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Abstract. We present a genetic algorithm for solving dynamic simultaneous route and departure time equilibrium 
problem. Not only can a flow-swapping process in the algorithm guarantee the flow conservation constraints between 
OD pair, but also accelerate the convergence velocity of the algorithm. Finally, a simulation example shows feasibility 
and validity of genetic algorithm.
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1. Introduction

The observations show the travelers do adjust routes and 
departure times to avoid peak period congestion (Hen-
drickson and Plank 1984). Furthermore, most existing 
studies (Arnott et al. 1990; Friesz et al. 1993; Wie et al. 
1995; Huang and Lam 2002; Szeto and Lo 2004; Lin and 
Heydecker 2005) focus on dynamic simultaneous route 
and departure time problem. Many researchers used 
various models such as simulation and analytical models, 
and propose some algorithms for dynamic SRD problem. 
The algorithms are classified into two classes, class I can 
be described as the strict mathematical algorithm such 
that Szeto and Lo (2004) adopted Han and Lo (2003) 
decent direction method to solve the VIP; class II is 
heuristic algorithm based on flow-swapping rules (Wie 
et al. 1995; Huang and Lam 2002; Lin and Heydecker 
2005). The basic idea of the algorithm is: for each OD 
pair, inflows on the non-cheapest time-dependent paths 
are moved to the cheapest paths. Due to non-monistic of 
the path travel cost function, the above algorithms only 
can converge to local optimal solution. In order to obtain 
global optimal solution, Sadek et al. (1997) used a genetic 
algorithm for dynamic traffic assignment problems; 
however, the algorithm is based on link. In this paper, 
we combine genetic algorithm with flow-swapping rules 
for solving a dynamic simultaneous route and departure 
time problem. 

This paper includes the following several sections, 
firstly we describe a dynamic simultaneous route and 
departure time model, then we present a variational in-

equality formulation for SRD problem. In section 3, we 
propose a combined genetic algorithm for the proposed 
model. Section 4 provides a numerical example to dem-
onstrate and verify the proposed solution algorithms.

2. Model formulation

Here, the dynamic network models of Freisz et al. (1993), 
Chabini (2001) are given as follows:

( )rs
apu k – the inflow rate of travelers on link a of path p 

during interval k.
( )rs

apv k – the departure rate of travelers on link a of path 
p during interval k.

( )rs
apx k – the vehicle numbers of travelers on link a of 

path p at interval k.
( )rs

apV k – the cumulative departures of travelers on link a 
of path p until interval k.

( )rs
apU k – the cumulative arrivals of travelers on link a of 

path p until interval k.
( )at k – the travel time on link a for travelers entering 

this link at interval k.
The link dynamics equations express the relation-

ship between the flow variables of a link
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The flow conservation equations for the node: 

( ) a is first link on path
( )

( ) a is after

, , .
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prs

ap rs
bp
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v k b

k rs p
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Flow propagation constraints are used to describe 
the flow progression over time:

[ :0 ( ) ( 1) ]
( ) ( ) , ,rs rs

ap ap
j l j T j k

V k u j k rs p
∈ ≤ ⋅δ+ ≤ − ⋅δ

= ⋅δ ∀ ∀ ∀∑ . 
 (3)

Definitional constraint:
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Boundary conditions:

(0) 0, (0) 0, (0) 0,

(0) 0, (0) 0, (0) 0.

rs rs rs
ap ap ap
rs rs rs
ap ap ap

x u v

x u v

= = =

= = =  (5)

Now we give the actual path travel time and actual 
path travel cost functions. The actual travel time to 
traverse path p={a1,a2,…,an} for travelers entering into 
the network during interval k is calculated using the fol-
lowing nested function:

1 2 1

1 1

( ) ( ) ( ( ))
( ),

rs
p a a a

am a am

t k t k t k t k
t k t t −

= + + +
+ + + +   (6)

where, let 1 1 2 2 1( ), ( ( ))a a a a at t k t t k t k= = +  for short.
The schedule delay cost function can be expressed 

as follows:

( ) ( )
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0       otherwise.
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Denote [ts – Δs, ts + Δs] as the desired time inter-
val for arrival at the destination s in the network. Where 
ts – Δs is the travelers’ desired earliest arrival time, ts + Δs 
is the desired latest arrival time at the destination s. β, γ is 
the unit cost of schedule delay (early, late) at the destina-
tion s, respectively.

Therefore, the travel cost of a trip from origin r to 
destination s on path p for a traveler leaving origin at 
time interval k is:

( ) ( ) ( )rs rs
p p sc k t k Sch k= α + . (8)

Where α is a convention factor to transform the path 
travel time into travel cost. In accordance with the empiri-
cal results, we assume that γ > α > β holds.

Travelers follow dynamic simultaneous path and 
departure time equilibrium (UE-SRD), expressed as: 

min

min

 if   0
  

if  0

rs rs*
prs *
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p

c   f (k)   
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c    f (k)

= > ∀
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rs* rs
p

p k
f (k) q rs= δ ∀∑∑ . (10)

( ) 0.rs*
pf k ≥ . (11)

Where min ( )rsc ⋅  is the minimum unit travel cost 
of travelers between origin r and destination s, 

min ( ) min{ ( , ), , }rs rs
pc C k p k⋅ = ⋅ ∀ . Equation (10) represents 

the flow conservation of travelers between origin r and 
destination s and equation (11) represents the non-nega-
tivity of all path inflow rates.

For travelers and for each origin-destination (OD) 
pair, the path travel costs experienced for travelers, re-
garding of departure times, is equal and minimum, and 
less than (or equal to) the path travel costs for travelers 
on any unused paths.

The above UE-SRD equilibrium condition of travel-
ers can be expressed by a finite dimensional variational 
inequality formulation.

Find a vector Ω∈*f  if and only if it satisfies:
* * *( , )( ( ) ( )) 0,rs rs rs

p p p
rs p k

c k f f k f k f− ≥ ∈∑∑∑ Ω . (12)

Where, Ω is a closed convex:
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rs

rs rs
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p k

q
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3. Algorithm

GAs are search and optimization procedures motivated 
by natural principles and selection. Because of their sim-
plicity, minimal problem restrictions, global perspec-
tive, and implicit parallelism, GAs have been applied to a 
wide variety of problem domains including engineering, 
sciences, and commerce (Yin 2000). In this section, we 
propose a genetic algorithm for solving VIP(12), which 
mainly include several parts: determination of the initial 
population, implementation of the constraints, conver-
gence indicator, fitness function, and the crossover and 
mutation operation, etc.

3.1. The initial population
A population of chromosomes is initialized by the follo-
wing equation:

( )
rs

rs
p

rs

q
f k Rnd

K P
= ⋅

⋅
, (13)

Rnd expresses the random count between [0,1]; K 
represents total time interval; rsP  represents the path 
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number between OD pair rs. The initial path inflow 
cannot follow the flow conservation constraint (10).

3.2. Implementation of the constraints
The implementation of constraints of VIP(12) is an im-
portant question to be considered both in initializing a 
population and designing an objective evaluation func-
tion. The implementation of constraints can be classified 
into two classed: one is by imposing moderate penalties 
on individuals that violate them, the other is by creating 
individuals directly satisfying them by means of a de-
coding procedure or decoder. In this paper, we propose 
flow equilibrium decoders that avoid the violation of the 
flow conversation constraint. A decoder is similar with 
the flow swapping processes given by Wie et al. 1995, 
Huang, Williams 2002. 

The population that violate the flow conservation 
constraint can be classified into two conditions, one is 

*

,
( )rs rs

p
p k

f k q<∑ , the other is *

,
( )rs rs

p
p k

f k q>∑ . Here, the 

path travel cost * ( )rs
pc k  is obtained by dynamic network 

loading process (Chabini 2001) according to *

,
( )rs rs

p
p k

f k q>∑ , if 
*

,
( )rs rs

p
p k

f k q<∑ .

If the sum of the path inflow rate of an individu-
al is less than actual OD demand for each OD pair rs. 

*

,
( )rs rs

p
p i

q f i−∑  is moved to the cheapest time-dependent 

path. The equation can be expressed as follows:
*

,** *
min
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p

p irs rs rs
p p rs
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f k f k p k P
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−

= + ∈
∑
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min
rsP  expresses the cheapest time-dependent path set.

If *

,
( )rs rs

p
p k

f k q>∑ .

If the sum of the path inflow rate of an individual is 
more than actual OD demand for each OD pair rs. The 
inflows on the non-cheapest time-dependent path are 
subtracted according to a proportion in order to guaran-
tee the satisfaction of the flow conservation constraint. 
The equations can be expressed as follows:

** *

* * *
min

( ) max{0, ( )

( ) ( ( ) )}.

rs rs
p p

rs rs rs
p p

f k f k

f k c k c

= −

η⋅ ⋅ − + ε  (15)

**

,
( )rs rs

p
p k

f k q=∑ . (16)

The volumes subtracted are proportional to  
* * *

min( ) ( ( ) )rs rs rs
p pf k c k cη⋅ ⋅ − + ε . η represents the flow adjus-

ting parameter that is calculated by one dimension search 
method based on Eqs. (15–16). ε is a given cheapest time-
dependent path flow adjusting parameter, in order to 
avoid the sum of inflows on the cheapest time-dependent 
path being more than actual OD demand, the value of 
the parameter can be set as a very small number.

Not only can a flow-swapping process in the algo-
rithm guarantee the flow conservation constraints bet-

ween OD pairs, but also accelerate the convergence 
velocity of the algorithm.

3.3. Convergence indicator
The convergence indicator of chromosome i at iteration 
k can be expressed as follows:

( )min
, ,

min
, ,

( ) ( )

( )

rs rs rs
p p

rs p kt
i rs rs

p
rs p k

f k c k c

f k c

−

ρ =
∑

∑
. (17)

The convergence indicator of chromosomes can be 
calculated by the following equation:

,min min{ , }t
i i tρ = ρ ∀ . (18)

3.4. fitness function
We define the fitness function as: 

1t
i t

i

F = α ⋅
ρ

, (19)

where α is the accelerating parameter of the algorithm; 
The step-by-step procedure of our algorithm is giv-

en below:
Step 1: Select at random the initial population, 
crossover and mutation probability.
Step 2: Flow equilibrium decoder.
Step 3: Calculate the fitness functions for indi-
viduals by (19)
Step 4: convergence.

If ,min ,i i Mρ < ε = , stop, otherwise.
Step 5: Reproduce a new population (n + 1) from 
population n according to the distribution of fit-
ness function.
Step 6: Genetic Operators.
Crossover: Cross two individuals chosen from 
population (n + 1) with a specified crossover 
probability, pc. 
Mutation: Select one individual from population 
(n + 1) with a specified probability, pm.

Go to step 2.

4. Numerical example

The numeral example is a TF network as shown in 
Fig. 1. It consists of 13 nodes, 19 links and two OD pairs 
((1.11),(3.13)). The link parameter is shown in Table 1, 
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fig. 1. The example network
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the path link series is shown in Table 2. Other input data 
are:  α = 6.4; β = 3.9; ts = 9.0; Δs = 0.25; ε = 0.00001, set 
T be from 6 to 10.A.M. and K = 100. The proposed solu-
tion algorithm was coded in Visual Basic 6.0, and run on 
a personal computer (P4 2.88G).

The value of the convergence indicator of the algo-
rithm is decreasing as the iteration number increases as 
shown in Fig. 4. When the iteration number amounts to 
1000, the value of the convergence indicator descends to 
0,09. Figs. 4, 5 give the path inflow rates and the travel 
costs on path 1 of OD pairs (1, 11) and path 3 of OD pair 
(3, 13). We can find an approximate dynamic equilibri-
um pattern for all route inflow rates of travelers between 
two OD pairs. The other path flow and cost on network 
have similar dynamic equilibrium conditions. Due to 
limitation of page, we don’t give all path flow patterns.

5. Conclusion

We propose a genetic algorithm for solving dynamic si-
multaneous route and departure time equilibrium prob-
lem. Not only can a flow equilibrium decoder in the 
algorithm guarantee the flow conservation constraints 
between OD pair, but also accelerate the convergence 
velocity of the algorithm. Finally, a simulation example 
shows feasibility and validity of genetic algorithm. In fu-
ture studies, the genetic algorithm is compared with the 
other algorithms such as flow-swapping algorithm, VI 
algorithm and so on. And a simulation example is given 
in real network.

Table 1. Link parameter

Link number Start node End node Link free flow time
1 1 2 0.020
2 3 4 0.016
3 4 5 0.024
4 5 6 0.010
5 6 7 0.024
6 8 9 0.026
7 9 10 0.016
8 10 11 0.010
9 12 13 0.014

10 1 4 0.014
14 4 8 0.026
11 2 5 0.028
15 5 9 0.028
16 6 10 0.012
17 7 11 0.010
19 10 13 0.012
12 2 7 0.010
13 3 8 0.016
18 8 12 0.018

Table 2. Path link series

OD Path Link

(1,11)

Path 1
Path 2
Path 3
Path 4
Path 5
Path 6
Path 7
Path 8

1-12-17
1-11-4-5-17
1-11-4-16-8
1-11-15-7-8
10-3-4-5-17
10-3-4-16-8
10-3-15-7-8
10-14-6-7-8

(3,13)

Path 1
Path 2
Path 3
Path 4
Path 5
Path 6

13-18-9
2-14-18-9
13-6-7-19

2-3-4-16-19
2-3-15-7-19
2-14-6-7-19

fig. 2. Convergence of the Gas

fig. 3. Path inflow rate and cost between path 1 of OD  
pair (1, 11)

fig. 4. Path inflow rate and cost between path 1 of OD  
pair (3, 13)
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