/4. (22)

Case2. For any vertex of v′i ∈ V2 in the graph S′(Kn). The vertex v′i
is at distance 1 to the n − 1 vertices in V1\ {vi}. Therefore, we
have |N(v′i)| = n− 1. The vertices of V2 and the vertex vi are at
distance 2 from v′i. Thus, the closeness centrality for the vertex
v′i is

C(v′i) = (n− 1)/2 + (n− 1 + 1)/22 = (n − 1)/2 + n/4.

Let S2 be the sum of the all C(v′i), where i = 1, n. Then, we get
the following:

S2 = n((n− 1)/2 + n/4) = (3n2 − 2n)/4. (23)

Clearly, C(S′(Kn)) = S1 + S2. By summing (22) and (23), we
obtain the closeness centrality of C(S′(Kn)) as follows:

C(S′(Kn)) = (4n2 − 3n)/4 + (3n2 − 2n)/4

= (7n2 − 5n)/4.
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4 Conclusion

In this article, we have studied the closeness centrality of various net-
works as a centrality measure. Closeness centrality helps us to know
how long it will spread information from a given node to other reach-
able nodes in the network. We present comparisons between popular
interconnection networks and splitting graphs of these below. These
networks are complete graph K20, path graph P20, cycle graph C20,
star graph S20 and wheel graph W20. The splitting graphs of these
networks were considered to measure how far information can spread
throughout the graph. The closeness centrality values of the above
graphs are shown in Table 1.

Table 1. The closeness centrality values of some graphs.

Graph G C(G) Splitting graph S′(G) C(S′(G))

K20 190 S′(K20) 675
P20 36 S′(P20) 139,75
C20 39,94 S′(C20) 155,77
S20 104,5 S′(S20) 455,5
W20 125 S′(W20) 490,5

By using Table 1, we say that the graphs S′(G) are better than
the graph G. Calculation of closeness centrality for graph types con-
sidered in the article is important because if one can break a more
complex network into smaller networks, then under some conditions
the solutions for the optimization problem on the smaller networks can
be combined to a solution for the optimization problem on the larger
network. Therefore, designers for choosing the appropriate networks
can use these results.
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