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A microbe is a microscopic organism which may exists in its single-celled form or

in a colony of cells. In recent years, accumulating researchers have been engaged

in the field of uncovering microbe-disease associations since microbes are found

to be closely related to the prevention, diagnosis, and treatment of many complex

human diseases. As an effective supplement to the traditional experiment, more and

more computational models based on various algorithms have been proposed for

microbe-disease association prediction to improve efficiency and cost savings. In this

work, we developed a novel predictive model of Graph Regularized Non-negative

Matrix Factorization for Human Microbe-Disease Association prediction (GRNMFHMDA).

Initially, microbe similarity and disease similarity were constructed on the basis of the

symptom-based disease similarity and Gaussian interaction profile kernel similarity for

microbes and diseases. Subsequently, it is worth noting that we utilized a preprocessing

step in which unknown microbe-disease pairs were assigned associated likelihood

scores to avoid the possible negative impact on the prediction performance. Finally, we

implemented a graph regularized non-negative matrix factorization framework to identify

potential associations for all diseases simultaneously. To assess the performance of our

model, cross validations including global leave-one-out cross validation (LOOCV) and

local LOOCV were implemented. The AUCs of 0.8715 (global LOOCV) and 0.7898 (local

LOOCV) proved the reliable performance of our computational model. In addition, we

carried out two types of case studies on three different human diseases to further analyze

the prediction performance of GRNMFHMDA, in which most of the top 10 predicted

disease-related microbes were verified by database HMDAD or experimental literatures.

Keywords: microbe, disease, association prediction, graph regularization, matrix factorization

INTRODUCTION

Antonie Van Leeuwenhoek, the father of microbiology, was the first to discover, observe, describe,
study, and conduct scientific experiments with microbes, using simple single-lensed microscopes
of his own design in 1673 (Leeuwenhoek, 1683-1775). From then on, with the development of
biological theory and technology, a great mass of microbes has been discovered. It has been
suggested that the amount of organisms living below the Earth’s surface is comparable with the
amount of life on or above the surface (Gold, 1992). As we know, microbes are very closely related
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to humans in many fields, such as food production (Smid and
Lacroix, 2013), water treatment (Tabatabaei et al., 2010), energy
(Tanaka, 1999), and human health (Thiele et al., 2013). Especially,
many studies have demonstrated that one of the most important
effects of microbes on humans is the associations between
microbes and complex human diseases. For example, Boleij et al.
(2015) proved that the Bacteroides fragilis toxin gene is associated
with colorectal neoplasia, especially in late-stage colorectal
cancer (CRC). Moreover, Galiana et al. (2014) found that
Actinomyces can be as an indicator in the evolution of chronic
obstructive pulmonary disease (COPD) patients because their
study confirmed a strong association between the presence or
absence of Actinomyces and the severity of the clinical condition.
Another example is that periodontal pathogens Porphyromonas
gingivalis and Fusobacterium nucleatum stimulate tumorigenesis
of oral squamous cell carcinoma (OSCC) via direct interaction
with oral epithelial cells through Toll-like receptors which is
beneficial to the development of corresponding prevention and
treatment schemes (Binder Gallimidi et al., 2015). Thus, due to
the fact that detecting potential microbiological markers could
help to provide a better understanding of the pathogenesis of
diseases and the role played by the microbiota in its severity, it is
of great significance to explore the potential associations between
microbes and diseases. However, since traditional experimental
methods always suffer from the time constraints and capital
limitations, proposing novel computational models is able to
be an effective complement for uncovering potential microbe-
disease associations. Recently, many feasible and effective
prediction models have been developed by researchers.

In the last few years, some prediction models were proposed
based on network analysis. Ma et al. (2017) developed an
analysis method based on the microbe-based human disease
network (Human Microbe Disease Network, HMDN) to infer
the associations between microbes and disease genes, symptoms,
chemical fragments, and drugs. In the method, they first utilized
a large-scale text mining-based method to build the microbe-
disease association network, on which the cosine similarity was
calculated for each disease pair to construct the HMDN. Taking
microbe-disease gene association prediction as an example, the
potential related disease genes of a microbe in the HMDN
can be finally obtained by finding the highly overlapped genes
among the microbe-related diseases in the gene-based human
disease network (Human Gene Disease Network, HGDN).
Besides, in a similar way, this analysis method can also be
used between HMDN and symptom-based human disease
network (Human Symptoms Disease Network, HSDN), chemical
fragment-based human disease network (Human Chemical
Fragments Disease Network, HCDN), and drug-based human
disease network (Human Drug Disease Network, HDDN) to
infer the associations between microbes and disease symptoms,
chemical fragments, and drugs, respectively. However, the
prediction performance of this analysis method is limited by
the small microbe-based disease network. Thereafter, Chen et al.
(2017a) was the first to propose a computational model of KATZ
measure for Human Microbe-Disease Association prediction
(KATZHMDA) on a large scale. Firstly, they integrated the
known microbe-disease associations network and Gaussian

interaction profile kernel similarity networks of microbes and
diseases into a heterogeneous graph. Through summarizing
all walks with different weighted lengths (i.e., the walk with
shorter length was assigned larger coefficient) for each microbe-
disease pair, they finally calculated the association probability
between each microbe and disease. Moreover, KATZHMDA is
applicable for new diseases/microbes without known associations
if there are additional available similarity information between
the new disease/microbe and other diseases/microbes in the
known microbe-disease association network. One limitation
of KATZHMDA is that the optimal value of the number of
walks is still hard to select. Later,Huang Z. A. et al. (2017)
proposed a model of Path-Based Human Microbe-Disease
Association Prediction (PBHMDA) by integrating known
microbe-disease association network and Gaussian interaction
profile kernel similarity network for microbes and diseases
into a heterogeneous interlinked network in which a threshold
was set to remove the edges that represent weak correlations.
In the heterogeneous interlinked network, the weights of all
paths between a microbe-disease pair were finally aggregated
to represent the association probability between the microbe
and the disease, while the weight of each path was calculated
by multiplying the weights of all edges in the path without
overlap and then penalizing the path with a decay coefficient.
The limitation existing in PBHMDA is that it will cause
bias to microbes or diseases with more known associations.
Moreover, PBHMDA cannot work well for new microbes and
new diseases.

In addition, some proposed models were not based on
network analysis. Since the negative microbe-disease samples
(i.e., microbe-disease pairs that are confirmed to have no
associations) are unavailable, Wang et al. (2017) presented
a semi-supervised learning-based computational model of
Laplacian Regularized Least Squares for Human Microbe-
Disease Association prediction (LRLSHMDA) by optimizing
the Laplacian regularized least squares classifiers in microbe
space and disease space. Finally, they used a simple weighted
average operation on the above two optimal classifiers to
obtain the final probability matrix that indicates the potential
association probabilities between microbes and diseases.
However, LRLSHMDA is still faced with the problem of being
unable to be implemented to new diseases without known
associated microbes. Similarly, with no need for negative
samples, Huang Y. A. et al. (2017) developed the method of
a Neighbor- and Graph-based combined Recommendation
model for Human Microbe-Disease Association prediction
(NGRHMDA) by combining two recommendation models that
are neighbor-based collaborative filtering model and topological
information-based model. In the neighbor-based collaborative
filtering model, considering that different microbe-disease pairs
may share the same microbes or diseases, they computed two
association possibility matrices respectively from the microbe
perspective and disease perspective and then averaged them to
obtain a prediction matrix. While in the topological information-
based model, they introduced a two-step diffusion approach
on the microbe-disease bipartite graph to obtain another
prediction matrix. Ultimately, the above two prediction matrices
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were simply averaged to get the final association possibilities
for all microbe-disease pairs. What is worth noting is that
NGRHMDA shares the same aforementioned disadvantage with
LRLSHMDA.

In summary, all of the above models have their own
limitations in predicting microbe-disease associations. Due to
the lack of measurements for microbe/disease similarity, some
models are only based on the Gaussian interaction profile kernel
similarity of microbes and diseases that leads to unavoidable
bias to those well-investigated diseases and microbes. Besides,
some models cannot predict for new microbes/diseases and
optimal parameters in some models are not easy to select. In this
work, considering some of the above limitations, we developed a
novel computational model of Graph Regularized Non-negative
Matrix Factorization for Human Microbe-Disease Association
prediction (GRNMFHMDA). First of all, the information of
Gaussian interaction profile kernel similarity of microbes and
diseases, symptom-based disease similarity and known microbe-
disease associations in HMDAD (Ma et al., 2017) were combined
as the input to start the whole prediction process. Here, after
data preparation, the prediction process consists of two main
steps, the preprocessing step and the step of GRNMF. In the
preprocessing step, the weighted K nearest neighbor profiles for
microbes and diseases were calculated to reconstruct the original
adjacency matrix obtained based on the known microbe-disease
associations so that we could avoid the possible negative impact
on the final prediction performance from unknown microbe-
disease pairs. While in the step of GRNMF, Tikhonov (L2) and
graph Laplacian regularization were introduced into the standard
NMF framework to obtain a smoother solution from matrix
factorization and take full advantage of the geometric structure
of our data, respectively. In addition, global leave-one-out cross
validation (LOOCV), local LOOCV and two types of case studies
were carried out to evaluate the prediction performance of our
model. As a result, GRNMFHMDA obtained AUCs of 0.8715
(global LOOCV) and 0.7898 (local LOOCV). More than that, 9
(Asthma), 9 (Obesity), and 8 (Type 1 diabetes) out of the top 10
predicted disease-related microbes were confirmed by HMDAD
or experimental literatures. Thus, it is obvious that our model
would perform well in microbe-disease association prediction
according to the aforementioned results.

MATERIALS AND METHODS

Method Overview
Here, to predict potential associations between microbes
and diseases, the model of GRNMFHMDA (See Figure 1)
can be decomposed into three steps: (1) data preparation,
in which adjacency matrix, microbe similarity, and disease
similarity were established; (2) the preprocessing step, in which
unknown microbe-disease pairs were assigned with associated
likelihood scores based on the calculation of weighted K nearest
neighbor profiles for microbes and diseases; (3) GRNMF, in
which Tikhonov (L2) and Graph Laplacian regularization were
introduced into the standard NMF framework to obtain the final
score matrix.

Human Microbe-Disease Associations
From the Human Microbe-Disease Association Database
(HMDAD, http://www.cuilab.cn/hmdad) (Ma et al., 2017), we
can download 483 known microbe-disease associations between
292 microbes and 39 human diseases. However, since some
microbe-disease associations we downloaded are the same, there
were only 450 known associations after removing the duplicate
parts according to different evidences. In order to represent
the associations information in a more convenient and efficient
way, we defined an adjacency matrix Y ∈ Rm*n, where m and
n denoted the number of microbes and diseases, respectively.
Moreover, the element Y(mi, dj) was set to 1 if microbe mi and
disease dj had known association, otherwise 0.

Gaussian Interaction Profile Kernel
Similarity for Microbes
There is a hypothesis that similar microbes (i.e., microbes
exhibiting a similar pattern of interaction and non-interaction
with the diseases of a microbe-disease association network) are
inclined to be associated with the same disease, on which many
previous studies had relied to construct the Gaussian interaction
profile kernel similarity for microbes (Chen et al., 2017a; Huang
Z. A. et al., 2017). In this article, based on the same assumption,
we first represent the interaction profile for each microbe with
a binary vector involving the association information between
the microbe and each disease in the known microbe-disease
association network. On the basis of the definition of adjacency
matrix Y , the i th row vector (Y(mi) = (Yi1,Yi2, . . . ,Yin)) can
be used to denote the interaction profile of microbe mi. Thus,
according to the method of van Laarhoven et al. (2011), the
Gaussian interaction profile kernel similarity between microbe
mi andmj can be defined as follows:

Sm(mi,mj) = exp(−γm
∥

∥Y(mi)− Y(mj)
∥

∥

2
) (1)

where

γm = γ
′
m/

(

1

m

m
∑

i=1

∥

∥Y(mi)
∥

∥

2

)

(2)

Here, γm is the adjustment coefficient that can be obtained by
normalizing another bandwidth parameter γ ′m.

Gaussian Interaction Profile Kernel
Similarity for Diseases
The construction of the Gaussian interaction profile kernel
similarity for diseases is based on the assumption that similar
diseases (i.e., diseases exhibiting a similar pattern of interaction
and non-interaction with the microbes of a microbe-disease
association network) are more likely to be associated with
similar microbes. Here, the interaction profile for each disease
is also represented by a binary vector containing the association
information between the disease and each microbe in the known
microbe-disease association network. Based on the same method
of van Laarhoven et al. (2011), the j th column vector (Y(dj) =
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FIGURE 1 | Flowchart of GRNMFHMDA model to predict the potential microbe-disease associations.

(Y1j,Y2j, . . . ,Ymj)) denotes the interaction profile of disease dj
and the Gaussian interaction profile kernel similarity between
disease di and dj can be defined as follows:

Sd
′

(di, dj) = exp(−γd
∥

∥Y(di)− Y(dj)
∥

∥

2
) (3)

where

γd = γ
′
d/





1

n

n
∑

j=1

∥

∥Y(dj)
∥

∥

2



 (4)

Similarly, γd is the adjustment coefficient that can be calculated
by normalizing another bandwidth parameter γ ′d.

Integrated Symptom-Based Disease
Similarity
As we have mentioned above, Gaussian interaction profile kernel
similarity is used in our model to measure the similarity of
microbes and diseases. However, since the Gaussian interaction
profile kernel similarity is an association information-based
measurement, it is essential to combine more types of microbe

or disease similarities based on other available biological
information. Indeed, according to different biological data, many
researchers have developed their own method to measure the
similarity of microbes or diseases. For instance, Zhou et al.
(2014) proposed a model of symptom-based human disease
network (HSDN) to measure the disease similarity based on
co-occurrence of disease/symptom terms recorded in different
literatures. In this work, we implemented HSDN to calculate
symptom-based disease similarity (SDM) and then constructed

a new disease similarity matrix (Sd) by integrating SDM with Sd
′

in an average way according to the study of Chen et al. (2017a):

Sd =
Sd
′

+ SDM

2
(5)

Weighted K Nearest Neighbor Profiles for
Microbes and Diseases
Due to the fact that values in interaction profiles of microbes or
diseases without known associations are all zeros, the prediction
performance may be affected to some extent. Considering that,
to deal with the above mentioned problem, we came up with a
preprocessing step to establish new interaction profiles both for
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microbes and diseases. For each microbe mq, we first find out its
K nearest known microbes, each of which must has at least one
known association. Next, the similarity information between mq

and its K nearest known microbes together with the information
of their corresponding K interaction profiles are combined to
calculate the new interaction profile as follows:

Ym(mq) =
1

Qm

∑K

i=1
wiY(mi) (6)

where

wi = α
i−1∗Sm(mi,mq) (7)

Qm =
∑

1≤i≤K
Sm(mi,mq) (8)

Here, m1 to mK denote the K nearest known microbes of mq

which were sorted in descending order based on the similarity
values between them. The function of the weight coefficient wi is
that the corresponding similarity value is assigned higher weight
ifmi is more similar tomq. Besides, α is a decay term whose value
is in the range of [0,1] and Qm is the normalization term.

In a similar way, the new interaction profile for each disease
dp can be defined as follows:

Yd(dp) =
1

Qd

∑K

j=1
wjY(dj) (9)

wj = αj−1
∗
Sd(dj, dp) (10)

Qd =
∑

1≤j≤K
Sd(dj, dp) (11)

After calculating the new interaction profiles from microbe
perspective and disease perspective, we combine Ym and Yd as
follows:

Ymd = (a1Ym + a2Yd)/(a1 + a2) (12)

where a1 and a2 are two weight coefficient and both of them are
set to 1 for simplicity.

Finally, to replace the element Y(mi, dj) = 0 with an
associated likelihood score, we use the following equation to
update the original adjacency matrix Y .

Y = max(Y ,Ymd) (13)

GRNMF
As a common method, the purpose of the standard NMF is
to find two non-negative matrices whose product is an optimal
approximation to the original matrix (Sotiras et al., 2015; Xu
et al., 2015). Therefore, the adjacency matrix Y ∈ Rm*n can be
decomposed into two parts after implementing NMF, namely,
W ∈ Rm*k and H ∈ Rn*k (Y ≈ WHT). Accordingly, we can
further get the following standard optimization problem:

min
W,H

∥

∥

∥
Y −WHT

∥

∥

∥

2

F
+ L(W,H) (14)

where L(W,H) is a regularization term to prevent overfitting.
Here, motivated by the study of Xiao et al. (2017) and the

standard NMF framework, we introduced other two terms,
the Tikhonov (L2) (Guan et al., 2011) and graph Laplacian
regularization (Cai et al., 2011), to predict microbe-disease
associations. The utilizing of Tikhonov regularization aims
to obtain a smooth solution (W and H), while the purpose
of introducing graph regularization is to ensure a part-
based representation through taking full advantage of the data
geometric structure. Thus, we can construct the optimization
problem of GRNMF as follows:

min
W,H

∥

∥

∥
Y −WHT

∥

∥

∥

2

F
+λl( ‖W‖

2
F + ‖H‖

2
F )

+λm

n
∑

i,p=1

∥

∥wi − wp

∥

∥

2
Sm
∗

ip+λd

m
∑

j,q=1

∥

∥hj − hq
∥

∥

2
Sd
∗

jq s.t.W ≥ 0,H ≥ 0

(15)

Here, λl, λm and λd are the corresponding regularization
coefficients. Besides,wi and hj are defined as ith rows of W and
j th rows of H, respectively. In order to avoid negative affects
to the prediction performance of our model, we introduced
sparse weight matrices of Sd

∗

and Sm
∗

that are constructed on
the basis of the geometrical information of disease and microbe
data spaces (Sd and Sm), respectively. Then, Equation (14) can be
transformed into:

min
W,H

∥

∥

∥
Y −WHT

∥

∥

∥

2

F
+λl( ‖W‖

2
F + ‖H‖

2
F )

+λmTr(W
TLmW)+λdTr(H

TLdH) s.t.W ≥ 0,H ≥ 0 (16)

where Tr(•) represents the trace of a matrix. Here, Lm and Ld are
the corresponding graph Laplacian matrices for Sm

∗

and Sd
∗

that
can be calculated as follows:

Lm = Dm − Sm
∗

(17)

Ld = Dd − Sd
∗

(18)

whereDm andDd are the diagonal matrices whose entries are row
(or column) sums of Sm

∗

and Sd
∗

, respectively.
Based on the information of the nearest neighbor graph on a

scatter of data points, researchers came up with a conclusion that
local geometric structure is able to be effectively modeled (Cai
et al., 2011; Li et al., 2017). Since microbes or diseases appearing
in the same cluster are more likely to behave similarly, according
to the above conclusion, we construct the graph matrices Sm

∗

and
Sd
∗

in terms of microbe space and disease space respectively on
the basis of the p nearest neighbors and corresponding clustering
information. Here, we use the ClusterONEmethod (Nepusz et al.,
2012) to construct the graph Sm

∗

frommicrobe space, in which the
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weight matrix Xm is generated based on the microbe similarity
matrix Sm as follows:

Xm
ij =







1 i ∈ N(mj) & j ∈ N(mi),mj ∈ C
0 i /∈ N(mj) & j /∈ N(mi),mj /∈ C
0.5 otherwise

(19)

where N(mi) and N(mj) are the sets of p nearest neighbors of mi

andmj, respectively.C denotes to any one of the clusters obtained

by ClusterONE method and we define the graph matrix Sm
∗

for
microbes as follows:

∀i, j Sm
∗

ij = Xm
ij S

m
ij (20)

In a similar way as the computation of Sm∗, we calculate the graph
matrix Sd

∗

according to the disease similarity matrix Sd.
Here, we defined 8=[ϕik] and 9=[ψjk] as the Lagrange

multipliers for the constrainswik ≥ 0 and hjk ≥ 0, respectively. In
this work, we first convert the optimization problem in Equation
(15) to an unconstraint problem, then minimize this problem by
utilizing the corresponding Lagrange function Lf as follows:

Lf = Tr(YYT)− 2Tr(YHWT)+ Tr(WHTHWT)+ λlTr(WWT)

+ λlTr(HHT)+ λmTr(W
TLmW)+ λdTr(H

TLdH)

+ Tr(8WT)+ Tr(9HT) (21)

To solve the above problem, we first calculate the partial
derivatives with respect toW and H as follows:

∂Lf

∂W
= −2YH + 2WHTH + 2λlW + 2λmLmW +8 (22)

∂Lf

∂H
= −2YTW + 2HWTW + 2λlH + 2λdLdH +9 (23)

After using the Karush-Kuhn-Tucker (KKT) conditions of
ϕikwik = 0 and ψjkhjk = 0 (Facchinei et al., 2014), we can obtain
the equations for wik and hjk as follows:

− (YH)ikwik + (WHTH)ikwik + (λlW)ikwik

+ [λm(Dm − Sm
∗

)W]ikwik = 0 (24)

− (YTW)jkhjk + (HWTW)jkhjk + (λlH)jkhjk

+ [λd(Dd − Sd
∗

)H]jkhjk = 0 (25)

Finally, on the basis of the above two equations, we can get the
updating rules for wik and hjk as follows:

wik ← wik
(YH + λmS

m∗W)ik

(WHTH + λlW + λmDmW)ik
(26)

hjk ← hjk
(YTW + λdS

d∗H)jk

(HWTW + λlH + λdDdH)jk
(27)

Based on the above two updating formulas, we can obtain
the final two non-negative matricesW and H until convergence.
Subsequently, we calculate the score matrix Y* for microbe-
disease pairs by utilizing Y* = WHT, in which the higher score
of a microbe-disease pair indicates that the microbe is more likely
to be associated with the corresponding disease. In addition, for
better understanding, we provided the pseudocode of the whole
GRNMF algorithm (See Figure 2).

RESULTS

Performance Evaluation
Cross validation, a widely used assessment method, was
introduced to evaluate the prediction performance of
GRNMFHMDA. In this study, we utilized two types of cross
validations, namely, global LOOCV and local LOOCV. For the
global LOOCV, each of the known microbe-disease associations
was in turn considered to be the test sample while the remaining
known associations were treated as the training samples. Besides,
all of the unknown microbe-disease pairs were regarded as the
candidate samples which would be used in the ranking process.
After implementing GRNMFHMDA, we ranked each test sample
with all candidate samples according to their predicted scores. As
for local LOOCV, the difference is that the test sample was only
ranked with the candidate samples involving the investigated
disease.

In each cross validation process, we would consider that
the test sample was successfully predicted if the ranking of the
test sample was higher than the given threshold. Further, based
on the ranks of all test samples, we drew a receiver operating
characteristic (ROC) curve through calculating the ratio between
true positive rate (TPR, sensitivity) and false positive rate (FPR,
1-specificity) under different thresholds both for global LOOCV
and local LOOCV. Sensitivity meant the ratio between the
number of test samples ranking higher than the given threshold
and the number of positive samples (known microbe-disease
associations), while 1-specificity denoted the percentage of the
number of negative microbe-disease pairs whose ranks were
lower than the given threshold. Moreover, area under the ROC
curve (AUC) was calculated to make quantitative evaluation
for our model’s prediction performance. The model would be
considered to be able to perfectly predict all associations if
the value of AUC equaled to 1, while the model was only
supposed to be able to make random prediction if the value
of AUC equaled to 0.5. As a result, GRNMFHMDA obtained
AUCs of 0.8715 and 0.7898 in global LOOCV and local LOOCV,
respectively. Furthermore, the prediction performance of our
model outperformed the KATZHMDA both in global LOOCV
(0.8644) and local LOOCV (0.6998), which proved the superior
accuracy and reliability of our model in predicting microbe-
disease associations (See Figure 3).

Case Study
Here, we put forward two types of case studies on three
different common human diseases with the purpose of further
assessing the prediction performance of GRNMFHMDA. On the
basis of the known microbe-disease associations in HMDAD,
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FIGURE 2 | The pseudocode of the whole GRNMF algorithm.
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FIGURE 3 | The comparison of prediction performance between GRNMFHMDA and the classical model of KATZHMDA both in global LOOCV and local LOOCV. As a

result, GRNMFHMDA achieved AUCs of 0.8715 and 0.7898 in the global and local LOOCV, which exceed the first computational model of KATZHMDA in the field of

microbe-disease association prediction.

we implemented GRNMFHMDA to predict disease-related
microbes and then validated the top 10 predicted microbes by
HMDAD or recent literatures.

Asthma, a common long-term inflammatory disease of the
airways of the lungs, often starts during childhood and its
average number of deaths and death rates (per 100,000 people)
respectively reached to 38 and 0.1 in 2016 in the World Health
Organization (WHO) European region among 10–14 years old
children (Kyu et al., 2018). Here, under the GRNMFHMDA
framework, asthma was treated as an investigated disease to
explore its potential associated microbes. As a result, 9 out of
the top 10 microbes in the prediction list were confirmed to be
associated with asthma by experimental literatures (See Table 1).
For example, Lactobacillus casei rhamnosus Lcr35, a species of
Lactobacillus (1st in the prediction list), was found to be able to
attenuate airway inflammation and hyperreactivity in a mouse
model of asthma through oral treatment before sensitization (Yu
et al., 2010). Besides, Ding et al. (2018) discovered that exosomes
derived by Pseudomonas (2nd in the prediction list) aeruginosa
could induce protection against allergic sensitization in asthma
mice. Another example is that there is a distinct alteration of the
sputum microbiota with a greater prominence of Firmicutes (4th
in the prediction list) in severe asthma (Zhang et al., 2016).

Obesity, a medical condition in which accumulated excess
body fat reaches a certain level that may have a negative effect on
health, is a leading preventable cause of death worldwide (Reinier
and Chugh, 2015). In recent years, plenty of studies have shown
certain associations between obesity andmicrobes that helps a lot
to the prevention and treatment of obesity. For instance, many
researchers have demonstrated that methanogens play a specific
role in weight gain and the development of obesity in human
subjects (Armougom et al., 2009; Krajmalnik-Brown et al., 2012).
Not only that, many studies have now been conducted into

TABLE 1 | Prediction list of the top 10 potential asthma-related microbes based

on the known associations in HMDAD database and the corresponding validation

evidences (experimental literatures in PubMed) for these associations.

Rank Microbe Evidence

1 Lactobacillus PMID: 20592920

2 Pseudomonas PMID: 29795208

3 Burkholderia unconfirmed

4 Firmicutes PMID: 27078029

5 Actinobacteria PMID: 23265859

6 Clostridium coccoides PMID: 21477358

7 Streptococcus PMID: 17928596

8 Clostridia PMID: 22047069

9 Lachnospiraceae PMID: 26512904

10 Fusobacterium PMID: 24024497

the potential of probiotics to ameliorate obesity and diabetes
(Delzenne et al., 2011; Peterson et al., 2015). Therefore, taking
obesity as another investigated disease in the first type of case
study, we found that 9 out of the top 10 predicted obesity-
related microbes were confirmed by experimental literatures (See
Table 2). For the phylum Proteobacteria (1st in the prediction
list) which belongs to gram-negative bacteria, the existing study
already discovered that it was abundant in the obese group
compared with lean group (Park et al., 2015). Besides, as a
species of Clostridia (2nd in the prediction list), the presence of
Clostridium ramosum in simplified human intestinal (SIHUMI)
enhanced diet-induced obesity according to the experiment
data of Woting et al. (2014). Moreover, Bacillus, a genus of
Clostridia (3rd in the prediction list), was found to have outgrown
dramatically in the obesity group by Gao et al. (2018).
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TABLE 2 | Prediction list of the top 10 potential obesity-related microbes based

on the known associations in HMDAD database and the corresponding validation

evidences (experimental literatures in PubMed) for these associations.

Rank Microbe Evidence

1 Proteobacteria PMID: 25407880

2 Clostridia PMID: 25271283

3 Bacilli PMID: 29280312

4 Faecalibacterium prausnitzii PMID: 19849869

5 Clostridium PMID: 23645850

6 Betaproteobacteria PMID: 29312822

7 Clostridium coccoides PMID: 23147032

8 Lactobacillus PMID: 23056479

9 Fusobacterium nucleatum unconfirmed

10 Prevotella PMID: 21695273

More than that, in order to facilitate future researchers to
study the disease-related microbes that they are interested in,
based on the known associations in HMDAD, we provided the
whole prediction list including all pairs between 292 microbes
and 39 diseases as well as their predicted association scores (See
Supplementary Table 1).

In addition, to prove the predictive applicability of our
model on new diseases without known associated microbes, we
carried out another case study on a disease via removing all
its known associations in HMDAD. In this way, the prediction
process of seeking the investigated disease-related microbes can
only depend on the information of other known microbe-
disease associations (training samples) and the relevant similarity
measures. What needs to be emphasized is that only candidate
samples (all microbe-disease pairs including the investigated
disease) were ranked and then verified in HMDAD. Hence, there
was no overlap between training samples and prediction list.
In other words, the verification of predicted associations was
independent of HMDAD. Type 1 diabetes, a form of diabetes
mellitus, is believed to involve a combination of genetic and
environmental factors such as dietary agents (Serena et al.,
2015), viral infections (Rewers and Ludvigsson, 2016) and gut
microbiota (Bibbò et al., 2017). Especially in gut microbiota,
the previous study confirmed that the genus Bacteroides is the
largest representative of type 1 diabetes-associated dysbiosis
that can be modulated by diet (Mejjía-León and Barca, 2015).
Thus, considering the significance of studying type 1 diabetes-
related microbes, we took type 1 diabetes as the investigated
disease to predict its potential associated microbes under the
framework of the second type of case study. After implementing
GRNMFHMDA, we obtained the ranks of type 1 diabetes’
candidate microbes in terms of their association scores (See
Table 3). As a result, 8 out of the top 10 predictions were
confirmed by HMDAD or recent literatures. For example,
Giongo et al. (2011) demonstrated that the Clostridia (1st in the
prediction list) sequences increased in control samples (samples
of general population) as the abundance of Clostridia decreased
overtime in the case samples (samples of patients with type
1 diabetes). Moreover, at the phylum level and at p-values <

TABLE 3 | Prediction list of the top 10 potential type 1 diabetes-related microbes

via removing all the known type 1 diabetes-microbe associations in HMDAD

database.

Rank Microbe Evidence

1 Clostridia confirmed by HMDAD

2 Proteobacteria confirmed by HMDAD

3 Clostridium coccoides unconfirmed

4 Lactobacillus confirmed by HMDAD

5 Bacteroidetes confirmed by HMDAD

6 Firmicutes confirmed by HMDAD

7 Faecalibacterium prausnitzii PMID: 23934614

8 Clostridium PMID: 23433344

9 Betaproteobacteria unconfirmed

10 Bacilli PMID: 24930037

The validation evidences denote to whether the predicted associations were confirmed

by the HMDAD database or experimental literatures in PubMed.

0.001, Proteobacteria (2nd in the prediction list) was found to be
higher in case samples than that in control samples (Brown et al.,
2011). Another example is that Lactobacillus strains (a species of
Lactobacillus ranking 4th in the prediction list) was found to be
able to induce specific changes in the immune system of non-
obese diabetic (NOD) mice that can increase or decrease diabetes
(Brown et al., 2011).

According to the results presented, GRNMFHMDA
consistently achieved an excellent predictive performance in the
two types of case studies. With the continuous experimental
research on microbe-disease associations, we expect that more
and more microbes in the prediction lists generated by our
model would be verified in the future.

DISCUSSION

In this article, we proposed a novel prediction model
of GRNMFHMDA based on the known microbe-disease
associations in HMDAD, Gaussian interaction profile kernel
similarity of microbes and diseases and symptom-based
disease similarity. To eliminate the possible problem caused
by unknown microbe-disease pairs that may affect our final
prediction performance, we first implemented a preprocessing
step to establish new interaction profiles both for microbes
and diseases. Then, after introducing Tikhonov (L2) and graph
Laplacian regularization under the standard NMF framework, we
finally obtained reliable and satisfactory prediction performance
both in LOOCV and case studies. Therefore, we can conclude
that our prediction model is able to play critical role in revealing
the associations between microbes and diseases, thus improving
the prevention, diagnosis and treatment of many complex
human diseases in the future.

Here, the reason why GRNMFHMDA performed well in
microbe-disease association prediction lies in the following facts.
Firstly, in the study of Wang et al. (2015), to model cancer
hallmark traits and networks, nodes and links in the network
were weighted, and certain scoring functions were developed to
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represent gene regulatory logics/strengths on networks. Inspired
by that, based on the data extracted from the acknowledged
databases, we implemented proper and effectivemeasurements to
quantify microbe-disease association network, microbe similarity
network and disease similarity network, which guaranteed the
reliable prediction performance of our model. Secondly, before
implementing GRNMF, we constructed new interaction profiles
both for microbes and diseases to further assign those unknown
microbe-disease pairs with associated likelihood score, which
also improved our model’s performance in some degree. Thirdly,
different from the standard NMF, we introduced Tikhonov (L2)
and graph Laplacian regularization that ensured the final two
non-negative matrices smoothness and guaranteed a part-based
representation via fully exploiting the data geometric structure,
respectively.

Nevertheless, here are also some limitations restricting the
accuracy of our model that need to be overcome in future
studies. Initially, the types of similarities for microbes and
diseases are not enough yet and we believe that our model
would be significantly improved with more biological data
and similarity measurements being taken into consideration.
Successful advance in association prediction research in various
fields of computational biology would also accelerate the
development of effective models for microbe-disease association
prediction (Chen and Yan, 2013; Chen et al., 2016, 2017b,
2018a,b,c; Chen and Huang, 2017; You et al., 2017). Secondly,
as shown in the research of Hao et al. (2018), three
representative genome-scale cellular networks, genome-scale
metabolic network (GMN), transcriptional regulatory network
(TRN), and signal transduction network (STN), were found to
be able to become a necessary tool in the systematic analysis of
microbes through network integration. Therefore, whether there

are similar molecular networks between two microbes is well
worth studying in constructing our prediction model. Thirdly,
the selection of the optimal parameters is still worth studying.
Finally, GRNMFHMDA would inevitably cause bias to diseases
that havemore known associatedmicrobes and vice versa. Hence,
we would come up with optimization strategies to deal with those
limitations in our next work.
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