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Asperger syndrome (AS) is subtype of autism spectrum disorder (ASD). Diagnosis and
pathological analysis of AS through resting-state fMRI data is one of the hot topics
in brain science. We employed a new model called the genetic-evolutionary random
Support Vector Machine cluster (GE-RSVMC) to classify AS and normal people, and
search for lesions. The model innovatively integrates the methods of the cluster and
genetic evolution to improve the performance of the model. We randomly selected
samples and sample features to construct GE-RSVMC, and then used the cluster to
classify and extract lesions according to classification results. The model was validated
by data of 157 participants (86 AS and 71 health controls) in ABIDE database. The
classification accuracy of the model reached to 97.5% and we discovered the brain
regions with significant differences, such as the Angular gyrus (ANG.R), Precuneus
(PCUN.R), Caudate nucleus (CAU.R), Cuneus (CUN.R) and so on. Our method provides
a new perspective for the diagnosis and treatment of AS, and a universal framework for
other brain science research as the model has excellent generalization performance.

Keywords: genetic-evolutionary random SVM cluster, functional connectivity, classification, Asperger syndrome,
abnormal brain regions

INTRODUCTION

Asperger syndrome (AS), as a common neurological disease (Gillberg et al., 2016), has an increasing
incidence (Jensen et al., 2014) and is usually considered as one of the autism spectrum disorders
(ASDs; Lugnegård et al., 2015) or pervasive developmental disorder (Ghaziuddin, 2010; Bucaille
et al., 2016). Typically, the patient with AS has a certain degree of cognitive empathy deficiency
which is mainly manifested in the weakness of executive function and theory of mind (Montgomery
et al., 2013; Oliver et al., 2016). Diagnosing and exploring the pathogenesis of AS is one of the
important research fields of brain science (Lorenzo et al., 2016).

In the early exploration of AS, researchers have found that AS and ASD have some similar
features including limited interest and repetition, stereotyped activity and communication
difficulties (Kamp-Becker et al., 2010; Lugnegård et al., 2013; Woods et al., 2013). But some
researches also have noticed the differences between ASD and AS in some aspects such as early
speech development (Soulieres et al., 2011), language and intellectual (Radulescu et al., 2013).
Therefore, it is necessary to conduct a separate research of AS in subsequent studies. In existing
literature on AS, many researchers carried out studies of AS in different perspectives. Rueda et al.
(2015) comprehensively used three international common diagnostic criteria for the diagnosis of
AS, which effectively improved the stability and accuracy of the diagnostic results. Through the
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dual approach and voxel analysis, Roine et al. (2015b) found
that the white matter (WM) structure in the brain of AS
patients was abnormal, and these abnormalities were mainly
concentrated in the left ILF region. Tseng et al. (2015) found
that there may be structural defects in the amygdala and its
related marginal structures. Roine et al. (2015a) discovered that
AS had abnormalities in the right caudate and right superior
temporal pole base on magnetic resonance images. Channon
et al. (2014) observed the social skills of AS patients, and found
that they had difficulty in dealing with daily social situations.
Abnormal functional mechanisms of emotion detection and
emotion differentiation in AS were also found out (Frank et al.,
2018). Woodbury-Smith et al. (2005) used the Autism Spectrum
Quotient as criterion for discriminating AS and normal person
with accuracy of 83%. Neurological soft signs were also applied
to discriminate AS and other ASD patients but the performance
was unsatisfactory (Hirjak et al., 2014).

It is found that existing researches mainly concentrate on the
aspects such as the pathological analysis of the partial AS lesion
area (Sato et al., 2014; Di Napoli et al., 2015; Bjørklund et al.,
2018), the social adaptability of AS patients (Rodger and Vishram,
2010; Channon et al., 2014; Wilson, 2015), classification of AS
and normal people, or AS and other ASD patients (Hirjak et al.,
2014; Schwarzová, 2018; Sung et al., 2018). But little literature
carries out comprehensive analysis of AS lesions, and makes full
use of the unique advantages of the increasingly popular machine
learning methods in brain science.

To overcome these shortcomings, we innovatively integrates
the methods of cluster and genetic evolution to improve the
performance of the model, which called GE-RSVMC. In this
study, we acquired functional connectivities between brain
regions as sample features, and then randomly extracted samples
and sample features to construct the initial SVM cluster. Next,
according to the fitness function, the base classifiers in the cluster
were selected, crossed and mutated so that the cluster can evolve
in the direction of performance improvement. Finally, we used
the evolutionary cluster to classify and explore lesions. The
cluster is constructed by using multiple base classifiers to enhance
the poor performance of a single classifier, and the method of
genetic evolution helps to optimize the cluster in efficiency. The
accuracy reached to 97.5% and the method effectively ensures
the generalization performance of the cluster. The classification
accuracy of the model is better than most classification methods,
and the lesion brain areas has also been found. As a new trial
to explore AS, our research contributes to the diagnosis and
treatment of AS.

MATERIALS AND METHODS

Data Acquisition
In this paper, we downloaded the experimental data from the
Autism Brain Imaging Data Exchange (ABIDE) database. As an
authoritative database of autism research, the data in ABIDE has
three modalities which are clinical data, sMRI data and fMRI
data. We used 157 participants’ fMRI data to carry out the study
including 86 healthy controls (HCs) and 71 AS patients.

The criteria for selecting experimental samples are as follows:

(1) The head motion of the sample is less than 2 mm.
(2) Each experimental participant has the information of full

intelligence quotient (FIQ), verbal intelligence quotient
(VIQ), and performance intelligence quotient (PIQ) as far
as possible.

In order to avoid the interferences of other factors such as age
and sex on the results of the experiment, we conducted tests on
these factors before conducting experiments. The specific results
are shown in Table 1.

Data Preprocessing
Due to the distinctions of participants, we have adopted
some preprocessing measures to ensure the unification and
standardization of experimental data. DPARSF is used for data
preprocessing, and the method used by Cai et al. (2017) provides
references for us. The following is the detailed preprocessing
process:

(1) Removing the first 10 time points to avoid the
environmental inadaptability of the participants in
the initial stage of the experiment.

(2) Correcting time slice to ensure that the image data was
obtained from the same time.

(3) Adjusting head movements of all subjects to make the brain
images of different participants locate in the same position.

(4) Standardizing brain images with the echo-planar imaging
(EPI) template to make different participants have identical
brain structures.

(5) Smoothing the image by Gauss kernel to reduce noise
interference (the full width half height of Gauss kernel was
set to 6 mm).

(6) Removing linear drift to decrease the influence of uncertain
factors.

(7) Using regression analysis to diminish the impact of
covariance such as noise signal.

(8) Filtering uncorrelated blood oxygen level dependent signal
with a bandwidth of 0.01–0.08 Hz.

After these procedures, we retained 135 participants including
63 AS and 72 HC, and each participant’s original image was
transformed into an image that accords with the research
standard.

TABLE 1 | Basic information of AS and HC.

Variables (Mean ± SD) AS (n = 63) HC (n = 72) P-value

Gender (M/F) 54/9 57/15 0.321a

Age (years) 13.62 ± 5.50 12.80 ± 2.23 0.246b

Full IQ∗ 96.71 ± 40.16 108.78 ± 12.14 0.017b

VIQ∗∗ 117.16 ± 14.62 108.28 ± 13.15 0.003b

PIQ∗∗∗ 62.16 ± 57.07 107.42 ± 12.95 0.000b

Values are mean ± SD. aThe p-value is obtained by the chi square test. bThe
p-value is obtained by a double sample t-test. ∗ indicates that the scores of eight
subjects are missing. ∗∗ indicates that the scores of 32 subjects are missing. ∗∗∗

indicates that the scores of 28 subjects are missing.
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Construction of Sample Features
After preprocessing, we continued the follow-up experiment
using the preprocessing results of all samples. Firstly, Automatic
Anatomical Labeling (AAL) template was used to split the
preprocessed brain images into 90 brain regions which are also
called as regions of interest (ROI). Secondly, we paired any
two brain regions resulting in 4,005 pairs. Thirdly, we treated
the Pearson correlation coefficient between the two regions
contained in each pair as a functional connection. Finally, each
sample would get 4,005 functional connections, which served as
the sample features of the following experiment.

Genetic-Evolutionary Random SVM
Cluster
The Construction of the Genetic-Evolutionary
Random SVM Cluster
Machine learning is increasingly used in brain science. In the
existing researches, some scholars used a single classifier to
classify AS and HC (Kakihara et al., 2015; Siuly and Zhang,
2016). These methods might usually achieve good classification
results for specific types of data, but could not stand out
in other situations. To solve the problem, some scholars
proposed random classifier clusters, such as the random SVM
cluster (RSVMC model) proposed by Bi et al. (2018a). But
this method did not fully consider the optimization of the
classifier cluster. In order to overcome the drawback, this paper
employed GE-RSVMC model. Specifically, we applied the cluster
to overcome insufficient generalization performance of a single
classifier, and solved the optimization problem of the cluster
by using the method of genetic evolution. Then, we could
carry out feature extraction and sample classification based on
evolutionary cluster. The detailed construction process of the
genetic-evolutionary cluster is as follows.

The preparatory step is to divide all the participants into a
training set and a test set in accordance with the ratio of 7:3.

The first step is to build a single SVM base classifier. Firstly,
we randomly selected a part of samples from the training set as
the training samples of a single SVM classifier. Secondly, as each
sample has 4005-dimensional features, we randomly selected
√

4005 ≈ 62 sample features as classification features. We used
binary coding to represent the selection result of sample features.
Specifically, we generate a feature sequence with the length of
4005. If the i-th sample feature is selected as a classification
feature, the value of i-th position in the sequence is set as 1,
otherwise the value is set as 0. The classification features sequence
(Scf) is given as follows:

Scf = {x1, x2, x3, ...xn−1, xn}
m
n (1)

where n represents the quantity of sample features, and m
indicates the quantity of sample features be selected. The xi in
Scf is defined by:

xi =

{
1 (the i−th sample feature was selected)

0 (the i−th sample feature was not selected)
(2)

Finally, we constructed a single SVM base classifier based on the
training samples and the classification feature sequence.

The second step is to construct the first generation SVM
cluster. We repeated the first step for p times to get p SVM base
classifiers. Then, these classifiers were assembled into a cluster
which was called as the first generation SVM cluster.

The third step is to determine the fitness function. In
this paper, we used the test set to examine the classification
performance of each SVM base classifier, the classification
accuracy was considered as fitness function. Thus, the expression
of the fitness function is obtained by:

Fj =
Strue,j

S
, j = 1, 2, ..., L (3)

where Strue,j is the quantity of samples which are correctly
recognized in the j-th SVM base classifiers, and S is the totality of
samples in the test set. The value of fitness function is a significant
index to evaluate the classification ability of the base classifier.
The larger the value is, the better the performance of the base
classifier will be.

The fourth step is to implement the genetic evolutionary
process of the random SVM cluster. First of all, we selected the
base classifier based on fitness function. The base classifier with
higher fitness function value is reserved, and the base classifier
with lower fitness function value is eliminated. Then, we found
out the corresponding feature sequence of each selected base
classifier. Finally, we crossed and mutated the feature sequences
of these classifiers to generate new offspring feature sequences.
The second generation cluster was established based on the
new offspring feature sequences. Because we had eliminated
the classifiers with lower fitness function, the performance of
the second generation cluster was obviously better than the
first generation cluster. The process of selection, crossover and
mutation is called as genetic evolution. We repeated the process
until the classification performance of the cluster became stable.
The evolutionary procedure of the cluster is shown in Figure 1.

The Optimal Combination of the Times of Genetic
Evolution and the Quantity of Base Classifiers
According to the proposed method, we could build a cluster but
could not ensure whether it is the optimal cluster. In order to
optimize the cluster, we need to find the optimal combination
of the quantity of base classifiers and evolutionary times. In this
study, the grid search method was used to select the optimal
quantity of base classifiers. We used 100–300 base classifiers to
build different clusters and searched out the corresponding times
of genetic evolution. When both of the quantity of base classifiers
and the corresponding evolutionary times are the lowest, the
combination is the best.

The Classification of the Genetic-Evolutionary
Random SVM Cluster
Our first goal is to accurately classify HC and AS through our
cluster. As mentioned above, 70% of the experimental samples
were used as the training set, and the rest was used as the test set.
Each experimental sample has 4,005 sample features and one class
label (“+1” or “−1”). “+1” represents HC, “−1” represents AS.

According to the above methods of building the cluster
and finding the optimal combination, we could obtain the
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FIGURE 1 | The design of the genetic-evolutionary random SVM cluster.

ultimate cluster. When a test sample enters into the ultimate
cluster, each base classifier in the cluster will give a classification
result. Because all the base classifiers in the ultimate cluster
have excellent classification performance, we assign the equal
classification weight to each base classifier. If most of the
classification results given by the base classifiers are the “+1,”
the samples will be classified as HC, otherwise the sample will be
classified as AS.

Abstracting the Optimal Feature and
Brain Region
Our second aim is to explore significantly different features
between AS and HC. These differential features are effective
in identifying patients and normal people, which we called as
“optimal features.” This study used the multi-stage analysis to
explore the “optimal features.” The route design for finding the
“optimal feature” is as follows.

Step 1: When the optimal quantity of base classifiers was
determined and the cluster was evolved to a stable state, we could
get the ultimate cluster. Since each base classifier in the ultimate
cluster randomly selected 62 sample features, these selected
features were the basis to distinguish between AS and HC. We
counted the features selected by each base classifier and calculated
the frequency of each selected feature. Then, we searched out the
most frequent 400 features as “important features.”

Step 2: We extracted the top 70 features from “important
features” as “candidate set of optimal features.” Then, we
extracted 65 features each time from the “candidate set of optimal
features” through stochastic selection to build a RSVMC model,
and evaluated the classification performance of RSVMC model
by using the test set. Next, we extended the “candidate set of

optimal features.” The extraction range of features in “candidate
set of optimal features” gradually extends from the top 70
features with the highest frequency to the whole “important
feature” set. Finally, we constructed different clusters based on
different “candidate set of optimal features,” and the classification
accuracies of the clusters were calculated. The “candidate set
of optimal features” corresponding to the peak of classification
accuracy is the “optimal feature set.”

Step 3: Because each “optimal feature” involves two brain
regions, we also used frequency as a criterion to select significant
brain regions. We counted each brain region involved in the
“optimal features” to get its frequency. The brain regions with
higher frequencies are regarded as “significant brain regions.”

RESULTS

Construction of Optimal Genetic
Evolution Random SVM Cluster
Through many experiments and adjustments, we set the
parameters of each SVM base classifier as follows: using the
Radial Basis Function (RBF) kernel function, setting cost
parameter of RBF as Inf, and setting the gamma parameter as 3.

According to the existing researches, the optimal quantity of
base classifier was set up to the interval of [100,300] (Bi et al.,
2018b), and genetic evolutionary times was set up to the interval
of [0,200] by experiments. Then we used the method of grid
search to look for the optimal combination.

We built a cluster using 100 base classifiers at the beginning
of the experiment. In order to make the cluster stable, the cluster
was evolved for 200 times, and the evolution process was shown
in Figure 2. It is learned that when the cluster is evolved 122
times, the cluster begin to reach a stable state. Thus, we get the
first combination of (100,122). Next, we increased the quantity
of base classifiers in the cluster with a step of 20, and obtained
the corresponding evolutionary times for the cluster. In this
way, we can get the combinations under different situations.
We regarded these combinations as two-dimensional coordinates

FIGURE 2 | Changes of the accuracy during the genetic evolutionary process.
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and obtained Figure 3. As motioned above, the smaller the
quantity of base classifiers is and the less the evolutionary times
are, the better the efficiency of the cluster will be. Therefore,
we can learn that the coordinate of (200,71) is the optimal
combination in Figure 3. Finally, the number of base classifiers
in the cluster was set to 200, and the cluster was evolved for 70
times to get the ultimate cluster.

Classification Performance of Genetic
Evolution Random SVM Cluster
In this paper, we built the ultimate cluster according to the
optimal combination of evolution times and the amount of base
classifiers. Our first goal was to accurately discriminate the AS
and HC, and we used the test set to evaluate the ultimate cluster.
The experimental results showed that the highest accuracy was
up to 97.5%. In order to verify the stability of the performance,
we conducted experiments for 50 times and the results were
compared with those of the Random Forest and the Random
SVM Cluster. The detail results are shown in Figure 4 and
Table 2. The maximum, median and minimum values of accuracy
in our model are 0.975, 0.8875, and 0.775, respectively, which
are all superior to the other two methods. On the other hand,
the average accuracy of our model is close to 90%, while other
methods are less than 75%. We could draw the conclusion from
the comparison result that our model has obvious advantages in
stability and accuracy.

Important Features and Optimal Features
The second purpose of our research is to find out the differences
between AS and HC. These differences have two major functions.
One function is helpful for the effective recognition of AS and
HC, another is helpful for the pathogenesis analysis of AS from
the view of physiological and pathological point. Our study search
for these differences by the ultimate cluster. According to the
result of grid search, we got the ultimate cluster with 200 base
classifiers. Each base classifier randomly selected 62 features as
classification features. The occurrence number of each feature in

FIGURE 3 | The relationship curve between the evolutionary times and the
quantity of base classifiers.

FIGURE 4 | Accuracies of various models.

TABLE 2 | Mean accuracies of various model performances.

Model Accuracy

Random Forest 73.4%

Random SVM cluster 74.6%

Genetic-evolutionary random SVM cluster 88.4%

200 base classifiers was counted. The most frequent 400 features
were taken as “important features.” The important features are
shown in Figure 5.

Although “important features” have a good classification
performance for HC and AS, they are still not the optimal
features for the reason that it may include some unrelated
brain areas. Thus we continued to extract the optimal features
from “important features.” Specifically, we firstly extract the 70
features from the important features as “candidate set of optimal
features.” Next, we randomly extracted 62 features from this
candidate set to construct a RSVMC model, and calculated the
classification accuracy. Then, we gradually increased the number
of feature in “candidate set of optimal features” from 70 to 400
with the step length is 5, and use the same method as above to
build different RSVMC. Finally, we calculated the classification
accuracies of the RSVMC model under different “candidate set
of optimal features” which are shown in the Figure 6. When the
number of feature in “candidate set of optimal features” equals to
230, the cluster reaches the peak of accuracy. Thus we regarded
the first 230 features of the important feature as the optimal
feature set.

Significant Brain Regions
Because the sample feature represents the functional connectivity
between the two ROIs, the significant ROIs should be detected
from the optimal feature set. In this paper, we also used the
frequency as a criterion for searching the significant ROIs. We
counted the frequency of each ROI in the optimal feature set.
The frequency of each ROI is shown in Figure 7. The frequency
can detect the correlation between brain regions and disease. The
higher the frequency, the stronger the correlation. The ROIs with
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FIGURE 5 | The important features among brain regions.

FIGURE 6 | The accuracy of the random SVM cluster with different candidate
set of optimal features.

higher frequencies were used as the significant brain regions.
Therefore, we enumerated the information of 13 brain regions
with the strongest correlation in Tables 3–5.

DISCUSSION

Classification Performance
Recently, more and more models of machine learning have
been used in the study of neuroimaging. Harlianto et al. (2017)

FIGURE 7 | The frequency of the brain region.

compared several machine learning algorithms for classification,
which involved support vector machine (SVM), neural network,
decision tree, and naive Bayesian, and the result showed that
linear kernel SVM outperformed the others algorithms with
an accuracy of 82.35%. Hoang and Nguyen (2018) used SVM,
artificial neural network (ANN) and Random Forest (RF) to
classify data set, and the accuracy was 87.50, 84.25, and 70%,
respectively. Mat Razi et al. (2015) used Multi-Layer Perceptron
Neural Network to classify the AS children and typically
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TABLE 3 | The brain regions with a frequency of 10.

ID of brain
region

Brain region Full name of
brain region

Shorter form
of brain region

24 Frontal_Sup_Medial_R Superior frontal
gyrus, medial

SFGmed.R

66 Angular_R Angular gyrus ANG.R

83 Temporal_Pole_Sup_L Temporal pole:
superior
temporal gyrus

TPOsup.L

TABLE 4 | The brain regions with a frequency of 9.

ID of brain
region

Brain region Full name of brain
region

Shorter form of
brain region

14 Frontal_Inf_Tri_R Inferior frontal gyrus,
triangular part

IFGtriang.R

43 Calcarine_L Calcarine fissure and
surrounding cortex

CAL.L

46 Cuneus_R Cuneus CUN.R

68 Precuneus_R Precuneus PCUN.R

72 Caudate_R Caudate nucleus CAU.R

84 Temporal_Pole_Sup_R Temporal pole:
superior temporal
gyrus

TPOsup.R

developing children based on the analysis of EEG signals,
and the classification accuracy of the model was up to 79%.
Wilson et al. (2014) adopted the SVM to discriminate AS and
high-functioning autism (HFA), and the performance of classifier
is only 58%.

In this study, the distinction between normal people and
patients was abstracted as the binary classification problem
in machine learning. We employed a GE-RSVMC for the
classification between AS patients and HC. We construct the
GE-RSVMC based on ensemble learning, and the ensemble
learning model usually has better accuracy and generalization
performance than a single classifier. And we introduce the idea
of genetic evolution, so that the cluster gradually deletes the
classifier with weak classification ability, and retains the classifier
with high accuracy. After a certain genetic evolutionary times,
each basic classifiers in the cluster has a good classification ability,
which makes the cluster achieve a high accuracy. Therefore, the
performance of classification stabilizes at the level of 95%, and the
highest is 97.5%. Based on the optimal combination of evolution
times and the amount of base classifiers, 230 optimal features
are retained and used to classify as the optimal feature set.
The experimental results show that the GE-RSVMC cannot only
distinguish AS patients and HC more accurately, but also identify
significant features and the different brain regions between the
two groups.

Analysis of Brain Regions With Greater
Frequency
The results of our study indicate that there are some
significantly different brain regions including Angular gyrus
(ANG.R), Precuneus (PCUN.R), Caudate nucleus (CAU.R),

TABLE 5 | The brain regions with a frequency of 8.

ID of brain
region

Brain region Full name of brain
region

Shorter form of
brain region

7 Frontal_Mid_L Middle frontal gyrus MFG.L

17 Rolandic_Oper_L Rolandic operculum ROL.L

33 Cingulum_Mid_L Median cingulate and
paracingulate gyri

DCG.L

76 Pallidum_R Lenticular nucleus,
pallidum

PAL.R

Cuneus (CUN.R), etc. These abnormal regions mean that the
lesions occurred in these brain areas. The specific analysis of these
brain regions is as follows.

(1) Angular Gyrus (ANG.R)
In our paper, the angular gyrus is the one of the ROIs with
the highest occurrence number, indicating that the frequency of
the abnormal functional connectivity is the highest between this
brain region and other brain regions. It plays an essential role not
only in the classification of GE-RSVMC model, but also in the
pathologic analysis of pathologists.

The angular gyrus locates in the posterior part of the inferior
parietal lobule (Seghier, 2013). The angular gyrus involves in
semantic processing (Bonnici et al., 2016; Jiang et al., 2018),
word reading and comprehension (Pugh et al., 2010), memory
retrieval (Price et al., 2015), reasoning (D’Argembeau et al., 2014),
and social cognition (Moss and Schunn, 2015). Especially, the
increase of the angular gyrus activation makes language ability
higher during semantic processing (Ettingerveenstra et al., 2016).
And the angular gyrus plays a crucial role in complex information
integration and knowledge retrieval (Pick and Lavidor, 2017).

Some studies are in agreement with our results on AS
patients. Woods et al. (2013) found that AS patients were
commonly characterized by having difficulties in social skills
and communication, which can present challenges in everyday
functioning. Yanai and Maekawa (2014) found that children with
AS had more difficulties with automatic semantic processing
than children with normal development. Herrington et al. (2007)
indicated that AS patients showed significantly decreased activity
between the right superior temporal gyrus and the angular gyrus
compared with the HC. Thompson et al. (2010) had observed
the decreased activity in angular gyrus and supramarginal
gyrus of the right hemisphere in AS with the motor and
sensory aprosodias. These results show that the angular gyrus is
significantly abnormal in AS, which is of great help to the clinical
diagnosis and treatment of AS.

(2) Precuneus (PCUN.R)
We discovered that precuneus is one of the vitally important
brain regions, and the frequency is ranked second by the
occurrence number of 9, which indicating that it makes
contribution to the classification of the GE-RSVMC model.

Precuneus is considered as functional pivot of the default-
mode network (Utevsky et al., 2014). There is a tight connection
between the precuneus and cognitive processes (Fomina et al.,
2016), and the precuneus is important in a wide spectrum of
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highly integrated tasks (Cavanna and Trimble, 2006), including
visuo-spatial imagery, episodic memory retrieval and self-
processing operations. Then the precuneus plays a role in
egocentric spatial processing in the context of memory retrieval
(Freton et al., 2014). The results of our study are consistent
with some several current researches. For example, Yu et al.
(2011) found that the summary AS map indicated lower gray
matter volumes in precuneus compared with HC. Radulescu
et al. (2013) found a reliance on bottom-up connections in
AS among inferior frontal gyri, caudate and precuneus, which
contrasted with cognitive control. Sevik et al. (2010) showed
that the activation of the precuneus was above the baseline
level (P < 0.05) for an 18-year-old male with AS and highly
unusual calendar memory. These findings demonstrated that the
precuneus is abnormal region in AS, which is beneficial to the
clinical diagnosis of AS.

(3) Caudate Nucleus (CAU.R)
Caudate nucleus is another important brain region in our study,
which is one of the prominent brain region detected by the GE-
RSVMC model.

The lesions of caudate nucleus lead to impairments in
planning and solving problems, mental flexibility, learning,
attention, short-term and long-term memory, retrieval, and
verbal fluency (Voelbel et al., 2006; Moretti et al., 2017). It
is thought to play a role in behavioral monitoring (Schwerdt
et al., 2017). Roine et al. (2015a) noted that AS patients have
significant degrees of motor incoordination, which sometimes
affects writing and drawing skills as well as posture, gait,
and gesture incoordination. Some researchers also have the
similar results as our findings. Leisman et al. (2014) found that
the damage to caudate nucleus was associated with a variety
of behavioral abnormalities including organizing behavioral
responses and using verbal skills in problem solving. Faridi and
Khosrowabadi (2017) noted that the alteration of caudate nuclei
in volume was larger by the age in terms of pattern of brain
structure in AS than HC. These results show that the study of
caudate nucleus is helpful for the treatment of AS.

(4) Cuneus (CUN.R)
We also find that Cuneus is a more frequent brain region than
remaining brain regions in our study. It is demonstrated that the
cuneus plays an important role in classification, and the research
of the cuneus is of great significance for the treatment of AS.

The cuneus locates in the occipital lobe (Zhu et al., 2016), and a
lot of studies have shown that the cuneus have been related to the
visual processing (Vanni et al., 2001; Gershfeld et al., 2015). The
visuospatial processing of AS has more supernormal performance
in adults than age-matched HC, but which is opposite in children
(Chien et al., 2015; Roser et al., 2015). Other researchers such as
Herrington et al. (2007) also discovered the difference between
AS and HC, which is in line with our results. Cheng et al. (2011),
Perkins et al. (2015), and Eilam-Stock et al. (2016) found that
the activation of cuneus in AS patients was reduced compared
with HC. We can draw a conclusion from the above findings that
lesion occurring in the cuneus may lead to AS.

LIMITATIONS

Although our GE-RSVMC model has a great accuracy rate for
the classification of AS and HC, there are still some limitations
that prevented the model from being more optimized. Firstly,
it is simple to use the index of functional connectivity in our
study. In a further study, we can also construct other indicators
to capture sample features and use these indicators to conduct a
more comprehensive analysis of AS, such as multi-classification
study of AS and normal people. In addition, considering that
we only use the fMRI data of the sample, it is suggested to use
the multi-mode data to classify and explore lesions, such as the
gene data, structural image data and task-state fMRI. Finally, the
performance of the cluster is related to the kernel function of each
base classifier. We only use the based classifier with RBF kernel
function in the paper. In the subsequent research, we can consider
the use of multiple kernel base classifiers to improve the efficiency
of the cluster.
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