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The CRISPR technology continues to diversify with a broadening array of applications
that touch all kingdoms of life. The simplicity, versatility and species-independent nature
of the CRISPR system offers researchers a previously unattainable level of precision and
control over genomic modifications. Successful applications in forest, fruit and nut trees
have demonstrated the efficacy of CRISPR technology at generating null mutations in
the first generation. This eliminates the lengthy process of multigenerational crosses
to obtain homozygous knockouts (KO). The high degree of genome heterozygosity
in outcrossing trees is both a challenge and an opportunity for genome editing: a
challenge because sequence polymorphisms at the target site can render CRISPR
editing ineffective; yet an opportunity because the power and specificity of CRISPR
can be harnessed for allele-specific editing. Examination of CRISPR/Cas9-induced
mutational profiles from published tree studies reveals the potential involvement of
multiple DNA repair pathways, suggesting that the influence of sequence context at
or near the target sites can define mutagenesis outcomes. For commercial production
of elite trees that rely on vegetative propagation, available data suggest an excellent
outlook for stable CRISPR-induced mutations and associated phenotypes over multiple
clonal generations.
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INTRODUCTION

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based genome editing is
rapidly becoming the system of choice for targeted mutagenesis in a growing variety of woody
species, including forest trees. Forest trees are an invaluable commodity, providing fiber, energy,
materials and climate buffering to the global community, and CRISPR has the potential to
further enhance these important traits. Previous-generation methods for gene silencing in plants
rely on expression of antisense RNAs, small interfering RNAs or microRNAs to base-pair with
target mRNAs for degradation, often with unpredictable and unstable outcomes (Alessandra and
Shihshieh, 2010). The specificity and efficiency of CRISPR for targeted DNA mutations, and the ease
of adoption in virtually any species are behind the current revolution in genomic editing (Jiang and
Doudna, 2017). Meanwhile, CRISPR’s popularity is driving the discovery and characterization of
new CRISPR-associated (Cas) endonucleases with novel properties that make the system even more
versatile (Burstein et al., 2016; Murovec et al., 2017). This review will focus on recent applications
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of CRISPR in woody species, with a special focus on forest trees,
the mutation patterns observed at target sites, and the long-term
stability of CRISPR/Cas9-edited outcomes.

CRISPR APPLICATIONS IN WOODY
SPECIES

Phytoene desaturase (PDS) has been a popular marker for
evaluating CRISPR in new study systems (Table 1). Its
mutation disrupts chlorophyll biosynthesis, allowing for visual
assessment of knockout (KO) efficiency. CRISPR/Cas9-induced
albino mutants have been reported in poplar (Fan et al.,
2015), citrus (Jia and Wang, 2014; Zhang et al., 2017), apple
(Nishitani et al., 2016), grape (Nakajima et al., 2017), cassava
(Odipio et al., 2017), coffee (Breitler et al., 2018), and kiwifruit
(Wang Z. et al., 2018). Successful implementation of CRISPR has
also been demonstrated by targeting potential developmental
and biosynthesis pathway genes in grape (Ren et al., 2016)
and the tropical tree Parasponia andersonii (van Zeijl et al.,
2018; Table 1). New CRISPR reagents have been developed to
expand genome editing capabilities. One such reagent, SaCas9
from Staphylococcus aureus, was shown to effectively generate
mutations in Duncan grapefruit (Jia et al., 2017a). Compared to
the most commonly used SpCas9 from Streptococcus pyogenes,
SaCas9 is considerably smaller and recognizes a distinct
5′-NNGRRT protospacer adjacent motif (PAM) sequence (versus
5′-NGG of SpCas9). Using alternative CRISPR/Cas systems such
as SaCas9 can increase the number of potential guide-RNA
(gRNA) target sites, especially in AT-rich regions which may
facilitate promoter editing.

Besides proof-of-concept studies, the CRISPR/Cas9 system
has been used to develop disease resistant fruit trees with
promising results (Table 1). The devastating citrus canker disease
is caused by Xanthomonas citri subsp. citri (Xcc) through effector-
activation of a canker susceptibility gene LOB1 of the Lateral
Organ Boundaries transcription factor family (Hu et al., 2014).
When the LOB1 promoter was targeted by CRISPR/Cas9 to
disrupt the effector-binding element, canker symptoms after
Xcc infection were reduced in Duncan grapefruit (Jia et al.,
2016) and Wanjincheng orange (Peng et al., 2017). CRISPR-
KO of LOB1 also increases Xcc resistance in Duncan grapefruit
(Jia et al., 2017b). KO-mutations in other susceptibility genes
for powdery mildew and fire blight disease have also been
achieved in grape and apple protoplasts, respectively (Malnoy
et al., 2016), potentially allowing for the regeneration of
disease-resistant plants. Several WRKY transcription factors
involved in defense regulation have also been targeted for
mutagenesis. CRISPR-KO of two positive regulators PtrWRKY18
and PtrWRKY35 compromised resistance to Melampsora rust in
Populus (Jiang et al., 2017), whereas KO of grape VvWRKY52
increased resistance to necrotrophic Botrytis cinerea (Wang X.
et al., 2018).

To date, the greatest progress in woody species has been
made with poplar, the first stably transformed tree to be genome-
edited by CRISPR with high efficiency (Zhou et al., 2015). Allele-
sensitive bioinformatics resources to facilitate genome editing

in heterozygous species quickly followed, again based on the
poplar system (Xue and Tsai, 2015; Xue et al., 2015). The majority
of CRISPR studies in poplar have targeted phenylpropanoid
metabolism or cell wall traits (Table 1). Mutations of individual
4-coumarate:CoA ligase (4CL) genes decreased the levels
of structural (lignin) or non-structural (proanthocyanidin)
phenylpropanoid polymers. CRISPR-KO of MYB transcription
factors either increased (PtoMYB156 and PtrMYB57) or
decreased (PtoMYB115 and PtoMYB170) phenylpropanoid flux,
affecting in turn lignin deposition (PtoMYB156 and PtoMYB170)
or flavonoid accrual (PtrMYB57 and PtoMYB115), respectively
(Wan et al., 2017; Wang et al., 2017; Xu et al., 2017; Yang et al.,
2017). Secondary cell wall synthesis was also compromised by
CRISPR-KO of a brassinosteroid biosynthetic gene, supporting
a role for brassinosteroids in wood formation (Shen et al., 2018).
CRISPR-KO of BRANCHED1-1 (BRC1-1) and BRC1-2 belonging
to the TCP family of transcription factors resulted in altered
shoot architecture, and revealed an additional role of BRC2 in leaf
development not previously reported for its Arabidopsis ortholog
(Muhr et al., 2018). A recent study reported successful mutation
of essential flowering genes in both male and female poplar
genotypes (Elorriaga et al., 2018). The study also collated a large
mutation dataset from over 500 transgenic events (Elorriaga et al.,
2018) which should prove of value to understanding CRISPR/Cas
editing patterns (see below). Although phenotypic evaluation of
the flowering traits will require follow-on and multiyear studies
in the field, the work underscores a powerful social application of
CRISPR in containment of transgenic trees.

DIVERSE INDEL PROFILES INDICATIVE
OF cNHEJ, MMEJ, AND TMEJ
ACTIVITIES

Small frameshift indels are the most common repair outcomes of
single gRNA-directed Cas9 cleavage in trees, with 1 bp insertions
(+1), especially+T and+A, predominant in many cases, similar
to findings from other plants and animals (Bortesi et al., 2016).
However, considerable variations and case-dependent repair
outcomes are also noted, suggesting potential influences of target
site sequences and/or their genomic contexts (Jacobs et al.,
2015; Xu et al., 2015). Meta-analysis of mutation patterns across
published tree studies is necessary to gain further insight, but that
is made difficult by different reporting formats (not all studies
report multi-allele data), and by the use of detection methods
that differ in their sensitivity, accuracy, and allele discrimination
(Sentmanat et al., 2018). We combined amplicon sequencing
data from CRISPR-edited P. tremula x alba IRNA 717-1B4
(717) generated in our lab (Zhou et al., 2015) with the large
717 dataset from Elorriaga et al. (2018), along with manual
inspection of other published tree studies for mutation profile
analysis (Figure 1). In aggregate, +1 insertions constituted the
greatest fraction of mutation types, followed by −1, and then
−2, although stereotyped repair patterns are evident (Figure 1A).
Interestingly, insertions were limited to +1 and +2 across all
sites, whereas deletions spanned a much broader size range,
though with decreasing frequencies for larger deletions.
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TABLE 1 | Summary of published CRISPR/Cas9-mediated knockout in woody species.

Species Genes targeted Mutation efficiencies Transformation source
tissue(s)

References

Actinidia chinensis (kiwifruit) PDS 65–92% In vitro leaves Wang Z. et al., 2018∗

Citrus sinensis, Citrus
paradise, Poncirus trifoliate
x Citrus sinensis (citrus)

Cs2g12470, Cs7g03360,
LOB1 (promoter and gene)
and PDS

3–100% Greenhouse leaves+,
in vitro epicotyl segments

Jia and Wang, 2014∗+; Jia
et al., 2016, 2017a,b∗+;
Peng et al., 2017∗; Zhang
et al., 2017∗

Coffea canephora (coffee) PDS Up to 30% Embryogenic calli Breitler et al., 2018

Malus domestica, Malus
prunifolia x Malus pumila
(apple)

DIPM1, DIPM2, DIPM4,
and PDS

Up to 32% In vitro leaves, protoplastsˆ Malnoy et al., 2016ˆ;
Nishitani et al., 2016

Manihot esculenta
(cassava)

PDS 97–99% Embryogenic calli Odipio et al., 2017∗

Parasponia andersonii
(tropical tree)

EIN2, HK4, NSP1, and
NSP2

48–89% Greenhouse tissues van Zeijl et al., 2018

Populus tomentosa,
Populus tremula x alba,
Populus tremula x
tremuloides (poplar)

4CL1, 4CL2, 4CL5, AG1,
AG2, BRC1-1, BRC2-1,
DWF4, LFY, MYB57,
MYB115, MYB156,
MYB170, PDS, and
WRKY18

Up to 100% In vitro leaves, in vitro
shoots (leaf, stem and
petiole pieces)

Fan et al., 2015; Zhou
et al., 2015∗; Jiang et al.,
2017; Wan et al., 2017;
Wang et al., 2017; Xu et al.,
2017∗; Yang et al., 2017;
Elorriaga et al., 2018∗;
Muhr et al., 2018∗; Shen
et al., 2018∗

Theobroma cacao (cacao) NPR3 Up to 27% In vitro somatic embryo
cotyledons

Fister et al., 2018∗

Vitis vinifera (grape) ldnDH, MLO-7, PDS, and
WRKY52

0.1–100% Embryogenic calli,
protoplastsˆ

Malnoy et al., 2016ˆ;
Ren et al., 2016∗; Nakajima
et al., 2017∗;
Wang X. et al., 2018∗

∗ Indicates off-target mutations were assessed. All transformations performed via Agrobacterium unless otherwise stated. +Xcc (Xanthomonas citri subsp. citri)-facilitated
agroinfiltration. ∧Direct delivery of Cas9-gRNA ribonucleoproteins.

Small mutagenic indels have often been ascribed to the
classical non-homologous end-joining (cNHEJ) DNA repair
pathway, but recent studies have demonstrated involvement of
the alternative end-joining (alt-EJ) pathway as well (Rodgers and
McVey, 2016). It now appears that cNHEJ contributes to the
most common +1 insertions and other small indels, whereas
larger indels are due to alt-EJ. This is based on studies where
impaired cNHEJ drastically changed the repair outcomes of
CRISPR/Cas9 in yeast, human cells and Arabidopsis, such that
the typically predominant +1 insertions as well as other small
(<3 bp) indels were greatly reduced, while rates of large indels
increased, apparently independently of cNHEJ (van Overbeek
et al., 2016; Shen et al., 2017; Lemos et al., 2018). In yeast, the
vast majority of the +1 insertions from cNHEJ were templated
from 1 bp 5′overhangs at the Cas9 cleavage site (fourth base
from the PAM), and dependent on POL4, a low-fidelity X-family
DNA polymerase with terminal transferase activity (Lemos et al.,
2018). POL4-deficient yeast also lost+2 and+3 insertions, many
of which are homonucleotides and apparently templated from
the Cas9 cleavage site as well (Lemos et al., 2018). Templated
insertions could also explain the majority of +1 events in a large
Cas9-induced indel dataset from human cells (van Overbeek
et al., 2016), suggesting a conserved mechanism underlying +1
insertions in CRISPR/Cas9-edited organisms (Lemos et al., 2018).
In the combined 717 dataset, the majority of +1 insertions were

+T as reported in many CRISPR studies. However, evidence
in support of templated +1 insertions was weak, and appeared
to be target site-dependent (Figure 1A). Clearly, much more
data with greater target site diversity and coverage are necessary
before a conclusion can been drawn, but such data from trees
will require significant and perhaps community-wide efforts.
Regardless, the small target site collection used in our analysis
supports involvement of more than one mechanism for the
commonly observed+T insertions, at least in Populus.

cNHEJ-independent repair likely involves different alt-
EJ pathways, including microhomology-mediated end-joining
(MMEJ), single-strand annealing (SSA), or polymerase theta
(POLQ)-mediated end-joining (TMEJ) (Rodgers and McVey,
2016). Both MMEJ and SSA require end resection or unwinding
to expose short homologous sequences for annealing (up to
∼20–30 bp for MMEJ and longer for SSA) and subsequent
repair, and always result in deletions (Sfeir and Symington, 2015).
The presence of microhomologous sequences at the deletion
junctions can therefore serve as evidence of MMEJ/SSA repair.
Indeed, microhomologies of 1–5 bp are readily identifiable in
most of the deletion (≥5 bp) alleles we examined, but are
rarely found for small deletions (3–4 bp) that might have arisen
from cNHEJ (Figure 1B). MMEJ has also been associated with
abnormal chromosomal translocations and inversions (Sfeir and
Symington, 2015). Such modifications have been reported in
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FIGURE 1 | The mutation profiles and potential DNA repair pathways of CRISPR/Cas9-induced DSBs in Populus and other trees. (A) Distribution of mutation types
at distinct genomic sites based on data from Zhou et al. (2015) (top panel) and Elorriaga et al. (2018) (bottom panel). The corresponding target genes and gRNA
sequences are shown on the right, with allele number for each noted in parentheses. The percentages shown inside the +1 (1 bp insertion) bar indicate the fraction
that were T insertions. The fraction of templated +1 insertions that deviate from T is shown in parentheses. (B) Representative examples of different mutation types
and the potential DNA repair pathway involved in each case. PAM sequences are bold underlined, triangles denote predicted Cas9-cleavage sites, indels are shown
in red, yellow-shaded regions denote microhomologies, and gray sequences in (6) and (7) were appended from P. tomentosa cDNA (GenBank accession KC954700)
and P. tremula x alba 717 genomic sequences (Xue et al., 2015), respectively. Note, the region in (7) contains two overlapping target sites. For (8), there are five
possible in trans template sites within introns of Phytozome (v12) gene model GSVIVG01016650001, the nearest one 640 bp upstream of the target site.

several studies – including two from Populus – where two
or more gRNAs were designed to target the same gene to
produce large deletions (Fan et al., 2015; Elorriaga et al., 2018).
Moreover, large deletions are sometimes accompanied by small
insertions (Fan et al., 2015; Nakajima et al., 2017), a pattern
that is characteristic of the recently discovered TMEJ pathway
(Koole et al., 2014). TMEJ depends on POLQ, an error-prone
A-family DNA polymerase that can extend microhomologies in
a template-dependent (either in cis or in trans) or independent
manner (Kent et al., 2016). TMEJ is the essential repair pathway
in animal germ cells, as embryos of zebrafish polq mutants are
hypersensitive to DSB-inducing treatments, with low levels of
repair producing only+1 insertions (Thyme and Schier, 2016). In
Arabidopsis, TMEJ is required for T-DNA integration following
Agrobacterium transformation of either flowers or roots (van
Kregten et al., 2016). We found evidence of in cis or in trans
templated insertions in the complex indels reported for poplar
and grape (Figure 1B; Fan et al., 2015; Nakajima et al., 2017),
supporting an active TMEJ pathway in somatic cells of plants.

Examination of published mutation profiles of Populus and
other tree species suggests differential involvement of multiple
repair pathways, probably with cNHEJ contributing to +1,
+2 and small (1–4 bp) deletions, MMEJ (and SSA) to larger

deletions, and TMEJ to complex indels (Figure 1B). The
varying dependency of these pathways on sequence contexts
(microhomologies) likely underpins the non-random nature
of CRISPR/Cas9 repair outcomes reported in many studies,
including trees (Jacobs et al., 2015; van Overbeek et al.,
2016; Vu et al., 2017; Elorriaga et al., 2018). Incorporation of
microhomology modeling into the gRNA design workflow (Bae
et al., 2014; Segar et al., 2015) should enable prediction of
potential DNA repair outcomes for informed selection of target
sites.

LONG-TERM STABILITY OF
CRISPR-EDITED TREES THROUGH
VEGETATIVE PROPAGATION

For many herbaceous species where CRISPR editing efficiencies
are low, or where monoallelic/mosaic mutations predominate
in the first-generation (T0) transformants, multi-generation
progeny screening is necessary to obtain homozygous mutants
(Xu et al., 2015). Although initial transmission rates vary
depending on the study system and the nature of CRISPR-
induced (somatic or germinal) mutations carried by the
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founder plant, stable mutation inheritance can be expected once
homozygous lines are obtained, as reported for Arabidopsis, rice,
tomato and potato (Brooks et al., 2014; Feng et al., 2014; Zhou
et al., 2014; Butler et al., 2015). For woody perennials, however,
the issues are rather different. Cross-generational screening is
difficult to implement for transgenic trees owing to their long
generation times and strict regulation of flowering transgenic
trees (Strauss et al., 2015). The predominantly outcrossing
nature of trees, many of which are also dioecious, adds further
challenge to rapid-cycle breeding and introgression of CRISPR-
derived mutations into elite germplasms. While advances of
early-flowering induction in contained environments (Hoenicka
et al., 2014; Klocko et al., 2016) promise to accelerate progress,
commercial production of many forest, fruit and nut trees relies
on clonal propagation of elite genotypes. For woody perennials,
therefore, it is pertinent to address long-term stability of CRISPR
editing, both on-target and off-target, in vegetatively-propagated
T0 transformants.

In theory, CRISPR-induced DNA modifications should lead
to permanent mutations in edited cells that can be inherited
mitotically during clonal propagation, yet experimental data
are rare. One study used tissue culture to clone CRISPR-
derived mutations from T0 diploid and tetraploid potato, and
reported stable maintenance of targeted mutations across clonal
generations, and in three selected cases, through the germline
as well (Butler et al., 2015). In that study, however, somatic
mutations were prevalent in T0 plants, as fewer than half
of the originally-detected mutation types were captured as
single mutations in clonally-propagated plants (Butler et al.,
2015). The high levels of somatic mutations likely reflect a
high proportion of chimeras, a common problem in tissue
culture when plants are regenerated from multiple cells, in
this case, with heterogenomic modifications. Fortunately for
Populus, the proven efficiency of CRISPR (Zhou et al., 2015;
Elorriaga et al., 2018) means null mutations with biallelic
KO can be readily obtained in T0 transformants and stably
inherited through clonal propagation. Wang et al. (2017)
reported faithful maintenance of PtoMYB115 mutations in tissue
culture-propagated Populus tomentosa somaclones, though in
one case low frequencies of new mutations not seen in the
parent line were detected, indicative of chimeras. Similarly, the
CRISPR editing outcomes of BRC1-1 and BRC2-1 were also
stable over multiple cycles of vegetative propagation in tissue
culture (Muhr et al., 2018). We have maintained a subset of
the previously-characterized 717 mutants (Zhou et al., 2015) in
the greenhouse for over 4 years by repeatedly cutting back the
original transformants and/or propagation using rooted cuttings.
The reddish-brown wood discoloration of lignin-reduced 4cl1
mutants has been stable in all re-sprouted shoots or clonally-
propagated plants. Repeated amplicon-sequencing of randomly
selected lines re-confirmed the targeted 4CL1 mutations 4
years later, with no off-target changes to the paralogous 4CL5
(Supplementary Table S1). Another group of transgenic plants
harbors a non-functional gRNA for 4CL5 due to SNPs (one
per allele) between the genome-sequenced P. trichocarpa and
the transformation host 717 that prevented Cas9 cleavage as
confirmed by amplicon sequencing (Zhou et al., 2015). It

should be noted that one of the 717 SNPs alters the PAM
site from NGG to NGA, the latter is a non-canonical PAM
of SpCas9 thought to cause off-target cleavage in human cells
(Zhang Y. et al., 2014b). Reanalyzing this group of plants
will inform as to whether the imperfectly-matched 4CL5-gRNA
exhibited any off-target activity over the long term. We found
no evidence of CRISPR/Cas9 cleavage after 4 years of coppicing
and regrowth (Supplementary Table S1). These findings echo
other tree studies that showed no or very rare off-targeting
(Jia et al., 2017a; Nakajima et al., 2017; Elorriaga et al., 2018;
see also Table 1), as well as reports from Arabidopsis, rice
and tomato based on whole-genome re-sequencing (Feng et al.,
2014; Zhang et al., 2014a; Peterson et al., 2016; Rodríguez-Leal
et al., 2017). The data provide support for long-term stability
and specificity of CRISPR/Cas9-mediated mutagenesis, with
extremely low off-target potential during vegetative propagation
in poplar.

BROAD-SPECTRUM MUTAGENESIS
BEYOND KO

Nullizygous mutations harboring either identical (homozygous)
or distinct (heterozygous) mutations in all alleles of the genome
are the ideal repair outcomes for gene KO investigation. However,
monoallelic, in-frame and/or mosaic mutations can expand the
phenotypic spectrum to enhance the power of functional analysis.
For instance, transgenic grapevine with monoallelic mutations
of a defense-related WRKY gene exhibited intermediate levels
of disease resistance between WT and biallelic mutants (Wang
X. et al., 2018). Similarly, monoallelic or in-frame mutations of
PDS led to partial albino phenotypes in both poplar and apple
(Fan et al., 2015; Nishitani et al., 2016). Given the abundance of
duplicate genes in plant genomes, and the proven successes of
CRISPR in multi-allele as well as allele-specific editing (Jia et al.,
2016; Elorriaga et al., 2018), there is exciting potential to exploit
CRISPR for development of allelic series mutations to address
functional redundancy of duplicate genes or tandem repeats,
and to investigate the allele-dose response of agronomic traits.
Thus, the ability to generate novel germplasms is invaluable not
only for tree improvement but also for basic functional genomics
research.

In contrast to CRISPR-mediated KO, site-specific gene
targeting or replacement remains a major challenge in plants, due
to the inefficient homology-directed repair pathway. Geminivirus
replicons have been shown to increase site-specific gene knockin
(KI) efficiencies by orders of magnitude in tobacco, tomato
and hexaploid wheat (Baltes et al., 2014; Čermák et al., 2015;
Gil-Humanes et al., 2017). In animal systems, the MMEJ and
SSA pathways, along with a new CRISPR/Cpf1 system have
been harnessed for targeted KI with success (Sakuma et al.,
2016; Tóth et al., 2016). These and other emerging approaches
represent promising options for developing efficient KI systems
in trees. Finally, many economically important tree species or
genotypes remain recalcitrant to transformation and/or tissue
culture regeneration, hindering applications of CRISPR. Recent
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breakthroughs in morphogenic regulator-mediated regeneration
(Lowe et al., 2016, 2018) have already stimulated similar
research in trees. Direct delivery of pre-assembled Cas9-gRNA
ribonucleoproteins into protoplasts for genome editing as already
deployed in apple and grape offers a transgene-free alternative
to Agrobacterium transformation (Malnoy et al., 2016). At
the present time, however, protoplast regeneration for other
tree species remains a challenge. There is strong incentive to
overcome this challenge since avoiding the footprint of foreign
DNA and the associated negative perceptions will improve the
outlook for integration of CRISPR technology with commercial
deployment of designer trees.
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