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Abstract
Biotrophic fungal pathogens of plants must sense and adapt to the host
environment to complete their life cycles. Recent transcriptome studies of
the infection of maize by the biotrophic pathogen   areUstilago maydis
providing molecular insights into an ordered program of changes in gene
expression and the deployment of effectors as well as key features of
nutrient acquisition. In particular, the transcriptome data provide a deeper
appreciation of the complexity of the transcription factor network that
controls the biotrophic program of invasion, proliferation, and sporulation.
Additionally, transcriptome analysis during tumor formation, a key late stage
in the life cycle, revealed features of the remodeling of host and pathogen
metabolism that may support the formation of tremendous numbers of
spores. Transcriptome studies are also appearing for other smut species
during interactions with their hosts, thereby providing opportunities for
comparative approaches to understand biotrophic adaptation.
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Introduction
Fungal phytopathogens in the order Ustilaginales generally 
attack cereal and grass plants to cause smut diseases, so named 
because of the tremendous masses of sooty spores produced in 
infected tissue (Figure 1). Biotrophic pathogens such as the smut 
fungi are dependent on living hosts to complete their life cycles. 
Effective adaptation to the host environment is therefore criti-
cal for overcoming the plant immune response and successfully 
exploiting host nutrients through remodeling of metabolism  
and effective competition. The mechanisms by which biotrophic 
pathogens manipulate host metabolism to divert carbon, nitro-
gen, or micronutrients such as iron for their own use are start-
ing to be identified1–4. Among the Ustilaginales, the Zea mays 
(maize) pathogen Ustilago maydis has emerged as an experimen-
tally tractable model for studying the adaptation of biotrophic 
fungal pathogens to the host environment. As an example of the 
intricate interaction with the plant host, the life cycle of U. may-
dis involves germination of diploid teliospores on host tissue with 
subsequent mating between haploid meiotic progeny to form  
an invasive filamentous cell type5,6. The filaments then form 
appressoria (invasion structures) to penetrate host tissue with 
subsequent extensive proliferation, induction of tumors (galls), 
and eventual formation of melanized teliospores5,7 (Figure 1). A 
large number of effectors are predicted for U. maydis, and these 
proteins are thought to play key roles in managing the infection 
process. To date, characterized effectors include Cmu1, Pit2, 
Pep1, and Tin2, which influence host defense, and See1 and  
Rsp3, which influence tumor progression and the fungal  
response to host defense, respectively3,8.

In this review, we focus on recent genome-wide transcrip-
tome studies of the infection process that have provided insights 
into the transcriptional regulation associated with disease, the 
deployment of effectors by U. maydis to manage the infection 
process, and the remodeling of host metabolism during fun-
gal proliferation. Although not covered here, earlier studies  

also examined the transcriptome of U. maydis in culture and  
during infection6,7,9–23. We also refer readers to a wealth of pri-
mary literature and recent reviews on the role of transcrip-
tion factors, regulators, and effectors in the disease process for  
U. maydis13,14,20,24–27.

Transcriptome analysis throughout the infection 
process
A recent time-resolved and genome-wide study of transcrip-
tional changes occurring during the U. maydis–maize interac-
tion provides detailed insights into the processes underlying 
infection, tumor formation, and sporogenesis28. Among 14 regu-
latory modules identified, three gene sets/developmental pro-
grams were specifically associated with virulence and were 
upregulated during discrete developmental stages (Figure 2). 
These gene sets are expressed during 1) growth on the plant  
surface (early), 2) biotrophic development in planta (middle), and 
3) tumor formation (late/sporogenesis). In all three sets, genes 
encoding secreted proteins (effectors) are significantly over-
represented, emphasizing their critical role during biotrophic 
development. Metabolic changes are also predicted and, impor-
tantly, several transcription factors with a strong connection  
to each respective module were identified as potential key  
regulators (Figure 2).

For the early stage of infection, it is known that gene regula-
tion by the zinc finger transcription factor Rbf1 is required 
for the initial steps of pathogenic development, including fila-
ment formation, induction of G2 cell cycle arrest, and appres-
soria-mediated plant penetration6,25. Recent work by Lanver  
et al.28 revealed that Rbf1 shows a strong regulatory connec-
tivity to genes expressed at the early stage (0.5–1 days post 
inoculation [DPI]). Among the 398 genes that are upregulated, 
49 encode secreted proteins that are enriched for hydrolytic 
enzymes with a predicted function in appressoria-mediated plant 
penetration. Several genes induced on the leaf surface encode 
sugar- or nitrogen-related transporters, indicating priming of  
U. maydis for altered nutrient availability during plant  
colonization.

The subsequent middle phase of biotrophic development (2–4 
DPI) involves the re-initiation of fungal proliferation, establish-
ment of a compatible biotrophic interaction, and the initiation 
of tumor formation. Enriched functional categories in the tran-
scriptome include nitrogen and carbon source-related proc-
esses and components of the secretory pathway including the 
unfolded protein response (UPR)28. Transcriptional regulation 
during the biotrophic stage is modulated by direct interaction  
between UPR components and key regulators of fungal devel-
opment and pathogenicity27. Potential transcriptional regula-
tors of this stage include the Rbf1-regulated homeodomain  
transcription factor Hdp26,7 and the C2H2-zinc finger  
transcription factor Biz124.

Among the 228 genes encoding putative effectors that were 
upregulated in the middle stage, 153 lack functional signatures. 
However, the characterized genes encoding the effectors Pep1, 
Pit2, Cmu1, See1, Tin2, and Rsp3 are highly induced at this 

Figure 1. Tumor formation on maize by Ustilago maydis. An 
infected maize cob found in a cornfield close to Göttingen, Germany, 
in September 2018. At the end of the growing season, infected 
kernels give rise to greatly enlarged and bulbous plant tumors filled 
with black teliospores. Tumors can develop on all aerial parts of the 
plant but are most prominent in infected cobs.
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Figure 2. Regulators, effectors, and metabolism during Ustilago maydis infection of maize. Overview of transcriptional regulation, the 
timing of effector function, and metabolic changes and requirements during early, middle, and late stages of the U. maydis–maize interaction. 
DPI, days post inoculation.

stage, and these are required for full virulence of U. maydis and/
or the suppression of plant defense reactions and fungal defense, 
respectively (reviewed in 3). Organ- and cell type-specific tran-
scriptome analysis revealed that genes encoding the core effec-
tors Pep1, Pit2, Cmu1, and Tin2 are expressed independent of 
the plant organ or cell type in leaves and tassels, whereas See1 is  
exclusively expressed in leaf tissue29,30. Tumor formation occurs 
by distinct mechanisms in hyperplastic bundle sheath-derived 
tumor cells (HPT) or hypertrophic mesophyll-derived tumor 
cells (HTT)31. See1 mediates only bundle sheath cell-derived 
tumor formation, whereas mesophyll-derived tumor formation is  
independent of See131.

During tumor formation in the middle stage, the ammonium 
transporters Ump1 and Ump2 and the oligopeptide transport-
ers Opt2, Opt3, and Opt4 appear to mediate nitrogen acquisi-
tion. Ump1, Ump2, and Opt2 are induced already on the leaf 
surface and further upregulated in planta28,32. The fact that two 
secreted aspartic proteases are co-expressed with the OPTs  
suggests that the breakdown of extracellular proteins and peptide 
uptake may be part of the biotrophic developmental program of  
U. maydis28. Carbon assimilation during biotrophic develop-
ment is known to occur mainly via the high-affinity sucrose and 
glucose transporters Srt1 and Hxt1, respectively. While Srt1 is 
strongly induced during plant colonization, Hxt1 expression is  
independent of the fungus–plant interaction33,34.

At later stages of disease (4–8 DPI), a third wave of effectors 
supports tumor maturation and the production of melanized tel-
iospores. One important regulator after establishment of the 
biotrophic interaction is the APSES transcription factor Nlt1. 
Nlt1 appears to guide tumor formation on leaf tissue but not  

anthocyanin and tumor formation on the base of the stem28. 
Another factor contributing to the regulation of effector gene 
expression at the later stage is the forkhead transcription fac-
tor Fox1. Fox1 is required for the attenuation of plant defense 
responses and for full expression of 141 genes, of which 38 encode 
potential effectors, as well as several proteins involved in sugar 
processing and transport and secondary metabolism14. Genes 
encoding effectors that are specifically expressed at late stages 
of biotrophic development are largely unexplored functionally.  
Potentially, they function to sustain tumor development and 
guide spore formation as well as the formation of a muci-
laginous matrix in which spores are embedded. A key regu-
lator of these late-stage events is the DNA-binding WOPR  
protein Ros1. Ros1 function is essential for teliosporogenesis, 
and the majority of Ros1 target genes are involved in metabo-
lism and cellular transport. The Ros1-dependent induction of 
late effector genes and repression of early effector-encoding  
genes indicates that Ros1-mediated regulation occurs 
by direct and indirect mechanisms, involving additional  
regulators20. As described below, further insights into late-stage  
changes in both host and pathogen gene regulation were  
obtained by examining transcriptomes specifically in tumors.

Transcriptome changes reveal extensive metabolic 
remodeling in tumors
Recent transcriptome profiling experiments of the late stage of 
infection, when tumors were evident, identified host genes that 
were upregulated (4,086) or downregulated (5,237)4,35. Down-
regulated functional categories included metabolic pathways 
for amino acids, organic acids, lipids, and photosynthesis. By 
contrast, upregulated functional categories were related to plant 
defense and lipid and carbohydrate metabolism. As expected 
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for proliferating maize cells during tumor formation, meris-
tem maintenance functions were upregulated during infection.  
Additionally, maize transcription factors that are normally 
expressed in leaf tissue during plant development were down-
regulated in infected plants. In contrast, transcription factors 
normally expressed in flowers were upregulated in tumor tis-
sue. Thus, U. maydis appears to inhibit the transition to adult 
tissue development and instead induces a flowering program. 
Chloroplast functions related to vegetative tissue, such as 
photosynthesis, lipid production, amino acid formation, and  
secondary metabolism, were downregulated while reproduc-
tive functions such as sucrose and starch metabolism were 
upregulated during infection. Maize mutants in host compo-
nents related to the vegetative to flowering transition, the bio-
genesis of the chloroplast, or starch formation all showed altered  
susceptibility to U. maydis. For example, impaired chloroplast 
formation in the why1 mutant led to increased susceptibility, 
while the inactive/delayed transition to a flowering state (id1) 
and the reduced starch formation leading to lower sink capacity  
(su1) led to increased plant resistance4,35.

Consistent with earlier work, transcriptome profiling of tumor 
tissue supported an important role of sugar transporters for 
metabolic exploitation of the host4,13,33. Hexoses and other sug-
ars represent major carbon sources for U. maydis, and the fun-
gus possesses 19 proteins with similarities to sugar/hexose-like 
transporters. As mentioned above, transporters such as Hxt1 and 
Srt1 play important roles during infection. Hxt1 is constitutively 
expressed and has transport activity mainly for glucose but also 
fructose and mannose. As a high-affinity glucose transporter, 
Hxt1 also possesses glucose-sensing activity and competes with 
the host for glucose molecules freed from sucrose by invertase.  
Previous work involving the deletion of the gene for this trans-
porter or expression of a constitutive active (sensing but not 
transport activity) version resulted in strains with reduced or 
fully abolished virulence, respectively33. As indicated, the trans-
porter Srt1 is induced only in planta and transports sucrose. 
Based on its extremely high affinity to sucrose (up to 200-fold 
versus a typical plant transporter), it outcompetes the sucrose 
transport functions of the host. The virulence of deletion  
strains for srt1 was strongly reduced33. Deletion of both hxt1 and 
srt1 further reduced fungal virulence, thus indicating a simultane-
ous uptake and use of sucrose and glucose by the pathogen dur-
ing infection. Other carbon sources such as organic acids (fatty 
acids or carboxylic acids) may also contribute to the carbon 
supply of the pathogen at early time points of infection on the  
cuticle and at a late stage during spore formation36. Monocar-
boxylic acids are a carbon source for U. maydis in vitro but can 
have detrimental effects on fungal longevity and reactive oxygen 
species resistance37. Ustilago is known to inhibit the transition  
to C4 metabolism that is dependent on the dicarboxylate malate 
for transport between cells. However, it is still unknown how 
and if different host-derived carboxylic acids affect fungal  
virulence2.

In general, the transcriptome analyses of infected tissue sup-
port the idea that control of chloroplast functions is a critical 
aspect of the infection of maize by U. maydis. Moreover, primary 

and secondary metabolic functions and plant defense contribu-
tions of the chloroplast appear to be suppressed or altered dur-
ing infection. In line with these observations, chloroplasts were  
observed to accumulate high amounts of starch, consistent with 
an overall increased starch content in tumor tissue1,4,31. However, 
the mechanisms by which U. maydis impacts the chloroplast  
are still unknown.

Beyond Ustilago maydis: transcriptome studies with 
other smut fungi
A number of transcriptome studies have also been carried out 
for host–pathogen interactions involving other species in the 
Ustilaginales. For example, Que et al.38 examined the interac-
tion between the sugarcane smut Sporisorium scitamineum and 
its host Saccharum officinarum, comparing the transcriptional  
responses of resistant (Yacheng05-179) and susceptible (“ROC”22) 
plant lines. This study focused on the transcriptional responses 
of the host at 24, 48, and 120 hours after inoculation (HAI) 
in the resistant and susceptible cultivars. Both lines showed 
an overall increase in the number of differentially expressed 
genes (DEGs) as infection progressed, but the resistant culti-
var exhibited an earlier response to pathogen infection. Con-
sistently, most DEGs were associated with stress and defense 
responses to pathogen attack. The resistant cultivar revealed a 
rapid peak in DEGs at 48 hours, and more DEGs were associated  
with disease resistance when compared to the susceptible cul-
tivar. The susceptible cultivar showed a similar accumulation 
of disease resistance-associated DEGs at the 120-hour time 
point, highlighting the difference in the timing of the response 
to infection by the resistant and susceptible lines. Categories 
of genes showing differential expression included metabolic 
functions associated with resistance, hormone signaling, flavo-
noid biosynthesis, cell wall fortification, and defense-related 
transcription. Interestingly, a total of 26 host chitinases were  
differentially expressed in the S. scitamineum-infected 
plants. Expression of two of the chitinases in tobacco led 
to increased disease resistance against Fusarium solani and  
Botrytis cinerea.

In a more recent transcriptome study, Wang et al.39 investi-
gated the interaction between the edible culm gall-forming fun-
gus Ustilago esculenta and the host Zizania latifolia, an aquatic 
grass. The transcriptome study compared infections for two 
strains of the fungus: the teliospore-forming strain Huijiao and 
the non-sporulating strain Jiaobai. In general, DEGs were more 
frequently observed in plants infected with the Jiaobai strain 
versus the Huijiao strain, although the proportion of fungal  
transcripts was lower in the former infection. Huijiao-infected 
plants exhibited a peak of 57% of total transcripts of fungal ori-
gin at 10 days after swelling (DAS) compared to only ~5%  
for Jiaobai.

With regard to host gene expression, clear differences were 
observed over the course of infection with sampling every 4 days 
starting at 7 days prior to swelling and ending at 13 DAS. That 
is, for plants infected with the Jiaobai and Huijiao strains, host 
genes were identified that were upregulated at all three stages 
as well as host genes that were upregulated only at specific 
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time points in comparison to uninfected controls. Additionally,  
170 and 205 host DEGs with potential roles in culm gall forma-
tion were identified at 1 and 10 DAS, respectively. These genes 
encoded proteins with predicted roles in primary and secondary 
metabolism as well as in plant–pathogen interactions and plant  
hormone signal transduction.

An analysis of pathogen genes that were upregulated was also 
carried out to attempt to identify functions involved in culm 
gall formation. Applying an analysis that paralleled that used 
for host genes, 78 and 109 pathogen genes were identified at 1 
and 10 DAS, respectively. A significant fraction of these genes  
lacked annotation, while genes coding for proteins had pre-
dicted functions in nucleotide binding, transcriptional regulation,  
hydrolase activity, transferase activity, and transport.

In addition to U. maydis, other members of the Ustilaginales 
have been investigated as models for studying biotrophic phy-
topathology. For example, Rabe et al.40 carried out a compre-
hensive study of the genome, transcriptome, and usefulness as 
a model system of the grass pathogen Ustilago bromivora and 
one of its hosts, Brachypodium spp. Initially, a susceptible line, 
Bd28, was identified after screening a number of Brachypodium 
spp. accessions for susceptibility to U. bromivora. In addition to 
extensive characterization of U. bromivora and its interaction 
with the host, a transcriptome analysis compared fungal gene  
expression of U. bromivora in axenic culture with infected 
stems of Bd28. It was found that 7.3% of the identified fun-
gal transcripts were upregulated while 16.8% were downregu-
lated. It is notable that these percentages are far lower than 
those reported by Lanver et al.28 for differential expression of 
U. maydis genes during plant infection. For U. bromivora, tran-
scripts encoding potential effectors were enriched among upreg-
ulated transcripts during infection (30.8%). In comparison,  
only 5.7% of transcripts (genes) overall were predicted to 
encode secreted proteins. Among the genes for predicted 
secreted proteins, 84.1% encoded proteins of unknown func-
tion compared with a frequency of 46.4% for all of the proteins 
encoded by U. bromivora. This finding is consistent with other 
studies indicating that most secreted effectors of plant patho-
genic fungi are uncharacterized and poorly conserved between  
species28. The observation that all of the functionally char-
acterized effectors identified in U. maydis also have 
homologs in U. bromivora highlights the importance of fun-
gal model systems to investigate molecular principles of  
effector function.

Conclusions and future perspectives
Overall, recent transcriptome profiling has revealed dynamic 
changes in the transcription of pathogen genes encoding  

metabolic functions (e.g. for nitrogen and carbon metabolism) 
that likely reflect shifting environmental conditions through-
out the disease process as U. maydis colonizes tissue, induces 
tumors, and sporulates. It is fascinating that the changes in 
pathogen gene expression are integrated with and driven by  
effector-mediated manipulation of host cell metabolism and 
plant immunity. Time-resolved analyses greatly increase our 
understanding of individual stages of pathogenic development 
and how transitions between those are coordinated. Future work 
will exploit the accumulated wealth of data to experimentally 
address predictions about pathogen effectors and their regula-
tors and the importance of specific metabolic changes for both 
the pathogen and the host. For example, it is of keen interest to 
understand how different host environments are sensed and trans-
lated into adapted transcriptional programs. Also, future work will  
further examine the details of tumor formation. It is important to 
mention that these studies will benefit from technical improve-
ments that increase the detection of less-expressed genes and 
reproducibility in cell type-specific transcriptome studies. 
Moreover, comparisons of non-tumor-forming smuts, such as  
Sporisorium reilianum and Ustilago hordei, with U. may-
dis may provide clues about the timing of tumor induction and 
the corresponding specific pathogen and host functions. The 
sophisticated molecular tools established for U. maydis, and  
the emerging tools for U. bromivora, will provide novel 
insights that are relevant specifically for tumor induction and 
sporulation by other smut fungi as well as generally for the  
mechanisms of biotrophy.

Abbreviations
DAS, days after swelling; DEGs, differentially expressed genes; 
DPI, days post inoculation; UPR, unfolded protein response
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