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Abstract. A model for distribution of warehouses in the commercial network in optimising transporta-
tion of goods has been established. The target function in the model includes: fixed prices for construction 
of big and small warehouses; variable prices for transportation of raw materials and goods between ware-
houses and commercial points. The algorithm was created for optimisation of local roads network between commer-
cial points. As substantiated, if density of distribution of target function values in the zone of extreme is fairly high, the 
independent random search is sufficiently effective even when comparing it with regular methods. 

keywords: warehouses, commercial network, goods, transportation, price, road transport freight, the simulation 
procedure of optimizing.

1. Introduction

The current commercial giants, e.g. Hyper RIMI (or 
MAXIMA) have located their commercial points in 
various places of the country. They have been accumu-
lating and producing certain goods in big warehouses, 
and storing other goods in warehouses located in certain 
points. Goods are being transported between the above 
points by road transport means of certain capacity. On 
the one hand these increase the flows of transport means 
by burdening the roads, on the other hand they pollute 
the environment with the exhaust gases and, moreover, 
their price increases due to irrational transportation of 
goods. Therefore it is necessary to optimise distribu-
tion of big and small warehouses within the network of 
these commercial giants. Thus, it is necessary to define 
the number and place of big and small warehouses the 
construction and transportation of which could incur 
the lowest total goods costs (z). The argument that it is 
necessary to optimise distribution of warehouses within 
the commercial network, has been received via the syn-
thesis of a typological structure of the regional system of 
the freight road transport, see researches by Baublys and 
Išoraitė (2006), and Baublys (2003).

Having carried out the synthesis of a typological 
structure of the road transport freight regional system, 
it was substantiated that it is necessary to optimise dis-
tribution of warehouses within the network, as well as 
to optimise the local roads network between commercial 
points. 

2. Optimisation model

Formally the task looks as follows: 
It is necessary to minimise 
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where fi − construction price of a warehouse in place i, 
beside which manufacturing of certain goods is executed; 
gj  − construction price of a small warehouse in j place; 
cijk − price of delivery of goods to commercial point k  
from a warehouse-manufacturer, located in place i to a 
small warehouse located in point j; yi − binary variable 
which is equal to 1, in case if a warehouse-manufacturer 
is in place i, and equal to 0  in other case; zj − binary 
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variable which is equal to 1, in case if a warehouse is in 
station j, and equal to 0 in other case; xijk − incessant 
variable which equals the part of demand in commercial 
point k, warehouse-manufacturer i of supplied goods via 
warehouse j. 

Target function (1) consists of a fixed construction 
price fi and gj correspondingly of warehouses-manufac-
turers and small warehouses, and variable prices cijk (of 
raw-material and goods to be transported to a warehouse-
manufacturer i), transportation costs between stations i 
and j and transportation costs between warehouse j and 
commercial point k. Equality (2) means that demand of 
each commercial point should be fulfilled. Terms (3) and 
(4) mean that demand of a commercial point k can be 
fulfilled only for goods from the warehouse located in 
territory i, via a small warehouse located in territory j. 
Inequality (5) guarantees that a big warehouse is also a 
manufacturer, and term (6) − that construction of big 
and small warehouses has been completed, and that part 
of supplied goods is a plus. 

In case if values of variables yi and zj in expressions 
(1)−(6) are known, optimal values of remaining varia-
bles are estimated in the following way: variable xijk of 
each variable k  corresponds to the minimal cijk value, in 
case if condition yi = zj = 1 is fulfilled, and variables xijk 
are considered as equal to 0. Then the task (1−6) can be 
solved by selecting vectors Y = (yi) and Z = (zi). Each of 
iteration respective variables is fixed 0, others – 1, and 
some of them remain unfixed. Let 
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mean corresponding sets of variables zj. After having 
changed fixed variables by their values in the formulas 
(1−6), we get the following task which has to be mini-
mised:
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Let cmk mean the minimal goods transportation 
price to k commercial point from a big warehouse ∈ 1

Ii K  
via a small warehouse ∈ 1

Ij K :
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The main condition for the delivery of goods from 
the warehouse-manufacturer i via the warehouse j in 
case of any optimal answer (solution) is cijk ≤ cmk. It al-
lows to get upper margins mi and nj of the number of 
commercial points, to which goods from warehouses i 
and  j  are delivered, i.e. 
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And ′rkc  because of  k=1, 2, …, n is found from 
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The lower margin of the answer of the task (13−19) is: 
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The value of optimal solution (13)−(19) cannot be 
higher than 
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If a warehouse-manufacturer is in point i, then val-
ue (26) will decrease (or increase) by values 
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If a warehouse is in point  j, then value (26) will de-
crease (or increase) by value 
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Since total (26) decrease due to a possible assump-
tion on location of several big and small warehouses can-
not exceed decreases of the sum, corresponding to the 
location of each big and small warehouse, the following 
result is valid: (13)−(19) the lower margin of solution is 
de�ned as follows: 
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Another algorithm, based on the method of branch-
es and margins, was tested. 

1st block. Let zopt. be value of the best solution which 
corresponds at the beginning to a free big number. 

2nd block. � e �rst check for optimality. We esti-
mate values of mi, nj, ijkc  and rkc  according to (21)−(24). 
Find z´ according to (25). If z´ ≥ zopt., we proceed to 5th 
block. 

3rd block. Checking of solution. If variables yi and 
zi are �xed under 0 or 1, then we �x the found answer, 
resume value zopt. and proceed to 8th block. 

4th block. � e �rst conditional checking of optimal-
ity. We estimate values p of all 1

Ii K  according to (27). 
If pi < 0, yi = 0.

5th block. � e second conditional checking of opti-
mality. We estimate 1

Ij K gj of all according to (28). If 
gj < 0, zj = 0.

6th block. � e second checking of optimality. We es-
timate z  ̋according to (29). If z  ̋> zopt., then we proceed 
to 8th block. 

7th block. Selection of a move. If during checking at 
least one variable is �xed in 4th and 5th blocks, we pro-
ceed to 2nd block. Otherwise 
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If pK ≥ gl, then yK = 1, otherwise yK = 0. We proceed fur-
ther to 2nd block. 

8th block. Regression. We will search for the last 
variable yK or zl, �xed under 1. If there is no such vari-
able, estimation is �nalised. Otherwise all free a�er yK
or zl variables are equal to 0;  we �x yK or zl under 0 and 
proceed to 2nd block. Algorithm ends a�er the �nite 
number of steps. We return back to block (8) only when 
a variable is �xed or when value of a variable changes. 

3. Optimisation of local roads network between 
commercial points 

� e given network under establishment N with m non-
oriented branches and n hubs. � e initial information 
is presented in distribution density g(X) s-meter vec-
tor X area Y. Components X are lengths zi of limits N
and transport connections pijt between hubs (i, j ) in pair 
years t during the planning period [Q, T].

� e trajectory f has to be found in which  

,   min
G

F X g X dX . (30)

Total expenditure  F(f, X) − an additive (according 
to network branches) function, basically depending on 
branch loading vector ( )Q t , the components of which 
are

, (31)

where pv − probability in accepting one or other rout-
ing criteria (distance, time of transportation, transport 
costs); v

lijt − supplementary binary values, de�ned by a 
complex of tasks about the shortest road for each con-
nection:
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where v(qlt), b(qlt) − average speed of transportation and 
cost price, when technical level is qlt;

1,  when  ,
0,  when   .ab

a b
a b

Imt − a set of branches identical to a hub m, in which 
tra� c is permissible in year t.

� e set of trajectories G, in which functional (1) 
is minimised, is predetermined by the following condi-
tions: 
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� e above conditions: 
(35) − de�ne the initial point of a trajectory;
(36) − de�ne the �nal point, in which design stand-

ards f, predetermining technical level by load, are sus-
tained;

(37) − indicate that any reconstruction measure 
leads to technical level which is not lower than required 
by design standards; 

(38) − de�ne whether there are social restrictions: 
among them – restrictions of the state, reachable in year  
t, guarantee connection between all points of a region; 

(39) − de�ne whether there are any resource restric-
tions, de�ned for each resource d for all years t.

When network is optimised, then technical level of l
branch in year t can be conditionally de�ned as follows: 

0lt l lT
T t t

q q q
T T , (40)

5–9
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i.e. anticipate an even change of the technical level from 
the initial ql0 up to the final qlT, which is a controllable 
variable. 

The task of optimisation of the current network 
(this is the totality of branches, by which transport con-
nections can be maintained at any moment) − the search 
for the status ( )q T  network N, which could minimise 
total expenditure: 
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Traffic intensity in branches Nl(t) is defined by sum-
ming up the routed connections:
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Here binary routing indicators α are derived by 
solving a system of tasks about the shortest road: 
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Here markings are the same as in (32)−(34).
Technical level is found simply: 

(( ) ) ( )1i l i lTN N T N q i- < £ ® = , (46)

where Ni–1, Ni − technical level of the defined mark i will 
be applied a priory.

In expression (41) functions f1, f2, f3 evaluate all 
costs, depending and not depending on traffic, as well as 
their discounting. These functions do not depend on the 
decision and, therefore, can be estimated approximately 
in the form of value tables, and size of tables should not 
exceed 10×10. Of course, traffic intensity at the begin-
ning Nt(0), as well as the initial technical levels ql0 and 
lengths rl are known. Since the final state ( )q T  is defi-
nitely determined by the load vector ( )N T , and this vec-
tor also predetermines summation of sets ImT, then bi-
nary vector ( )∆ T  is a controlled variable: 
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It should be noted that it is impossible to function-
ally describe dependence of ( )TN  on ( )T∆ , derived 
from (42)−(46). 

Simulation procedure of optimizing (141−(46) in 
fact is discrete and multi-extreme. 

When newly designing or developing the current 
network, the pair τ( )q  and θ( )q  of network N has to be 
found (usually τ = s and θ = 0), minimising the costs: 
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Functions f4–f8 in principle do not differ from f1, f2, 
f3 in the earlier presented task. f4, f6, f7 can be split into 
constituents, depending on two arguments, therefore it 
is possible to use the same task table method. 

Traffic intensities in branches Nl(t) are defined by 
summarising routed connections: 
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Here routing indicators α are found by solving a 
system of tasks about the shortest way (drive time).
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αlijt ≥ 0. (51)

A set of possible solutions ( ) ( )( ),  q qτ θ  corre-
sponds to resource restrictions: 
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Here index d indicates that requirements are set for  
d type resources. Referring to (54) it is stated that sudden 
jumps while using resources should be avoided. Besides, 
there are also social restrictions (38) on t = τ, θ.

The initial state in the network (35) is known, and 
in terms of final network state ( )q T ,

( )( ) ( )q T Tδ ∆= . (55)

Technical level qlt = (t = τ, θ) in this task is control-
led and related to branch load via the operator  f  (design 
standards):

( )( )lT lq N Tφ= , (56)

{ } ( )( ){ }≠ → ≥ φ0lt l lt lq q q N t , t = τ, θ. (57)

Differently from the current simulation procedure 
of optimizing, where a priory limits to applying techni-
cal level dominated, here the optimal technical level can 
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be chosen (in terms of total expenditure). When a priory 
limits are often used in design practice, the task can be 
formulated incorrectly due to principled possibility in 
defining technical level and distribution of flows. 

It is clear that target function value depends on con-
trolled variables – state of network ( )q t  (via functions 
fi), as well as on loads of network branches ( )N T . We will 
try to reach the change of the network function upon 
variation of one variable ql. If instead of ′ltq  we analyse 
′ltq , then, of course, values of functions fi will change sal-

tatorily. Characteristics of functions fi provide for a prio-
ry defining the size of this jump. Besides, it is possible to 
form functions fi, the values of which under arguments 
of integer numbers coincide with values fi, non-intermit-
tent within the entire setting area. However, the target 
function remains intermittent, because transport flows 
spread due to the change of the network state. And since 
re-distribution occurs pursuant to minimising condition 
(32), independent from the common target function 
(30) (exceptionally to road transport), the size of a cer-
tain jump cannot be specified a priory. The implication 
is that target function F does not allow to execute its a 
priory determination of its continuity. 

Let us remind, that if solution options are investi-
gated according to Bernul scheme, then with probability 
p it might be stated that after R tests the best option de-
pends on a certain part X − the best of all possible op-
tions, and a possible ratio 

( )
( )
−

=
−

log 1
log 1

p
R

X
. (58)

The essential moment of this method is definition 
of a needed value X, since it is clear that access to X − 
the best option does not guarantee sufficient proximity 
to the absolute extreme. The difference of target function 
values might be very big. If distribution density of target 
function values in the extreme zone is big, independent 
random search is fairly effective, even if compared with 
regular methods. First of all, given the values p and X, 
suitable for practical usage, the number of analysed op-
tions varies from 200 to 500. Secondly, plenty of options 
are defined, which are close to global extreme, which in 
many cases can be interpreted as indetermination zone 
after later evaluation of incomprehensiveness of the ini-
tial information. Usually such a zone is found via multi-
critical optimisation by applying regular methods. 

4. Conclusions

1. The model for distribution of warehouses in the com-
mercial network was established by optimising goods 
transportation. The target function of the model consists 
of: fixed prices for construction of big and small ware-
houses; variable prices of transportation of raw mate-
rials and goods between commercial warehouses and 
commercial points. It was also tested and justified by the 
branch and margin method. 

2. The algorithm was created with a view to op-
timising the local road network between commercial 
points. During the algorithm tests it was proved that if 

distribution density of target function values is rather 
high in the zone of extreme, an independent random 
search is fairly effective even if compared with regu-
lar methods. Firstly, the number of analysed options is 
200−500. Secondly, quite many options which are close 
to global extreme, are clarified, which in many cases 
might be interpreted as an indetermination zone after 
having evaluated incomprehensive initial information. 
Usually such a zone is found via multi-critical optimisa-
tion by applying regular methods. 
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