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Computer modeling has a long history of association with epidemiology, and has

improved our understanding of the theory of disease dynamics and provided insights

into wildlife disease management. A summary of badger bovine TB models and their role

in decision making is presented, from a simple initial SEI model, to SEIR (inclusion of a

recovered category) and SEI1I2 (inclusion of two stages of disease progression) variants,

and subsequent spatially-explicit individual-based models used to assess historical

badger management strategies. The integration of cattle into TB models allowed

comparison of the predicted impacts of different badger management strategies on cattle

herd breakdown rates, and provided an economic dimension to the outputs. Estimates of

R0 for bovine TB in cattle and badgers are little higher than unity implying that the disease

should be relatively easy to control, which is at odds with practical experience. A cohort of

recent models have suggested that combined strategies, involving management of both

host species and including vaccination may be most effective. Future models of badger

vaccination will need to accommodate the partial protection from infection and likely

duration of immunity conferred by the currently available vaccine (BCG). Descriptions of

how models could better represent the ecological and epidemiological complexities of

the badger-cattle TB system are presented, along with a wider discussion of the utility

of modeling for bovine TB management interventions. This includes consideration of the

information required to maximize the utility of the next generation of models.
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INTRODUCTION

Mathematical models are both a simplification of reality and a reflection of our current
understanding. As a working hypothesis of our supposed reality they can consequently only be
shown to be wrong (1). A good model should only include necessary parameters, although the
definition of “necessary” depends on the model’s purpose. There are three main types of model:
statistical, mathematical and simulation. Statistical models find relationships between parameters
and will not be considered here. There is a continuum from mathematical to simulation models,
but in general the former are used to investigate how a system works, while the latter, usually
mechanistic, can be used to investigate management options.

Bovine tuberculosis (bTB, caused by Mycobacterium bovis) is a serious disease of cattle and
control can be made more challenging by the involvement of wildlife reservoirs (2). In the UK
and Republic of Ireland, European badgers (Meles meles) are implicated in the persistence and
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spread of infection to cattle (3, 4). In both countries management
of the risks of transmission to cattle has focused on culling
badgers (5, 6). As badgers are native this imposes certain
practical restrictions and attracts controversy. There has also
been substantial Government investment in recent years in
the development of a badger vaccine (7, 8) with small-scale
deployment for research and operational purposes (9, 10).

M. bovis in badgers is a chronic progressive condition, which
can lead to debilitating disease and death, althoughmany infected
badgers survive for years and prevalence can average about 10–
20% or higher (11). Principal sites of infection are the lungs and
associated lymph nodes. Badgersmay exhibit a range of responses
to infection ranging from latency (host infected but bacteria
are effectively contained), to generalized disease (12) when they
are likely to be most infectious, potentially shedding bacteria in
sputum, feces, urine, or pus from wounds or abscesses (13). Once
infectious, onward transmission of M. bovis occurs by aerosol
transmission among animals in close contact, via bite wounding
(14), and indirectly through environmental contamination (15,
16). Transmission to cattle is thought to be through contact with
bacteria in the environment rather than via direct contact (17,
18).

Mathematical modeling has a long history with the badger-TB
system. This has ranged frommodeling the dynamics of infection
in badger populations, to complex two host badger and cattle
systems, and simulating the impact of management to inform
disease control policy (see below). Modeling is often referred
to as an iterative process. Models can be used to investigate
the theoretical aspects of disease ecology and management, data
are investigated to determine parameter values, and the models
can determine where the data are deficient. If the model output
is sensitive to parameter estimates that are uncertain or poorly
measured, then this can be used to define new research questions
and hence to guide the collection of empirical data to fill gaps and
reduce uncertainties. These new data are then incorporated and
the process repeated. This iteration rarely occurs in reality since
people who generate empirical data and those who write models
often work independently. Our research team (the UK National
Wildlife Management Centre and its precursors), are therefore
relatively unusual in this regard, being responsible for both the
longest field study of badgers and bovine TB epidemiology (19),
and the evolution of a series of models describing this system.
Since reviews of badger/bTB models are already available [e.g.,
(20, 21)], we provide a historical narrative of the development of
these models, the roles they have played in supporting decision-
making, and our perspective on the future of modeling in this
complex and challenging area of disease management.

HISTORICAL REVIEW

Early badger/bTB models investigated population dynamics in
detail since this was the first opportunity to examine data
from an ongoing study, resulting in a simple SEI (susceptible,
exposed and infectious disease categories) model (22). This work
summarized the known information on population dynamics
(e.g., fertility and mortality rates). The resultant model suggested

that disease induced mortality was 2.5 times natural mortality
and thus exerted a high level of population suppression. The
model was used to determine R0, the expected number of
secondary cases produced by one infected case in a completely
susceptible population. This is a measure of the transmission
potential of a disease and the estimated R0 lay between 1.9
and 9.7, which reflected the level of parameter uncertainty.
This model also explored pseudo-vertical transmission (i.e.,
mother to offspring transmission via close contact or ingestion
of infected milk), the potential presence of asymptomatic carriers
of infection, environmental reservoirs and inactive (short-
term non-infectious) cases. With hindsight we can see that
consideration of these phenomena illustrates the short-fall in
empirical evidence on disease progression at the time (23).

The next model was an SEIR (SEI plus a recovered category)
model and a parameter search used to refine population
and epidemiological values (24). However, the inclusion of
a “recovered” class was not itself tested, and has not been
implemented in most other models. A further variant was
the SEI1I2 model which permitted two levels of infectiousness
(associated with early and advanced disease) and pseudo-vertical
transmission (25). Investigation of six potential model structures
suggested that those with two levels of infectiousness had some
support.

The construction of an individual-based simulation model
permitted the inclusion of territoriality and spatial components
(26), which resulted in disease clusters and removed the
clear relationship between disease prevalence and population
suppression. The use of social groups also meant that the
threshold density for disease persistence was now considered as
the average minimum social group size that would permit disease
maintenance. Although this model also suggested substantial
disease-induced population suppression, the effect was reduced
by the spatial clustering of disease (26). This was the first
model to assess different historical badger management strategies
(27): Gassing, Clean Ring, Interim and Live Test strategies (see
Table 1 for definitions). Model outputs suggested that the most
efficient strategies were Gassing and the Clean Ring since they
may remove foci of infection. The model also explored badger
vaccination and concluded that it would take between 10 and
30 years to eradicate bTB with a perfect vaccine, depending
on the efficacy of delivery. A later version investigated fertility
control (through the use of a theoretical oral contraceptive) and
concluded that in isolation this would not eradicate bTB in
badgers but that disease control was possible when combined
with high levels of culling (30). A simple generic model was
used to simulate combined vaccination and fertility control and
concluded that the reduced efficacy of vaccination, relative to
culling, disappeared when allied with fertility control, and thus
a combined approach could be effective (31).

A revision of Smith et al. (25) was the first model to predict
limited population suppression (32), which was supported by the
field data (33). This model also suggested that culling lactating
females only had a limited impact on disease control, which
supported the prevailing policy of releasing them.

A return to a simple model investigated the effects of social
perturbation [the process of disruption of the social structure of
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TABLE 1 | A summary of historical badger control strategies used in England.

Control Strategy Approach Estimated Efficacy of control1 Area2

Gassing Gassing setts where badgers confirmed with bTB. 90% Up to 10 km2

Clean Ring Cage trap and shoot social groups in an expanding ring where confirmed with bTB 80% Mean 9 km2

Interim Cage trap and shoot badgers on and around confirmed cattle breakdowns 70% Mean 12 km2

Live Test Trial strategy of cage trap and shoot in response to an antibody test. 80% Mean 1 km2

1 from Smith et al. (28), 2 from Krebs et al. (29).

populations subjected to culling: Swinton et al. (34)], which could
theoretically increase absolute numbers of infected animals.
Both this and a subsequent study (31) also investigated the
effect of fertility control, and suggested that lethal control
was generally more effective. However, Smith and Cheeseman
(31) found that permanent sterility combined with vaccination
could be just as effective as lethal control, and would permit
disease elimination without risking population extinction. Using
updated parameters, a simplemathematical model of badgers and
cattle concluded that R0 was lower than previous estimates, at
about 1.1 (35), and was supported by subsequent empirically-
derived estimates of 1 to 1.2 (11). These findings suggest that
control would require less than a 20% reduction in transmission
rates to eliminate disease, although this appears to contrast with
field experience.

Simulation models then added cattle, firstly as a simple
homogenous set of herds connected to each badger social group
(36). This model was used to assess the live test strategy (36),
and other historical and prospective strategies (28) including
vaccination (37). These studies concluded that the use of a
live test required better test sensitivity and that more badgers
per group needed testing and that Gassing and the Clean
Ring were the most effective historical strategies. The model
identified proactive widespread vaccination as the most effective
vaccination strategy requiring vaccinating at least 40% of badgers
every year to eliminate disease and that combined strategies gave
the best initial reduction in cattle herd breakdown rates. Since
the models were generating results that could inform policy,
there was merit in ensuring the results were robust, so a second
independent model was developed using the same input data.
Reassuringly, this model gave very similar results (38).

Most of the data came from a field study of bTB epidemiology
in badgers (39–42). When the latest models were subjected to
sensitivity analysis, the outputs were found to be sensitive to the
two infectious classes (particularly the more infectious category,
and their mortality rates). This led tomore detailed field research,
which allowed disease categories and survival rates to be refined
(43) and incorporated into subsequent models.

Between 1998 and 2005 a large scale field experiment took
place in England, to determine the role of badger culling as a
means of controlling bTB in cattle. Results of the Randomised
Badger Culling Trial (RBCT) demonstrated that cattle herd
breakdown rates were significantly reduced within proactively
culled areas, but increased around the edges (4). Subsequent
investigations identified significant spatial disruption of badger
social group territories after culling (44), which tied in with

previous observations of post-cull badger populations, including
enhanced movement of surviving animals [reviewed by (45)].
The long-term field data from the Woodchester Park study
demonstrated a clear link between badger movement rates and
prevalence of bTB in an undisturbed population (46), suggesting
that enhanced movements of badgers following culling might
have adverse epidemiological outcomes. Thus, the model could
now be updated by changing badger behavior (movement
probabilities) to generate the pattern of herd breakdowns seen
in the field. This approach of pattern-oriented modeling had
recently been taking root in ecological models (47, 48). In a
subsequent model, badger movement was simulated to match
data from field studies (45), and the contact rate amongst badgers
increased until the simulated rise in the herd breakdown rate
matched that observed during the RBCT (49). The revised model
also included amore realistic cattle layer incorporating individual
farms and cattle movements, allowing investigation of pre-
movement cattle testing, and including farm economics so that
a partial cost-benefit analysis could be conducted. Even if most
of the badger control costs were borne by the farmer the model
concluded that, due to perturbation, the cost-benefit analysis
was nearly always negative. Preventing badger immigration, or
if perturbation did not occur, an economic benefit was more
likely than not (49). If the Government bore the cost of badger
culling then even without perturbation, most scenarios indicated
an overall economic loss (50).

The Smith et al. (50) model was revised and updated with
further field data, and used to investigate different bTB control
strategies. In Wales the model was used to inform a decision
on what badger management approach to take in an Intensive
Action Area (IAA) identified by Government (51–53). The IAA
was subjected to badger vaccination, and following 4 years of
treatment the model was used to determine the effects of a lack
of vaccine in the fifth year (54). This indicated that the fifth year
of vaccination would add relatively little to the overall benefit,
and no discernable benefit if vaccination was delayed by a year.
This suggests that, following 4 years of treatment, herd immunity
was raised to a level sufficient to justify a break in vaccination
effort. In Northern Ireland, simulations investigated selective
badger culling to inform proposals for a trap, live test and cull or
vaccinate (TVR) approach (55), which is currently being trialed
(56). In England the model was used to assess different culling
and vaccination policies and concluded that in order to realize a
benefit, badger culling would need to continue for at least 4 years
and that low culling efficacy or an early cessation to culling could
lead to an increase in the number of herd breakdowns (57).
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Other models have investigated different selective or
combined badger management strategies (58–60). Supporting
previous results, these studies indicated that badger culling may
reduce disease prevalence, but alone cannot eradicate bTB, and
that combined vaccination strategies may be the most effective.
None of the models have found that a single strategy is the
most effective, generally agreeing that combined approaches are
required, together with strong cattle measures. The deployment
of such approaches in the field would provide data to test these
predictions. The inability of models to easily eradicate bTB with
single approach methods contrasts with the available estimates of
R0, which have suggested that control should be easier to achieve.

Although the principal driver for interest in bTB is to control
the disease in cattle, there has been substantially less modeling
focused on cattle. However, models of bTB in New Zealand
were used to investigate cattle management. These indicated that
improved cattle testing (61) and cattle management (62) alone
were insufficient to eradicate bTB in the presence of the local
wildlife vector (the brushtail possum Trichosurus vulpecula).
A further model indicated the potential benefits of increased
cattle testing, and reduced cattle movement in combination with
wildlife vector control (63). These results, combined with output
from other models (64–70) were used to inform the eradication
strategy (https://ospri.co.nz/our-programmes/tbfree/about-the-
tbfree-programme/about-bovine-tb/history-of-tb/).

Other wild mammal species can be infected with M. bovis
and some may act as maintenance hosts, with potential onward
transmission to cattle. In Spain, wild boar Sus scrofa and red
deer Cervus elaphus appear most important as wild reservoirs of
infection (71) and in North America white-tailed deerOdocoileus
virginianus are involved in transmission to cattle (72). A model
of bTB in white-tailed deer assessed various vaccination and
targeted removal strategies and concluded that vaccination (alone
or combined with targeted removal) needed to be undertaken
annually to achieve a detectable reduction in prevalence (73),
and currently an oral vaccination approach is under investigation
(74). However, to date modeling has been applied to a far lesser
extent to these situations compared to the badger-cattle bTB
system.

The historical evolution of modeling described above clearly
indicates where models have been used to inform decision
making on bTB control in wildlife. In the badger bTB system,
the interplay between field studies and modeling, and the use
of models to guide decision making have been particularly
prominent. Early models concentrated on increasing our
understanding of the system with limited impact on decision
making, but derived parameter estimates necessary for later
models, which informed further field studies to refine key
parameters. Successive models, which have generally included
stochasticity, have since played a more explicit role in supporting
decision making.

RECOMMENDATIONS

Below we describe a series of recommendations borne out of
our experience of data analysis and modeling largely in relation

to the badger/bTB system. Our recommendations relate first to
themes for future models of bTB in badgers, and second to the
presentation of model outputs to decision makers.

Future Models of bTB in Badgers
The following themes could be usefully explored in future models
of bTB in badgers, but may also apply to other wildlife disease
systems.

1. Recent models suggest that vaccination is a useful tool
for controlling bTB in badgers, with the potential to be
applied as an exit strategy from culling. Hence, more detailed
investigations of vaccination strategies are required. Field
and experimental evidence indicate that the current vaccine
(BCG) does not provide complete protection from infection
(75), but may confer partial protection, or slow down disease
progression. To date most models assume that it confers
lifetime protection from infection to a given proportion of
the vaccinated population. Technically, these models place
vaccinated badgers in a different category that has no
increased mortality and no ability to infect others. Therefore,
these individuals could become infected, and even react to
various live tests, but fail to transmit infection, so the models
do not actually assume complete protection, but an inability to
become infectious. The available empirical data cannot easily
distinguish between a proportion of vaccinated animals being
very well protected, and all vaccinated animals experiencing
slower disease progression. Such partial protection would
lead to a reduced efficacy of disease control and requires
further investigation in the field and through modeling.
Further evidence is also required to determine the duration
of protection (whether complete or partial).

2. Intervention duration and frequency have received little
attention in models, and could usefully be explored in more
detail. Most models assume either continuous or annual
application of management, but recent evidence suggests
that breaks in treatment may be possible without significant
detrimental effects (54). This is important because even short
breaks in management of a single year at a time may reduce
overall cost and thus improve the economic outcome.

3. Social perturbation in culled badger populations has so
far been simulated using a fixed effect, or by pattern-
matching model output with field data. Modeling suggests
that the presence of perturbation can be pivotal in
determining whether a culling strategy is worth pursuing,
but perturbation has only been modeled as an on/off effect.
Further empirical evidence on the magnitude of perturbation
effects encountered under different conditions, and refined
model parameterization are vital to more accurately assess
likely outcomes of different culling strategies and allow
comparison with other approaches.

4. Within-individual level effects have not been explored in
badger models. Where animals are tested, or subjected to
management interventions (e.g., vaccination) in stochastic
models, independence in outcome is assumed. This means
that repeated testing (or repeated vaccination), will eventually
detect (or sero-convert) every individual. Instead, it may
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be that some individuals can never produce a positive test
result (or be successfully vaccinated) due to a physiological
process/characteristic. This would cause repeated (e.g.,
annual) management strategies to be less effective, but it is not
clear how large such an effect may be.

5. Between-individual effects have not been explored. Most
models assume all individuals are the same in terms of their
physiological and behavioral responses, although there is clear
empirical evidence to the contrary. Social network analyses
have revealed individuals occupying different network
positions, with associated variation in infection exposure
and transmission potential (76). Models that account for
individual heterogeneity in transmission rates (within and
between species) may be worth investigating with a view
to assessing the potential impacts on disease dynamics
of removing key individuals in targeted management
interventions.

6. Recent interest in selective removal strategies has raised the
issue of test performance. In a model the infection status of
each individual is perfectly known, whereas test performance
determines sensitivity (all infected animals that test negative,
regardless of whether latent, infected or infectious). For bTB
there is no gold standard test, and thus no way to map
an individual onto a simulated categorical state. Thus, test
performance is determined globally on the population, and
not for each disease state in a model, although empirical
evidence suggests some tests have a differential sensitivity
according to the stage of disease progression (77, 78). Also,
novel probabilistic approaches to describing infection status
may help us to incorporate uncertainty in test outcomes and
provide a more meaningful way to categorize individuals (79).

7. Theoretical studies have suggested that fertility control
may be a useful tool for disease control, particularly in
combination with other approaches, but it has yet to be
simulated for specific bTB control strategies. Suitable agents
are currently available to induce immunocontraception that
may last a number of years from a single dose (80) and these
are under investigation for badgers, which are unusual in
having delayed implantation (http://sciencesearch.defra.gov.
uk/Default.aspx?Menu=Menu&Module=More&Location=
None&Completed=0&ProjectID=17952).

8. There still appears to be a disconnect between the calculation
of R0 (close to 1.0), and the high level and lengthy duration
of control required to achieve disease eradication in stochastic
models. The duration of control is not technically a problem,
since R0 indicates the level of control required and tells us
nothing about the duration. So this disconnect may be because
model simulations are not of sufficient duration, or a result
of other issues such as the spatial distribution of animals and
disease.

Presenting Model Outputs to Decision
Makers
It is clear from our experience that some modeling is more
informative to decision makers than others. Below we suggest

steps to help improve the relevance of modeling to decision
makers.

1. It is important to know whether the purpose of the model
is to help inform decision making, or to explore the system
under study. In the former, the question to be investigated
needs to be clearly articulated, ideally with the involvement
of decision makers. The question should be specific, with an
example graph or table in mind as the output, which allows
both parties to agree on the output metric.

2. What the model does and does not include should be
agreed with the decision maker. For example, it should be
established whether a wildlife bTBmodel should include cattle
so as to estimate changes in herd breakdown rates, or social
perturbation arising from the intervention. The model should
include all those components that the decision maker regards
as important if they are to trust the output, or demonstrate that
such components have very limited effect on the output.

3. Models that are well described and identify their assumptions
and limitations, are given more weight by decision makers.
Mathematical descriptions ofmodel processesmay be required
for scientific publication, but flow charts are easier to follow.
There are also guidelines to present the description of complex
individual based models (81, 82).

4. Model description should include details of verification and
validation, and some level of sensitivity and uncertainty
analysis. Verification is the process of checking that the model
does what is expected, and validation is the process of checking
output against real world data (where possible). Sensitivity or
uncertainty analysis can be used to demonstrate that a decision
should be robust to the parameter uncertainty.

5. Model output is often best described in terms of the potential
decision, rather than as a prediction of future trends. Models
are simplifications, and are unable to capture the future
variability of the real world. However, the performance of two
modeled strategies will suffer to the same degree from these
issues, and so can provide valuable information on their likely
relative benefits and hence inform decision making. For the
purposes of comparison it may be useful to determine how
often one strategy outperforms another, as this will increase
confidence in any selection.

These recommendations have applications beyond the
bTB/badger system. Specific themes such as those relating to
vaccination efficacy, the potential for management interventions
to change host behavior and influence disease dynamics in
counter-productive ways, and the performance of diagnostic tests
are broadly applicable. This illustrates how the body of work on
modeling bTB has contributed to our general understanding of
the dynamics and management of disease in wildlife hosts and
demonstrated how to model these systems.
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