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Aim:Multiple sclerosis is a severe brain and/or spinal cord disease. It may lead to a wide

range of symptoms. Hence, the early diagnosis and treatment is quite important.

Method: This study proposed a 14-layer convolutional neural network, combined

with three advanced techniques: batch normalization, dropout, and stochastic pooling.

The output of the stochastic pooling was obtained via sampling from a multinomial

distribution formed from the activations of each pooling region. In addition, we used data

augmentation method to enhance the training set. In total 10 runs were implemented

with the hold-out randomly set for each run.

Results: The results showed that our 14-layer CNN secured a sensitivity of

98.77 ± 0.35%, a specificity of 98.76 ± 0.58%, and an accuracy of 98.77 ± 0.39%.

Conclusion: Our results were compared with CNN using maximum pooling and

average pooling. The comparison shows stochastic pooling gives better performance

than other two pooling methods. Furthermore, we compared our proposed method with

six state-of-the-art approaches, including five traditional artificial intelligence methods

and one deep learning method. The comparison shows our method is superior to all

other six state-of-the-art approaches.

Keywords: multiple sclerosis, deep learning, convolutional neural network, batch normalization, dropout,

stochastic pooling

INTRODUCTION

Multiple sclerosis (abbreviated as MS) is a condition that affects the brain and/or spinal cord
(Chavoshi Tarzjani et al., 2018). It will lead to a wide range of probable symptoms, likely with
balance (Shiri et al., 2018), vision, movement, sensation (Demura et al., 2016), etc. It has two main
types: (i) relapsing remitting MS and (ii) primary progressive MS. More than eight out of every ten
diagnosed MS patients are of the “relapsing remitting” type (Guillamó et al., 2018).
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MS diagnosis may be confused with other white matter
diseases, such as neuromyelitis optica (NMO) (Lana-Peixoto
et al., 2018), acute cerebral infarction (ACI) (Deguchi et al.,
2018), acute disseminated encephalomyelitis (ADEM) (Desse
et al., 2018), etc. Hence, accurate diagnosis of MS is important
for patients and following treatments. In this study, a preliminary
study that identifies MS from healthy controls with the help
of magnetic resonance imaging (MRI) was investigated and
implemented.

Recently, researchers tend to use computer vision and image
processing ( Zhang and Wu, 2008, 2009; Zhang et al., 2009a,b,
2010a,b) techniques to accomplish MS automatic-identification
tasks. For instances, Murray et al. (2010) proposed to use
multiscale amplitude modulation and frequency modulation
(AM-FM) to identify MS. Nayak et al. (2016) presented a novel
method, combining AdaBoost with random forest (ARF). Wang
et al. (2016) combined biorthogonal wavelet transform (BWT)
and logistic regression (LR).Wu and Lopez (2017) used four-level
Haar wavelet transform (HWT). Zhang et al. (2017) proposed a
novel MS identification system based on Minkowski-Bouligand
Dimension (MBD).

Above methods secured promising results. Nevertheless, their
methods need to extract features beforehand, and they need to
validate their hand-extracted features effective (Chang, 2018a,b,c;
Lee et al., 2018). Recently, convolutional neural network (CNN)
attracts the research interest of scholars, since it can mechanically
develop the features by its early layers. CNN has already been
applied tomany fields, such as biometric identification (Das et al.,
2019), manipulation detection (Bayar and Stamm, 2018), etc.
Zhang et al. (2018) is the first to apply CNN to identify MS, and
their method achieved an overall accuracy of 98.23%.

This study is based on the CNN structure of Zhang
et al. (2018). We proposed two other improvements: batch
normalization and stochastic pooling. In addition, we used
dynamic learning rate to accelerate the convergence. Learning
rate is a parameter to control how quickly the proposed
model converge to a local minimal. Low learning rate means
a slow speed toward the downward slope. However, it can
certain that we won’t miss the local minimum but a long time
to converge. Therefore, in our research, we set the learning
rate a large value and reduce it by every given number of
epochs instead of the fixed small learning rate until achieve
convergence.

The rest of this paper is organized as follows: section
Data Preprocessing described the data processing including
data sources and data preprocessing. Section Methodology
illustrates the method used in our research. Section Experiments,
Results, and Discussions provided the experiment result and
discussion.

DATA PREPROCESSING

Two Sources
The dataset in this study were obtained from Zhang et al.
(2018). First, MS images were obtained from the eHealth
laboratory (2018). All brain lesions were identified and delineated
by experienced MS neurologists, and were confirmed by

radiologists. Second, the healthy controls were used from 681
slices of 26 healthy controls provided in Zhang et al. (2018).
Table 1 shows the demographic characteristics of two datasets.

Figure 1A shows the original slice, and Figure 1B shows the
delineated results with four plaques, Areas surrounded by red
line denotes the plaque. Figures 1C,D presents two slices from
healthy controls.

Contrast Normalization
The brain slices are from two different sources; hence, the
scanner machines may have different hardware setting (scanning
sequence) and software settings (reconstruction from k-space,
the store format, etc.). It is necessary to match the two sources
of images in terms of gray-level intensities. This is also called
contrast normalization, with aim of achieving consistency in
dynamic range of various sources of data.

Histogram stretching (HS) method (Li et al., 2018) was chosen
due to ease of implementation. HS aims to enhance the contrast
by stretching the range of intensity values of two sources of

TABLE 1 | Demographic characteristics of two datasets.

Dataset Source # Subjects Number

of Slice

Age Gender

(m/f)

Multiple sclerosis

(2018)

eHealth 38 676 34.1 ± 10.5 17/21

Healthy control (Zhang

et al., 2018)

private 26 681 33.5 ± 8.3 12/14

FIGURE 1 | Samples of our dataset. (A) Original MS image. (B) MS image with

plaque delineated. (C) Healthy control image I. (D) Healthy control image II.
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FIGURE 2 | Pipeline of convolutional neural network.

FIGURE 3 | Pipeline of conv layer.

FIGURE 4 | A toy example of max pooling and average pooling.

images to the same range, providing the effect of inter-scan
normalization.

The contrast normalization is implemented in following way.
Let us assume µ is the original brain image, and ϕ is the contrast-
normalized image, the process of HS can be described as

ϕ(x, y) =
µ(x, y)− µmin

µmax − µmin
(1)

where (x, y) represents the coordinate of pixel, µmin and µmax

represents the minimum and maximum intensity values of

FIGURE 5 | Structure of FC layer.

original brain image µ.

µmin = min
x

min
y

(
µ(x, y)

)
(2)

µmax = max
x

max
y

(
µ(x, y)

)
(3)
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We do contrast normalization for both two data of different
sources, and finally combine them together, forming a 676+681
= 1,357-image dataset.

METHODOLOGY

Convolutional neural network is usually composed of
conv layers, pooling layer, and fully connected layers.
Figure 2 gives a toy example that consists of two conv
layers, two pooling layers, and two fully connected layers.
CNN can achieve comparable or even better performance
than traditional AI approaches, while it does not need
to manual design the features (Zeng et al., 2014, 2016a,b,
2017a,b).

FIGURE 6 | An example of dropout neural network.

TABLE 2 | Variables used in batch normalization.

Parameter Meaning

z The output of a layer

znorm The normalization of z

∼li Input of the non-linearity layer

α Mean value of the minibatch

δ2 Variance of the minibatch

l Layer index

i ith data in the mini batch

ε A small constant

m The number of samples of the minibatch

Conv Layer
The conv layers performed Two-dimensional convolution along
the width and height directions (Yu et al., 2018). It is
worth noting that the weights in CNN are learned from
backpropagation, except for initialization that weights are given
randomly. Figure 3 shows the pipeline of data passing through a
conv layer. Suppose there is an input with size of

Input :HI ×WI × D (4)

whereHI , WI , and C represent the height, width, and channels of
the input, respectively.

Suppose the size of filter is

Filter 1 :HF ×WF × D
...
Filter Z :HF ×WF × D

(5)

where HF and WF are height and width of each filter, and the
channels of filter should be the same as that of the input. Z
denotes the number of filters. Those filters move with stride of
M and padding of N, then the channels of output activation map
should be Z. The output size is:

Output :HO ×WO × Z (6)

where HO andWO are the height and width of the output. Their
values are:

HO = 1+

⌊
2N +HI −HF

M

⌋
(7)

WO = 1+

⌊
2N +WI −WF

M

⌋
(8)

where ⌊⌋ denotes the floor function. The outputs of conv layer are
usually passed through a non-linear activation function, which
normally chooses as rectified linear unit (ReLU) function.

TABLE 3 | Hold-out validation setting.

Training Test

MS 350 326

HC 350 331

Total 700 657

FIGURE 7 | A toy example of stochastic pooling.
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Pooling Layer
The activation map contains too much features which can lead
to overfitting and computational burden. Pooling layer is often
used to implement dimension reduction. Furthermore, pooling
can help to obtain invariance to translation. There are two
commonly-used pooling methods: average pooling (AP), max
pooling (MP).

The average pooling (Ibrahim et al., 2018) is to calculate the
average value of the elements in each pooling region, while the
max pooling is to select the max value of the pooling region.
Suppose the region R contains pixelsχ , the average pooling and
max pooling are defined as:

AP:{yj = χi/
∑

i∈Rj

χi } (9)

MP:{yj = max
i∈Rj

χi} (10)

Figure 4 shows the difference, where the kernel size equals 2 and
stride equals 2. The max pooling finally outputs the maximum
values of all four quadrants, while the average pooling outputs
the average values.

Softmax and Fully-Connected Layer
In fully connected (FC) layer, each neuron connects to all neurons
of the previous layer, which makes this layer produce many
parameters in this layer. The fully connected layer multiplied the
input by a weight matrix and added to a bias vector. Suppose
layer k containsm neurons, layer (k+1) contains n neurons. The
weight matrix will be of size ofm× n, and the bias vector will be
size of 1× n. Figure 5 shows the structure of FC layer.

Meanwhile, fully connected layer is often followed by a
softmax function used to convert the input to a probability
distribution. Here the “softmax” in this study only denotes
the softmax function. While some literature will add a fully-
connected layer before the softmax function and call the both
layers as “softmax function.”

Dropout
Deep neural network provides strong learning ability even for
very complex function which is hard to understand by human.
However, one problem often happened during the training of the
deep neural network is overfitting, which means the error based

on the training set is very small, but the error is large when the
test data is provided to the neural network. We name it as bad
generation to new dataset.

Dropout was proposed to overcome the problem of
overfitting. Dropout works as randomly set some neurons
to zero in each forward pass. Each unit has a fixed probability p
independent of the other units to be dropped out. The probability
p is commonly set as 0.5. Figure 6 shows an example of dropout
neural network, where the empty circle denotes a normal neuron,
and a circle with X inside denotes a dropout neuron. It is obvious
using dropout can reduce the links and make the neural network
easy to train.

Batch Normalization
As the change of each layer’s input distribution caused by the
updating of the parameter in the previous layer, which is called as
internal covariate shift, can result the slow training. Thus, to solve
this problem, we employ the batch normalization to normalizes
the layer’s inputs over a mini batch to make the input layer have a
uniform distribution. All the variables are listed in Table 2, then
the batch normalization can be implemented as follows:

αl =
1

m

∑

i

zli (11)

σ l2 =
1

m

∑

i

(zli − αl)
2

(12)

zlinorm =
zli − αl

√
δl2 + ε

(13)

z̃li=λlzlinorm + β l (14)

Here, ε is employed to improve numerical stability while the
mini-batch variance is very small. Usually is set as default value
e−5. However, the offset β and scale factor γ are updated during
training as learnable parameters.

Stochastic Pooling
The stochastic pooling is proposed to overcome the problems
caused by the max pooling and average pooling. The average
pooling has a drawback, that all elements in the pooling region
are considered, thus it may down-weight strong activation due to
many near-zero elements. The max pooling solves this problem,

FIGURE 8 | Pipeline of data preprocessing.
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FIGURE 9 | Results of data augmentation. (A) Rotation. (B) Scaling. (C) Noise injection. (D) Random translation. (E) Gamma correction.
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but it easily overfits the training set. Hence, max pooling does not
generalize well to test set.

Instead of calculating the mean value or the max value of each
pooling region, the output of the stochastic pooling is obtained
via sampling from a multinomial distribution formed from the
activations of each pooling region Rj. The procedure can be
expressed as follows:

(1) Calculate the probability p of each element χ within the
pooling region.

pi =
χi∑

k∈Rj
χk

(15)

in which, k is the index of the elements within the pooling region.

TABLE 4 | Hyperparameters of Conv layers.

Layer Filter size # Channel # Filters Stride

Conv_1 3 × 3 1 8 2

Pool_1 3 × 3 2

Conv_2 3 × 3 8 8 2

Pool_2 3 × 3 2

Conv_3 3 × 3 8 16 1

Conv_4 3 × 3 16 16 1

Conv_5 3 × 3 16 16 1

Pool_3 3 × 3 2

Conv_6 3 × 3 16 32 1

Conv_7 3 × 3 32 32 1

Conv_8 3 × 3 32 32 1

Conv_9 3 × 3 32 64 1

Conv_10 3 × 3 64 64 1

Conv_11 3 × 3 64 64 1

Pool_4 3 × 3 2

TABLE 5 | Hyperparameters of Fully-connected layers.

Layer Weights Bias Probability

FCL_1 20 × 1024 20 × 1

DO_1 0.5

FCL_2 10 × 20 10 × 1

DO_2 0.5

FCL_3 2 × 10 2 × 1

(2) Pick a location l within the pooling region according to the
probability p. It is calculated by scanning the pooling region from
left to right and up to bottom.

Aj = χl, l ∼ P(p1, ..., p|Rj|) (16)

Instead of considering the max values only, stochastic pooling
may use non-maximal activations within the pooling region.
Figure 7 shows a toy example of using stochastic pooling. We
first output the probabilities of the input matrix, then the roulette
wheel falls within the pie of 0.2. Hence the location l is finally
chosen as 2, and the output is the value at second position.

EXPERIMENTS, RESULTS, AND
DISCUSSIONS

Division of the Dataset
Hold-out validation method (Monteiro et al., 2016) was used to
divide the dataset. In the training set, there are 350MS images
and 350 HC images. In the test set, we have 326MS images and
331 HC images. Table 3 presents the setting hold-out validation
method.

The dataset is divided into two parts without validation dataset
for our research: training dataset and test dataset as shown
in Table 3. The missing of validation set is mainly because of
following reasons: First, according to the past research, validation

TABLE 6 | Statistical analysis of 10 runs.

Run Sensitivity Specificity Precision Accuracy

1 98.77 98.19 98.17 98.48

2 98.47 97.58 97.57 98.02

3 98.47 98.79 98.77 98.63

4 98.16 98.79 98.77 98.48

5 99.08 98.79 98.78 98.93

6 98.77 98.79 98.77 98.78

7 99.39 99.40 99.39 99.39

8 99.08 98.49 98.48 98.78

9 98.77 99.40 99.38 99.09

10 98.77 99.40 99.38 99.09

Average 98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

FIGURE 10 | Activation map of proposed CNN model.
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FIGURE 11 | Confusion matrixes of each run.

TABLE 7 | Ten random runs of MP and AP methods.

Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

MP

R1 97.87 97.87 97.89 97.87

R2 98.63 98.63 98.66 98.63

R3 98.18 98.18 98.20 98.17

R4 96.04 96.04 96.11 96.04

R5 96.80 96.80 96.86 96.80

R6 98.78 98.78 98.81 98.78

R7 98.63 98.63 98.65 98.63

R8 97.86 97.86 97.88 97.87

R9 99.24 99.24 99.25 99.24

R10 98.63 98.63 98.64 98.63

Average 98.07 ± 0.93 98.07 ± 0.98 98.10 ± 0.96 98.07 ± 0.98

AP

1 97.41 97.41 97.55 97.41

2 96.65 96.66 96.67 96.65

3 98.33 98.32 98.37 98.33

4 97.41 97.41 97.42 97.41

5 96.65 96.65 96.65 96.65

6 97.87 97.87 97.88 97.87

7 97.56 97.57 97.58 97.56

8 97.87 97.87 97.92 97.87

9 98.48 98.48 98.52 98.48

10 98.48 98.47 98.51 98.48

Average 97.67 ± 0.64 97.67 ± 0.67 97.71 ± 0.68 97.67 ± 0.67

set error rate may tend to overestimate the test error rate for the
model fit on the entire data set (Bylander, 2002; Whiting et al.,
2004). Second, as in order to avoid the overfitting, in addition of
the training and test datasets, the validation dataset is necessary
to tune the classification parameters. However, in this paper, we
employed the drop out to overcome the problem of overfitting.
The experiment result showed that there is no overfitting existing.
Therefore, validation dataset is not used in our research.

Data Augmentation Results
The deep learning usually needs a large amount of samples.
However, ass it is a well-known challenge to collect biomedical
data so as to generate more data from the limited data.
Meanwhile, data augmentation has been shown to overcome

TABLE 8 | Pooling method comparison and p-values of singed-rank test.

Pooling Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

MP 98.33 ± 0.75 98.33 ± 0.79 98.34 ± 0.79 98.33 ± 0.80

p-value

(SP-MP)

0.0645 0.0469 0.0605 0.0430

AP 97.67 ± 0.64 97.67 ± 0.67 97.71 ± 0.68 97.67 ± 0.67

p-value

(SP-AP)

0.0020 0.0020 0.0020 0.0020

SP (Ours) 98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

Bold means the p-values are less than 0.05.

TABLE 9 | Comparison of the approach with and without data augmentation.

Approach Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

No

augmentation

98.22 ± 0.71 98.19 ± 1.03 98.18 ± 1.01 98.20 ± 0.77

Data

augmentation

98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

the overfitting and increase the accuracy of classification tasks
(Wong et al., 2016; Velasco et al., 2018). Therefore, in this study,
we employed five different data augmentation (DA) methods to
enlarge the training set (Velasco et al., 2018). First, we used image
rotation. The rotation angle θ was set from −30 to 30◦ in step
of 2◦. The second DA method was scaling. The scaling factors
varied from 0.7 to 1.3 with step of 0.02. The third DA method
was noise injection. The zero-mean Gaussian noise with variance
of 0.01 was added to the original image to generate 30 new
noise-contaminated images due to the random seed. The fourth
DA method used was random translation by 30 times for each
original image. The value of random translation t falls within the
range of [0, 15] pixels, and obeys uniform distribution. The fifth
DA method was gamma correction. The gamma-value r varied
from 0.4 to 1.6 with step of 0.04.

The original training is presented in Figures 1A, 8 shows the
pipeline of the data preprocessing, where the augmented training
set is used to create a deep convolutional neural network model,
and this trained model was tested over the test set, with final
performance reported in Table 6. Figure 9A shows the results
of image rotation. Figure 9B shows the image scaling results.
Figures 9C–E shows the results of noise injection, random
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TABLE 10 | Comparison to traditional AI approaches.

Approach Sensitivity (%) Specificity (%) Precision(%) Accuracy (%)

Multiscale AM-FM

(Murray et al.,

2010)

94.08 93.64 91.91 93.83

ARF (Nayak et al.,

2016)

96.23 ± 1.18 96.32 ± 1.48 N/A 96.28 ± 1.25

BWT-LR (Wang

et al., 2016)

97.12 ± 0.14 98.25 ± 0.16 N/A 97.76 ± 0.10

4-level HWT (Wu

and Lopez, 2017)

N/A N/A N/A 87.65 ± 1.79

MBD (Zhang et al.,

2017)

97.78 ± 1.29 97.82 ± 1.60 N/A 97.80 ± 1.40

CNN-DO-BN-SP

(Ours)

98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

TABLE 11 | Comparison to deep learning approaches.

Approach Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

CNN-PReLU-DO

(Zhang et al.,

2018)

98.22 98.24 N/A 98.23

CNN-DO-BN-SP

(Ours)

98.77 ± 0.35 98.76 ± 0.58 98.75 ± 0.58 98.77 ± 0.39

FIGURE 12 | Comparison plot.

translation, and Gamma correction, respectively. As is shown,
one training image can generate 150 new images, and thus, the
data-augmented training image set is now 151x size of original
training set.

Structure of Proposed CNN
We built a 14-layer CNN model, with 11 conv layers and 3 fully-
connected layers. Here we did not the number of other layers
as convention. The hyperparameters were fine-tuned and their
values were listed in Tables 4, 5. The padding values of all layers
are set as “same.” Figure 10 shows the activation map of each

layer. It is obvious that the height of width of output of each layer
shrinks as going to the late layers.

Statistical Results
We used our 14-layer CNN with “DO-BN-SP.” We ran the test
10 times, each time the hold-out division was updated randomly.
The results over 10 runs are shown in Table 6. The average of
sensitivity, specificity, and accuracy are 98.77 ± 0.35, 98.76 ±

0.58, and 98.77 ± 0.39, respectively. The confusion matrix of all
runs are listed in Figure 11.

Pooling Method Comparison
In this experiment, we compared the stochastic pooling (SP)
with max pooling (MP) and average pooling (AP). All the other
settings are fixed and unchanged. The results of 10 runs of MP
and AP are shown in Table 7.

We performed Wilcoxon signed rank test (Keyhanmehr et al.,
2018) between the results of SP and those of MP, and between the
results of SP and those of AP. The results are listed in Table 8. It
shows SP are significantly better than MP in terms of specificity
and accuracy. Meanwhile, SP are significantly better than AP in
all four measures.

In this section, Wilcoxon signed rank test was utilized
instead of two-sample t-test (Jafari and Ansari-Pour, 2018)
and chi-square test (Kurt et al., 2019) based on following
reasons: two-sample t-test supposes the data comes from
independent random samples of normal distributions, the
same for chi-square goodness-of-fit test. However, our
sensitivity/specificity/precision/accuracy data do not meet
the condition of gaussian distribution.

Validation of the Data Augmentation
We compared the training process with and without data
augmentation to explore the augmentation strategies. The data
augmentation methods including: image rotation, scaling, noise
injection, random translation and gamma correction as stated in
section Data Augmentation Results. The respective performance
is shown in Table 9. Training with data augmentation could
provide better performance, particularly reducing the range of
standard deviation.

Comparison to State-Of-The-Art
Approaches
In this experiment, we compared our CNN-DO-BN-SP method
with traditional AI methods: Multiscale AM-FM (Murray et al.,
2010), ARF (Nayak et al., 2016), BWT-LR (Wang et al., 2016),
4-level HWT (Wu and Lopez, 2017), and MBD (Zhang et al.,
2017). The results were presented in Table 10. Besides, we
compared our method with a modern CNN method, viz., CNN-
PReLU-DO (Zhang et al., 2018). The results were listed in
Table 11. We can observe that our method achieved superior
performance than all six state-of-the-art approaches, as shown in
Figure 12.

The reason why our method is the best among all seven
algorithms lies in four points. (i) We used data augmentation,
to enhance the generality of our deep neural network. (ii) The
batch normalization technique was used to resolve the internal

Frontiers in Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 818

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. MS by 14-Layer CNN-DO-BN-SP

covariate shift problem. (iii) Dropout technique was used to
avoid overfitting in the fully connected layers. (iv) Stochastic
pooling was employed to resolve the down-weight issue caused
by average pooling and overfitting problem caused by max
pooling.

The bioinspired-algorithm may help the design or
initialization of our model. In the future, we shall
try particle swarm optimization (PSO) (Zeng et al.,
2016c,d) and other methods. The hardware of our model
can be optimized using specific optimization method
(Zeng et al., 2018).

In this paper, we employed data augmentation, the main
benefits mainly as follows: As it is a well-know challenge to collect
biomedical data so as to generate more data from the limited
data. Second, data augmentation has been shown to overcome the
overfitting and increase the accuracy of classification tasks (Wong
et al., 2016; Velasco et al., 2018).

CONCLUSION

In this study, we proposed a novel fourteen-layer convolutional
neural network with three advanced techniques: dropout, batch
normalization, and stochastic pooling. The main contributes are
list as follows:

(1) In this paper, we first applied CNN with stochastic pooling
for the Multiple sclerosis detection whose early diagnosis is
important for patients’ following treatment.

(2) In order to overcome the problems happened in the
traditional CNN, such as the internal co shift invariant and
overfitting, we utilized batch normalization and dropout.

(3) Considering the size of the dataset, data augmentation was
employed in our research for the train set.

(4) The proposed method has the best performance compared
to the other state of art methods in terms of sensitivity,
specificity, precision and accuracy.

The results showed our method is superior to six state-of-the-
art approaches: five traditional artificial intelligence methods and
one deep learning method. The detail explanation is provided
in section Comparison to State-of-the-art approaches. In the
future, we shall try to test other pooling variants, such as pyramid
pooling. The dense-connected convolutional networks will also
be tested for our task. Meanwhile, we will also work on finding
more ways to accelerate convergence (Liao et al., 2018).
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