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Crop productivity is typically affected by various soil–plant factors systematically as
they influence plant photosynthesis, soil fertility, and root systems. However, little is
known about how the productivity of legumes is related to crop rotation systems. The
objectives of this study were to determine the effect of rotation systems on legume
productivity and the relationships among legume productivity and soil–plant factors.
Three annual legumes – chickpea (Cicer arietinum L.), pea (Pisum sativum L.), and
lentil (Lens culinaris Medikus), were included in various diversified rotation systems
and compared with legume monoculture in the 8-year rotation study. Soil N and water
conditions, and canopy and root systems were evaluated at the end of 8-year rotation
in the semiarid Canadian prairies. Results showed that diversified rotation systems
improved leaf greenness by 4%, shoot biomass by 25%, nodule biomass by 44%, and
seed yield by 95% for chickpea and pea, but such effects were not found for lentil.
Pea monocultures increased root rot severity by threefold compared with diversified
rotations, and chickpea monoculture increased shoot rot severity by 23%, root rot
severity by 96% and nodule damage by 219%. However, all the legume monocultures
improved soil N accumulation by an average 38% compared to diversified systems.
Pea and chickpea displayed considerable sensitivity to plant biotic stresses, whereas
lentil productivity had a larger dependence on initial soil N content. The 8-year study
concludes that the rotational effect on legume productivity varies with legume species,
the frequency of a legume appearing in the rotation, and the integration of relevant soil
and plant indices.

Keywords: cropping system, legumes, sustainable agriculture, diversification, biotic stress

INTRODUCTION

The development of sustainable agriculture addresses the dual improvements of crop productivity
and soil quality to satisfy the ever-growing food demand driven by the growing human population
in the coming 50 years (Tilman et al., 2011; Mueller et al., 2012). However, conventional agricultural
development has been heavily dependent on external chemical fertilizers, which contribute to
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soil degradation, increased costs of crop production, and
environmental deterioration (Fedoroff et al., 2010; Malhi et al.,
2013). Consequently, reliance on chemical fertilizers is not a
solution for sustainable development (Vitousek et al., 2009;
Fedoroff et al., 2010). The exploitation of biological N2-fixation
(BNF) through symbiosis and enhancement of soil nutrient
cycling are increasingly necessary to supplement chemical
fertilizers in crop production (Peoples et al., 2009; Hossain et al.,
2016). Crop rotation is considered as an dual solution to improve
soil quality (Wu et al., 2003; Ni et al., 2004; Zotarelli et al.,
2007) and crop productivity (Mohr et al., 2011; Gan et al.,
2015) through suppressing pests (Gurr et al., 2003) and avoiding
pathogen infection (Zhu et al., 2000). Legume-based cropping
systems not only increase grain yields, but also improve soil
fertility through BNF of legume plants (Siddique et al., 2012).
Therefore, increasing legume productivity through optimization
of agronomic practices is key to maximize the benefits of legumes
in cropping (Gan et al., 2015). Soil N and water conditions
are essential factors affecting crop growth, which need to be
synchronized spatially and temporally (Zhang et al., 2010). Crop
canopy has the dominant role of absorbing solar radiation
and CO2 necessary for photosynthesis, N2 fixation, and carbon
sequestration. As a key zone of interaction between legumes
and soils (Baron et al., 2013; Oikawa and Ainsworth, 2016),
legume root–nodule systems play vital roles in soil nutrient and
water acquisition, and symbiotic N2 fixation (Carranca et al.,
2015). Strategies to synchrony soil nutrient supply and crop
demand (Chen et al., 2011; Zhang et al., 2011) are of importance
for enhancing N use efficiency and crop productivity (Siddique
et al., 2012; Carranca et al., 2015). The growth of legumes
is influenced simultaneously by various factors including soil
fertility, photosynthesis and root system. The improvement of
legume growth and productivity therefore largely depends on the
integration of various soil and plant factors (Tittonell et al., 2010;
Chen et al., 2011).

Legume-based rotations have been shown to be an effective
strategy for improving soil N and water use efficiency (WUE)
(Gan et al., 2015), minimizing plant diseases (Holm et al.,
2006; Govaerts et al., 2007; Kutcher et al., 2011) and other
pest infestation (Govaerts et al., 2007; Kathiresan, 2007),
and improving the productivity of subsequent cereals (Davis
et al., 2012; Kremen and Miles, 2012; Borrell et al., 2017).
However, there are two knowledge gaps specific to legume-
based rotation cropping. First, most conventional legume-
based rotations have focused on yield response but there
are ambiguities when viewed from an integrated soil–crop
perspective, how the yield response varies with soil N and
water conditions, and crop canopy and root system. Second,
although some reports have shed light on how integrated
legume rotations can lead to improvement in soil quality,
plant growth, and seed yield for the succeeding cereal in the
rotation (Chen et al., 2011; Zhang et al., 2011; Gan et al.,
2015), there is a deficiency in the understanding how the
outcome of crop rotational effect varies with legume species.
There is an increasing urgency to systematically determine
legume productivity in response to crop species and rotation
systems.

Pea (Pisum sativum L.), chickpea (Cicer arietinum L.), and
lentil (Lens culinaris Medikus) are the most abundantly-grown
annual legumes on the Canadian prairie, where these legumes
can fix N2 from the atmosphere averaging 54, 52, and 49
kg N ha−1 year−1, respectively (Lupwayi and Kennedy, 2007;
Hossain et al., 2016). The amounts of N2 fixed can vary
largely, depending on climatic conditions, soil N and water
availabilities, and cropping practices (Hossain et al., 2016,
2018). Often, legumes suffer from various biotic pressures
(Goodwin, 2008); they are susceptible to pathogenic organisms
and diseases, such as ascochyta blight caused by Ascochyta
rabiei in chickpea (Gan et al., 2006), anthracnose caused by
ascomycete pathogen Colletotrichum lentis in lentil (Banniza
et al., 2018), and root rot complex caused by Aphanomyces
euteiches in pea (Gossen et al., 2016). Also, legume nodulation
is often threatened by nematodes and insects, including weevils,
cutworms, and wireworms (Goodwin, 2008). These biotic stresses
cause significant leaf chlorosis and wilting, reduction in canopy
and root function, and yield losses. Pesticides are commonly used
to minimize root rot severity and injury from insects. However,
repeated applications of a pesticide can result in pathogens and
insects developing resistance to it, and also can cause pesticide
pollution with negative ecological consequences (Mohapatra and
Roy, 2010). Therefore, it is increasingly important to develop
rotation systems for integrated biotic stress management in
legume production.

In this study, we integrated several factors including soil N and
water conditions, indices of biotic stresses, and crop performance
of crop rotation. The objectives were to: (i) determine the
effect of crop rotation on soil N and water conditions, legume
canopy and root characteristics, and the resulted productivity for
three annual legumes, and (ii) evaluate the relationship between
legume productivity and the key soil- and plant-related variables.
We hypothesized that: (i) the responses to rotation systems for
soil N and water conditions, and plant parameters vary with
legume species, and (ii) there is a close relationship between
legume productivity and sensitive factors, such as soil N and
water conditions or crop root and canopy parameters.

MATERIALS AND METHODS

Experimental Site and Design
A field experiment was conducted at the Agriculture and Agri-
Food Canada Swift Current Research and Development Centre
(50◦25′ N, 107◦44′ W) from 2009 to 2016. During the growing
season (May to September) in 2016, there was 285 mm of
rainfall (close the long-term mean of 266 mm for 2009–2016),
and mean air temperature was 15.2◦C (close the long-term
mean of 15.0◦C for 2009–2016). The soil was an Orthic Brown
Chernozem with the following characteristics in the spring of
2009 in the 0- to 15-cm soil layer: 20 kg ha−1 organic C,
measured using combustion (Gan et al., 2014); 20 kg ha−1

of Olsen P, measured using the Olsen’s methods (Olsen and
Sommers, 1982); 380 kg ha−1 exchangeable K, measured using
ammonium-acetate method (Malhi et al., 2003); and pH of
6.5, measured using an electronic pH meter in a 0.01 M
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CaCl2 solution (PHB-600R, OMEGA Engineering, Canada)
(Gan et al., 2015). The experiment included three legumes –
chickpea (C), lentil (L) and dry pea (P), each with three levels
of rotation diversity: legume monoculture pea-pea-pea (PPP),
lentil-lentil-lentil (LLL), and chickpea-chickpea-chickpea (CCC);
moderately-diversified rotation systems pea-wheat-pea (PWP),
lentil-wheat-lentil (LWL) and chickpea-wheat-chickpea (CWC);
and diversified rotation systems of lentil-chickpea-pea (LCP),
pea-wheat-lentil (PWL), and lentil-wheat-chickpea (LWC). Each
of these 3-year rotations was temporally replicated for two cycles:
the first cycle started in 2010 and ended in 2012, and the second
cycle continued in the original plots from 2014 to 2016. Spring
wheat was planted in 2009 to start the first cycle and in 2013 to
start the second cycle; the 2009 wheat was to create a uniform soil
condition and the 2013 wheat was to provide a ‘break’ between
the legume cycles. Crops in 2016 (i.e., Year 8 in the rotation)
were the test crops in which rotational effects are expected to
show; thus, the two 3-year rotation cycles are considered together
as part of a longer rotation. For example, the PPP treatment
was an 8-year rotation of wheat (2009) – pea (2010) – pea
(2011) – pea (2012) – wheat (2013) – pea (2014) – pea (2015) –
pea (2016). The 2012 chickpea was the third year in the CCC
rotation of the first cycle which totally failed due to severe
ascochyta blight, thus in the second cycle the Year-2 chickpea in
the CCC was replaced with mustard (B. juncea), which became
CMC.

All crop sequences were arranged using a randomized
complete block design with four replications. The plot sizes were
4 m × 12 m with a row spacing of 0.15 m. The cultivars used
in the experiment were Brigade for durum wheat, CDC Meadow
for field pea, CDC Frontier for chickpea, CDC Maxim CL for
lentil, and Cutlass for oriental mustard. These were the most
abundantly-grown cultivars in the local area during the years of
this experiment (Gan et al., 2009; Niu et al., 2017).

Crop Management
Crop management practices were consistent across years.
Legume seeds were inoculated with Rhizobium inoculant at
seeding, and all plots were directly-seeded into previous standing
stubble using a no-till drill. Pea, chickpea, and lentil were
seeded at 1,000,000, 600,000, and 1,500,000 pure live seeds ha−1,
respectively. Excess N fertilizer application is unbeneficial for
legumes to fix N2 from air and for soil fertility and quality
(Xie et al., 2015; Yong et al., 2018). During the 8-year study,
no N-fertilizer was applied to the legumes except for the small
portion of N (4.7 kg N ha−1) derived from the fertilizer 11-
51-0 (N-P2O5-K2O) broadcasted at the rate of 43 kg ha−1

to all crops. Wheat and mustard were fertilized with 109 kg
ha−1 of 46-0-0 and 43 kg ha−1 of 11-51-0 (N-P2O5-K2O) at
seeding. Thus, 4.7 kg N ha−1 and 21.9 kg P2O5 ha−1 were
applied for all legumes in 2016. Weeds seized soil nutrients
and reduced competitiveness of legume plants, resulting in a
weakened or lack of resistance to the pathogen (Whish et al.,
2002; Paolini et al., 2006). Weeds and plant diseases were
managed using ‘best management practices’ adapted to the local
areas. Typically, weeds were controlled using a pre-seeding ‘burn-
off’ treatment with glyphosate [N-(phosphonomethyl) glycine],

and in-crop herbicide application whenever necessary. Ascochyta
blight in chickpea and anthracnose in lentil were controlled
using foliar-applied fungicides according to recommendations
from Agriculture and Agri-Food Canada (AAFC) (Goodwin,
2008; Gan et al., 2015). Legume seed yield was determined by
harvesting the central six rows of plants in an area of 14.4 m2

(1.2 m × 12 m) in each plot using a combine harvester at full
maturity when seed moisture content ≤ 10%. During combine
harvest, a 15 cm height of crop stubble was retained in the
field, and the remaining straw was chopped by the combine and
spread on the soil surface evenly, a common practice used in the
local area under no-till management systems (Gan et al., 2014,
2015).

Soil Sampling and Data Calculation
In each year, soil samples were collected to a depth of 1.2 m
within 3 days prior to sowing and again immediately after crop
harvest in each plot using a 30-mm diameter hydraulically-driven
soil auger. Two soil cores were taken per plot, and each core
was divided into 0- to 15-, 15- to 30-, 30- to 60-, 60- to 90-,
and 90- to 120-cm increments, and sealed in soil containers for
analysis later. Total N was measured from air-dried soil samples
using the Kjeldahl N digestion method (Kjeldahl, 1883), and soil
water content was measured using the oven-dry method at 105◦C
(Blake and Hartge, 1986; Fan et al., 2013). WUE and nitrogen
use efficiency (NUE) were calculated following the published
methods (Sinclair et al., 1984; Raun and Johnson, 1999; Gan et al.,
2015), as follow:

WUE = seed mass/(soil water content in the 0- to 120-cm
soil layer at seeding – soil water content in the 0- to 120-
cm soil layer at harvest + precipitation during the growing
season);
NUE = seed mass/(soil N content in the 0- to 120-cm soil
layer at seeding – soil N content in the 0- to 120-cm soil
layer at harvest+ fertilizer N applied to the crop during the
growing season).

Water consumption during the growing season was calculated
as the difference in soil water content in the 0- to 120-
cm soil layer between the sowing and harvest sampling dates
plus the precipitation during the growing season. Water loss
through drainage and evaporation was none or marginal at the
experimental site and thus negligible (De Jong et al., 2008).
Nitrogen consumption during the growing season was calculated
as the difference in soil N content between the sowing and harvest
sampling dates plus fertilizer application. Potential losses of N
through leaching is none or marginal at the experimental site and
thus negligible (Campbell et al., 2006).

Canopy Light Interception and Leaf
Chlorophyll
At mid-flowering in 2016, photosynthetic photon flux density
(PPFD) of diffuse light penetrating through the canopy was
determined using a portable canopy light meter sensor (LI-250A,
Li-COR, United States). In each plot, the instrument was placed
horizontally within the canopy and six positional readings in
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FIGURE 1 | Healthy chickpea root (A), chickpea root with root rot (B), enlarged view of root rot (C), and nodules damaged by insects (D).

different positions were taken between 11:00 and 13:00 on a clear
day. The average value of the six readings per plot was used
for statistical analysis. Six readings outside of each plot without
shelter were also recorded as a reference. Five representative
plants were marked in each plot at mid-flowering and five largest
leaflets of each plant were identified and relative chlorophyll
content was measured using a portable chlorophyll meter (SPAD-
502 Plus, Konica Minolta, Japan). The severity of shoot rot
was determined in each plot at mid-flowering stage using the
Horsfall–Barratt scale in 2016, with the severity rated as 0, 1, 2, 3
and 4, representing the percentage criterion of 0–20, 20–40, 40–
60, 60–80, and 80–100% of infected leaf area, respectively (Zhu
et al., 2000; Gan et al., 2007). Legume shoots were hand-cut at the
soil surface at mid-flowering stage from an area of 0.5 m2 in the
middle of each plot in 2016, and seed and straw were oven-dried
at 60◦C to a constant weight for biomass.

Root System Measurement
Twenty legume plant-root-soil matrixes were dug from each
plot to a soil depth of 50 cm at the mid-flowering stage, when
the legumes were considered to have the most active nodules
(Gan and Liang, 2010). After plant shoots was removed, root–
soil matrixes were soaked in water for 24 h at 4◦C to remove

rhizosphere soil while retaining the nodules on the roots. Those
nodules with an internal pink color were considered effective
N2-fixing nodules (Singh and Varma, 2017). Observations were
recorded for the roots that were infected by root rot pathogens
(Figures 1A–C) and the nodules that were damaged by nematode
or insect (Figure 1D). For each of the sampled plants, the
severities of shoot rot and root rot, and nodule damage were
assessed using the Horsfall–Barratt scale (Zhu et al., 2000; Gan
et al., 2007). All nodules with pink color were removed from
roots, and the roots and nodules were oven-dried separately at
60◦C to a constant weight and weighed for biomass.

Statistical Analysis
Data were subject to ANOVA using “lme4” package in R
statistical software (version 3.3.1). Normality and variance
homogeneity checks were performed according to Shapiro–
Wilk’s and Barlett tests at α = 0.05 prior to ANOVA (Zhang
et al., 2018). Tukey’s honestly significant difference test (α = 0.05)
was used to determine significant differences between rotation
systems. Seed yield and shoot to (root + nodule) ratio were
normalized by means of calculating relative yield for each of the
three legumes; this enabled the determination of rotation systems
on each of the legume species included. Correlation analysis
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FIGURE 2 | Soil N content in the 0- to 120- cm soil profile at seeding by legume and crop rotation system. Rotation names are detailed in Table 1. Letters denote
the significant differences of soil N content in a same layer among treatments, and the soil layers without letter denotes represent no significance among rotations.

FIGURE 3 | Nitrogen consumption during the growing season. Nitrogen consumption = spring seeding N – fall harvest N + N fertilizer input. Error bars represent one
standard error. Rotation names and denotes of statistical significance are detailed in Table 1.

was conducted to determine the relationships between seed yield
and soil N, soil water, PPFD, leaf relative chlorophyll (SPAD
value), shoot rot severity, root rot severity, nodule damage and
root biomass. Correlation analysis was also used to determine
the relationships between normalized seed yield and normalized
shoot to (root + nodule) ratio (Singh et al., 2018). In each of the
replicated plots, soil N and soil water content were measured at
each of the five soil layers, allowing the determination of the effect
of rotation systems on the two soil traits across the entire root-
zone profile (Wang et al., 2012) as well as each layer (Liu et al.,
2011). The values of total N and water in the 0–120 cm depth
were used in correlation analysis. The effect of rotation systems
on plant- or soil-related variables was evaluated at the end of the
two rotation cycles (i.e., Year-8 of the rotation) to avoid potential
confounding factors from variable weather conditions between
the first 3-year and the second 3-year cycles.

RESULTS

Soil Nitrogen Content
Soil N content in the 0- to 120-cm soil profile responded
differently to both legume species and legume frequency in
rotations. Residual soil N in the less-intensified pea rotations

LCP and PWP were lower by 38 and 61% compared to the
monoculture PPP rotation, and displayed significant differences
in the 60- to 90-cm soil layer (Figure 2). Residual soil N
in the 0- to 120-cm soil layer with the diversified lentil
rotation PWL was 43% less than that with the LLL system.
Within the 0- to 120-cm soil profile, significant differences were
present for the 0- to 15-cm and 90- to 120-cm soil layers
for lentil. Although there was no significant N difference in
residual soil N among chickpea rotation systems, the residual
soil N accumulated in the LWC and CWC rotations was still
numerically lower by 19 and 3% than in CCC, respectively
(Figure 2). Lentil and chickpea consumed more soil N in growing
season compared to pea (Figure 3). For N consumption of
each legume species, there was no significant difference among
rotation systems.

Soil Water Content
Soil water content was not affected by chickpea-based crop
rotations, but significantly affected by pea- and lentil-based crop
rotations (Figure 4). For pea-based crop rotations, soil water
content in the 0- to 120-cm soil layer for the diversified LCP
rotation and moderately-diversified PWP rotation were lower
by 23 and 12% compared to the monoculture PPP system, with
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FIGURE 4 | Soil water content in the 0- to 120- cm soil profile at seeding by legume and crop rotation system. Rotation names are detailed in Table 1. Letters denote
the significant differences of soil water content in a same layer among treatments, and the soil layer without letter denotes represent no significance among rotations.

FIGURE 5 | Water consumption during the growing season by legume and crop rotation system. Water consumption = spring seeding water content – fall harvest
water content + precipitation in growing season. Error bars represent one standard error, and Rotation names and denotes of statistical significance are detailed in
Table 1.

significant differences in the 0- to 30-cm and 60- to 90-cm
soil layers. For lentil-based crop rotations, significant difference
in soil water content was displayed in the 90- to 120-cm
soil layer. Across all soil layers, the soil water content in the
diversified lentil rotation systems PWL and LWL were lower
by 2 and 4% than that left in monoculture LLL, respectively
(Figure 4). Total water consumption was not affected by crop
rotation in lentil or chickpea but was affected in pea (Figure 5).
Total water consumption in the 0- to 120-cm soil layer was
reduced by 14 and 16% in the diversified LCP and less-
diversified PWP than in the pea monoculture PPP, respectively
(Figure 5).

Relative Leaf Chlorophyll and Canopy
Size
SPAD value represents the current relative leaf chlorophyll per
unit area of leaf (Uddling et al., 2007). Relative leaf chlorophyll
content of chickpea was highest with 61.3 SPAD value, and
lentil was the lowest with 34.1 SPAD value (Table 1). The less-
intensified LCP and PWP systems improved the relative leaf
chlorophyll content of pea by 14 and 10% in comparison with the
monoculture PPP system. The diversified rotation system LWC

improved relative leaf chlorophyll content of chickpea by 13%
compared to the monoculture CCC. In comparison, the relative
leaf chlorophyll content of lentil grown in diversified PWL was
numerically less by 4% than that grown in monoculture LLL
(Table 1).

Photosynthetic photon flux density is an index of canopy
size (Table 1). The PPFD of the chickpea canopy in diversified
LWC chickpea rotation system was 2.5- and 2.8-fold less
than that of the moderately-diversified CWC rotation system
and monoculture CCC, indicating that the chickpea in the
LWC rotation had the largest canopy size. PPFD of the pea
canopy in diversified LCP system was also numerically less
than that measured in monoculture PPP. In contrast, lentil
in diversified PWL presented a numerically higher PPFD than
that measured in the monoculture LLL, suggesting the canopy
size of lentil grown in the diversified rotation was inversely
smaller.

Biomass of Shoot and Root Systems
Diversified rotation systems improved shoot biomass of pea and
chickpea, especially for chickpea which had 78% greater biomass
with the LWC rotation compared to the monoculture rotation,
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TABLE 1 | Relative leaf chlorophyll and photosynthetic photon flux density filtered
through the canopy (PPFD) at the mid-flowering stage by legume and crop
rotation system.

Legume Rotation† Relative leaf PPFD¶

chlorophyll‡ (µmol m−2 s−1)

(SPAD value)

Pea PPP 38.5b§ 142.2a

PWP 42.2a 121.4a

LCP 44.1a 115.2a

Chickpea CCC 58.3b 330.3a

CWC 59.7b 293.2a

LWC 66a 115.9b

Lentil LLL 34.6a 33.7a

LWL 34.4a 44.9a

PWL 33.2a 43.2a

†The rotational sequences were designed using chickpea (C), spring wheat (W),
lentil (L), pea (P), and/or mustard (M). Each of these short rotations was temporally
replicated for two cycles: the first cycle started in 2010 and ended in 2012, and the
second cycle continued in the original plots from 2014 to 2016. Spring wheat was
planted to balance the soil condition in 2009 and 2013. The legumes arranged in
2016 were selected as the test crops, thus two cycles of short rotations can be
considered as a longer rotation. For example, the rotation PPP was the logogram
of pea monoculture which was designed using wheat – pea – pea – pea – wheat –
pea – pea – pea. The chickpea in 2015 in CCC monoculture was modified to
mustard, because of severe diseases resulted from the chickpea monoculture in
the first cycle.
‡SPAD (soil–plant analysis development) value measured using a SPAD meter.
¶The reference PPFD without canopy cover averaged 900 µmol m−2 s−1 from
11:00 to 13:00 under clear skies.
§The letters denote the significant differences of the means among treatments in
each variable.

while for lentil which had numerical greater biomass with LLL
compared to PWL (Table 2). Rotation system also affected the
root–nodule system for the three legumes. The diversified LCP
rotation improved root biomass of pea by 44% compared to
the monoculture PPP system, and the diversified LWC rotation
improved root biomass of chickpea by 87% compare with the less-
diversified CWC and CCC systems. The diversified LWC system
improved chickpea nodule biomass by 1.6-fold compared with

the less-diversified CWC and CCC systems. Thus, diversified
LWC improved the total biomass of the root + nodule system
by 87%. In contrast, the diversified PWL reduced the biomass of
root and root + nodule numerically compared with LWL and
LLL. Overall, diversified rotation systems reduced the shoot to
root and shoot to (root + nodule) ratios for pea and chickpea
but improved the shoot to (root + nodule) ratio of lentil
(Table 2).

Plant Rots and Nodule Damage
All legumes plants were affected by pathogens and nodule
insect damage (Table 3). In the local fields, the severity of
plant (including shoot and root parts) rot or nodule damage
below the threshold of 15% representing a low level. Diversified
rotation systems alleviated plant rot and nodulation damage for
all legumes. The diversified LCP rotation reduced shoot rot,
root rot and nodule damage by 33, 100, and 238% compared to
the monoculture PPP, respectively. Chickpea in the diversified
LWC had 7.4- and 3.8-fold less root rot compared with the
less diversified CCC and CWC systems, respectively. Nodule
damage of chickpea in the LWC rotation was 4.4-fold less
compared to the CCC system. Lentils in three rotations were
influenced by plant rot and nodule insects at a lower level
(<15%) compared with pea and chickpea, and these pressures
were also numerically lower in the diversified PWL rotation
(Table 3).

Legume Seed Yield and Nitrogen Use
Efficiency
The diversified LWC rotation enhanced seed yield, WUE and
NUE by 95, 115, and 165% compared to the less-diversified CWC
and CCC systems in 2016, respectively (Table 4). The diversified
LCP had numerical improvements for pea’s seed yield, WUE
and NUE compared with less-diversified PWP and PPP systems.
However, lentil yield and WUE with the monoculture LLL were
17 and 11% greater than those in the LWL and PWL rotations.
Significantly greater seed yields of legumes in LCP, LWC, and LLL
were also presented in the first cycle (2012).

TABLE 2 | Biomass of legume shoot, root, nodule, and root + nodule, along with the shoot/root and shoot/(root + nodule) ratio by legume and crop rotation system.

Legume Rotation Biomass (kg DM ha−1) Biomass-based ratio‡

Shoot† Root Nodule Root + nodule Shoot/root Shoot/

(root + nodule)

Pea PPP 4, 366a 428.4b 85.2a 513.6a 10.2 8.5

PWP 4, 545a 537.2ab 115.0a 652.2a 8.5 7

LCP 4, 970a 615.3a 73.7a 689a 8.1 7.2

Chickpea CCC 2, 468b 260.3b 12.7b 273b 9.5 9

CWC 3, 716ab 404.7b 17.0b 421.7b 9.2 8.8

LWC 4, 393a 758.1a 43.5a 801.6a 5.8 5.5

Lentil LLL 3, 914a 500.7a 7.5a 508.2a 7.8 7.7

LWL 3, 631a 393.3a 10.7a 404a 9.2 9

PWL 3, 746a 419.7a 6.6a 426.3a 8.9 8.8

†Shoot biomass excluded seeds.
‡Biomass-based ratios were calculated based on mean value of shoot, root, and nodule. Rotation names and denotes of statistical significance are detailed in Table 1.
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TABLE 3 | Severity of shoot, root rot, and nodule damage by legume and crop
rotation system.

Legume Rotation Severity (%)

Shoot rot† Root rot Nodule damage

Pea PPP 18.8a 20a 14.2a

PWP 14.1a 10b 12.1a

LCP 11.7a 6.3b 4.2a

Chickpea CCC 88.3a 65.4a 48.3a

CWC 78.9ab 33.3b 22.1b

LWC 71.9b 8.3c 11.3b

Lentil LLL 12.5a 10a 7.5a

LWL 12.5a 4.6a 2.9a

PWL 9.4a 2.9a 2.5a

†The plant rots and nodule damage severity < 15% represent a lower level in the
local field. Rotation names and denotes of statistical significance are detailed in
Table 1.

Seed yield of pea and chickpea fields had no significant
relationship with soil N content in the 0- to 120-cm soil layer
at seeding, while that of lentil was positively related to soil N
content at seeding (Figure 6A). Seed yield of legumes had no
relationship with soil water content at seeding (Figure 6B). Seed
yield of lentil and chickpea had a negative linear relationship
with PPFD (Figure 7A). Seed yield of lentil and chickpea had a
positive linear relationship with relative leaf chlorophyll content,
especially for chickpea (Figure 7B). Seed yield was negatively
related to shoot rot severity for chickpea, while there was no
significant relationship between these variables for lentil and pea
(Figure 7C). Seed yield of pea and chickpea were negatively
related to the severity of root rot (Figure 8A) and nodule damage
(Figure 8B), while there was no significance for lentil. The seed
yield of lentil and chickpea were positively related to biomass of
the root+ nodule system (Figure 8C). Normalized seed yield was
negatively related to normalized shoot/(root + nodule) ratio for
all legumes (Figure 8D). In summation, lentil yield was strongly
related to soil N content at seeding and was less influenced by
biotic stresses. In contrast, yield of pea and chickpea was largely
influenced by plant rots, nodule damage, and root + nodule
biomass.

TABLE 4 | Legume seed yield, WUE and NUE by legume and crop rotation
system.

Legume Rotation Yield WUE NUE

(kg seeds ha−1) [kg seeds mm−1 (kg seeds

(soil water kg−1 N )

+ rainfall)]

Pea PPP 4, 403a 9.2a 336.3a

PWP 4, 518a 10.7a 494.8a

LCP 4, 690a† 11.3a 520.7a

Chickpea CCC 1, 495b 3.0b 59.2b

CWC 1, 513b 3.2b 56.1b

LWC 2, 954a† 6.9a 157.7a

Lentil LLL 3, 897a† 8.1a 118.0a

LWL 3, 345b 7.3b 148.3a

PWL 3, 425b 7.1b 185.5a

†The significantly greater yields in LCP, LWC, and LLL were also found in the first
rotation cycle in 2012. Seed yields of three legumes growing in 2012 were: PPP
(2,376 b), PWP (2,581 ab), LCP (2,913 a); CCC (901.94 b), CWC (2,045.53 a),
LWC (1,982.24 a); and LLL (2,036 a), LWL (1,783 ab), PWL (1,530 b). Rotation
names and denotes of statistical significance are detailed in Table 1.

DISCUSSION

Sustainable agriculture addresses the improvement of crop
productivity through an integrated ecological approach, such
as through the incorporation of disparate biological functions
(Fedoroff et al., 2010; Zhang et al., 2011). Diversified cropping
systems with legumes rotating with oilseed and cereal have
been shown to enhance the systems productivity (Karpenstein-
Machan and Stuelpnagel, 2000; Gan et al., 2015), suppress
pests (Gurr et al., 2003; Kathiresan, 2007), minimize the
development of pathogen resistance (Gan et al., 2006; Kutcher
et al., 2011), and enhance environmental sustainability (Gan
et al., 2014). These biological functions are achieved through the
synthetically improvement of plant growth, soil environment,
and plant-soil-microbiome interaction that provides positive
feedback to plant growth (Ellouze et al., 2012; Yang et al.,
2013; Borrell et al., 2017). Integrated cropping systems approach
moves beyond sole perspective to look at the outcome of
synergistic effects of the various factors in real practice

FIGURE 6 | Correlation analysis relating legume seed yields with soil N content (A) and soil water content (B) at seeding. The red, blue, and green symbols represent
lentil, pea, and chickpea, respectively.
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FIGURE 7 | Correlation analysis relating legume seed yield with
photosynthetic photon flux density (PPFD) filtered through the canopy (PPFD)
(A), relative chlorophyll (B), and shoot rot severity (C). The symbols are
detailed in Figure 6.

(Smith et al., 2008; Chen et al., 2011; Coulter et al., 2011).
In contrast, monoculture systems often focus on factors
from a sole perspective without systematic consideration
and the outcome may have a limited value for practical
production.

Soil N status and water availability play important roles in
regulating the rhizosphere processes which provide feedback to
plant growth (Gan et al., 2010; Huang et al., 2016; Borrell et al.,

2017). In the present study, the greater soil N content with
continuous legumes in a rotation was associated with the return
of legume residue to the soil, as legume residue has a relatively
low C:N ratio and is easily decomposed compared with cereals
and grasses (Johnson et al., 2007; Wang et al., 2015). Greater N
consumption with chickpea and lentil compared to pea may have
been due to less N2 fixation and greater reliance on soil available
N (Peoples et al., 2009; Hossain et al., 2016; Rose et al., 2016).

Leaf chlorophyll is an intrinsic factor influencing
photosynthesis, and SPAD value is related to chlorophyll
content (Uddling et al., 2007; Hu et al., 2014; Bąba et al., 2016).
PPFD in crop canopy can be representative of plant canopy
size and total leaf area (Oikawa and Ainsworth, 2016), and
a crop with a larger canopy can have greater photosynthesis
(Radicetti et al., 2012). In our study, legume seed yield was
positively related to chlorophyll but was negatively related
to PPFD, which was consistent with recent reports by other
researchers (Oikawa and Ainsworth, 2016). Our results showed
that diversifying crop rotation improved canopy size and leaf
chlorophyll status for pea and chickpea, leading to enhanced
photosynthesis and productivity, but such an effect was not
detected for lentil.

The root performance is reflected by the capacity of roots to
penetrate the soil layers for water and nutrient uptake, which is
closely related to cropping system (Atkinson, 2000). Greater root
mass with diversified crop rotations found in the present study
may have been related to less root rot and taxis to N in deeper soil
layer, while smaller root mass with monoculture may have been
caused by auto-toxicity (Gealy et al., 2013).

Root nodules play an essential role in BNF, and usually
larger root nodules are more active for a legume species
(Spaink, 2000; Tajima et al., 2008; Singh and Varma, 2017),
and roots with more effective nodules usually have greater BNF
capacity and resistance to biotic stresses (Yang et al., 2009).
Less nodulation in chickpea grown in monoculture in our
study may have been related to nutrient simplification or auto-
toxicity (Spaink, 2000; Bertin et al., 2003; Bais et al., 2006;
Tajima et al., 2008; Gossen et al., 2016). Continuous legume
monoculture caused high severities of plant rots in our study,
similar to previous findings by others (Govaerts et al., 2007).
We also found that the diversified systems decreased root rot
severity and minimized nodule damage by insects. Diversifying
rotation systems has been reported to buffer biotic stresses
successfully (Gan et al., 2006; Govaerts et al., 2007; Kutcher et al.,
2011).

Soil N and legume canopy and root systems have a
complicated bilateral causality (Tittonell et al., 2010; Chen et al.,
2011). First, N in deeper soil layers cannot be absorbed by the
plant if the fine roots are not long enough (Liu et al., 2010),
which could increase N accumulation in deeper soil layers (Shen
et al., 2013). Larger shoot and root systems with less disease in
diversified rotation systems stimulated the deep expansion of tap
or lateral roots, likely increasing N uptake and contributing to
less residual soil N after harvest (Mi et al., 2010; Shen et al.,
2013). In the present study, less residual soil N in the diversified
LCP and LWC systems was likely the result of larger shoot and
root systems. Our correlation analyses revealed that seed yields
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FIGURE 8 | Correlation analysis relating seed yield and root rot severity (A), nodule damage severity (B), and root system biomass (C) for each legume, and
normalized seed yield and normalized shoot/(root + nodule) ratio for all three legumes (D). The symbols are detailed in Figure 6.

of pea and chickpea were negatively related to biotic stresses, and
there was no relationship between seed yield and soil N content
at sowing. These results indicate that pea and chickpea are not
sensitive to soil N and their N demands are mainly dependent
on biologic fixation. Second, the synchronization between N
supply and crop demands is important for the development
of plant canopy and root systems (Shen et al., 2013). Root
growth and expansion can be greatly constrained when soil N
supply is low, particularly during early growth (Peng et al.,
2010).

In the present study, lentil yield had no significant linear
relationship with biotic stresses but was positively related
to soil N content at seeding, indicating that lentil yield
is less influenced by biotic pressures compared to soil N
content at seeding (Singh et al., 2018). Greater lentil yield
in three-continuous-lentils included LLL compared with that
in the moderately-diversified LWL and PWL systems was
likely related to sufficient fixed-N accumulated in soil with
lentil monoculture (Huang et al., 2016). In legume, Rhizobium
bacteria accumulation in soil due to continuous legume
cropping can enhance root nodulation and BNF (Furseth et al.,
2012).

Overall, this study showed that legume species responded
to crop rotation systems differently in terms of root and
nodule formation, BNF, and the capacity to tolerate biotic
stresses. Significant positive outcomes in legume productivity

derive from the integrated synergy of the selection of legume
species, enhancement of soil fertility and growing environment,
and reduction of biotic pressure resulted from rotation
diversification. A key practice of achieving these positive
outcomes is disease management for pea and chickpea and soil
N management for lentil. However, our findings from this 8-
year rotation study may have substantial limitations, as rotational
effects on legume productivity could vary with different cultivars
(Bazghaleh et al., 2015), preceding crops in rotation (O’Donovan
et al., 2014; St. Luce et al., 2016), soil physiochemical and
biological properties (Bainard et al., 2016; Niu et al., 2017), and
climatic conditions and testing environments (Hossain et al.,
2016),

CONCLUSION

The assessments of soil water and N conditions, crop canopy
characteristics, root systems and nodule formation, and seed
yield revealed that the effects of rotation systems could vary
with legume species. Diversified rotation systems significantly
improved relative leaf chlorophyll, shoot and root biomass, and
seed yield for chickpea and pea, but not for lentil. Continuous
legume production increased the severity of shoot and root
rots and nodule damage for all legumes. Lentil monoculture
had stronger resistance to biotic stresses, leading to higher seed
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yield than the rotation including fewer lentils. There was no
relationship between seed yield and soil N content at seeding
for chickpea or pea, but a linear relationship existed for lentil.
Continuous legume rotation improved soil N status overall, while
the productivity of lentil depended on soil N supply more than
those of chickpea and pea. This study highlights the importance
of the integrated synergy among the key soil and plant factors
sensitive to crop growth for sustainable legume production.
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