
ORIGINAL RESEARCH
published: 26 November 2018
doi: 10.3389/fbuil.2018.00069

Frontiers in Built Environment | www.frontiersin.org 1 November 2018 | Volume 4 | Article 69

Edited by:

John T. Katsikadelis,

National Technical University of

Athens, Greece

Reviewed by:

Alejandro Jacobo Cabrera Crespo,

University of Vigo, Spain

Aristophanes John Yiotis,

National Technical University of

Athens, Greece

*Correspondence:

Alejandro Enrique Martínez-Castro

amcastro@ugr.es

Specialty section:

This article was submitted to

Computational Methods in Structural

Engineering,

a section of the journal

Frontiers in Built Environment

Received: 02 August 2018

Accepted: 07 November 2018

Published: 26 November 2018

Citation:

Molina-Moya J, Martínez-Castro AE

and Ortiz P (2018) An Iterative Parallel

Solver in GPU Applied to Frequency

Domain Linear Water Wave Problems

by the Boundary Element Method.

Front. Built Environ. 4:69.

doi: 10.3389/fbuil.2018.00069

An Iterative Parallel Solver in GPU
Applied to Frequency Domain Linear
Water Wave Problems by the
Boundary Element Method
Jorge Molina-Moya, Alejandro Enrique Martínez-Castro* and Pablo Ortiz

Department of Structural Mechanics and Hydraulic Engineering, University of Granada, Edificio Politécnico, Granada, Spain

In this paper a parallel iterative solver based on the Generalized Minimum Residual

Method (GMRES) with complex-valued coefficients is explored, with applications to the

Boundary Element Method (BEM). The solver is designed to be executed in a GPU

(Graphic Processing Unit) device, exploiting its massively parallel capabilities. The BEM

is a competitive method in terms of reduction in the number of degrees of freedom.

Nonetheless, the BEM shows disadvantages when the dimension of the system grows,

due to the particular structure of the system matrix. With difference to other acceleration

techniques, the main objective of the proposed solver is the direct acceleration of

existing standard BEM codes, by transfering to the GPU the solver task. The CUDA

programming language is used, exploiting the particular architecture of the GPU device

for complex-valued systems. To explore the performances of the solver, two linear water

wave problems have been tested: the frequency-dependent added mass and damping

matrices of a 3D floating body, and the Helmholtz equation in a 2D domain. A NVidia

GeForce GTX 1080 graphic card has been used. The parallelized GMRES solver shows

reductions in computing times when compared with its CPU implementation.

Keywords: GMRES (generalized minimal residual) algorithm, CUDA (compute unified device architecture), GPU

(CUDA), floating bodies, boundary element method - BEM

1. INTRODUCTION

The Boundary Element Method (BEM) is a numerical technique to obtain approximated solutions
of partial differential equations. The origins of the method comes from Finite Element Method
(FEM) ideas in the 1970s. The paper by Cheng and Cheng (2005) shows the previous works and
the initials of the BEM. The birth date of the technique is considered in 1963, with the first paper
by Jaswon and Porter (1963). The first BEM conference was held at Southampton University in
1978, and and the first book was published in the same year, by Brebbia (1978). With refference
to three-dimensional boundary value problem, the basic idea of the BEM is the use of boundary
integral equations for primary variables at internal points (e.g., displacements, or potentials), and
its extension to boundary points after a limit-to-the-boundary process. The integrals are interpreted
in the sense of the Cauchy Principal Values (primary variables) or the Hadamard Finite Parte
(derived variables). To solve a boundary value problem, a mesh is defined at the boundary, and
the integral equation is used at collocation points. A fully-populated coefficient system matrix is
obtained. Comparing to the FEM, the BEM is a boundary method, in the sense that the numerical

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2018.00069
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2018.00069&domain=pdf&date_stamp=2018-11-26
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:amcastro@ugr.es
https://doi.org/10.3389/fbuil.2018.00069
https://www.frontiersin.org/articles/10.3389/fbuil.2018.00069/full
http://loop.frontiersin.org/people/609451/overview
http://loop.frontiersin.org/people/515209/overview

Molina-Moya et al. GPU GMRES Waves in BEM

discretization is carried out at reduced spatial dimension (e.g.,
in three-dimensional problems, a mesh is required only at
the surfaces). This reduced dimension leads to smaller linear
systems, less computer memory requirements, and more efficient
computation.

The BEM is particularly well suited in wave problems due to
mesh reduction and the natural treatment of radiation boundary
conditions. Thus, it is an efficient competitor of some particuar
techniques, such as the partition of unity method in diffraction
and refraction problems (Ortiz and Sánchez, 2001; Ortiz, 2004)
in the Finite Element Method.

The classical book by Brebbia and Dominguez (1996) explain
the basic BEM theory and applications for potential and solid
mechanics. The book by Bonnet Bonnet (1999) is a recent
reference, with applications to solid and fluid mechanics. In the
specific context of fluid mechanics, Hess (1990) introduced the
panel method, which is equivalent to BEM techniques; the book
by Brebbia and Partridge (1992) is focused on particular BEM
topics for fluid mechanics.

Besides the inherent advantages, the BEM shows some
disadvantages for systems with large number of degrees of
freedom. In the standard BEM, the system matrix is fully
populated, without symmetry or sparsity structures. This causes
that the main bottleneck in computing times comes from the
solver task. The use of acceleration iterative solvers, popular in
FEM (e.g., the conjugate gradient) can not be used in BEM.
For large system of equations this problem is crucial and
makes the standard BEM not competitive with respect to other
domain techniques, such as the Finite Element Method. This
is particularly notorious in wave problems in the frequency
domain, where the system matrix is complex-valued and fine
meshes with large number of degrees of freedom are required.

In the BEM literature several acceleration techniques have
been developed for large systems. The review paper by Liu
et al. (2012) shows historical aspects and recent advances in
acceleration methods for the BEM. A first approach consists on
the multipole expansion of the Green functions, with an iterative
solver. This is known as the Fast Multipole Method (FMM).
The FMM has been regarded as one of the top 10 algorithms
in scientific computing and has progressed very significantly. It
was first introduced by Rokhlin (1985) in potential problems.
The tutorial by Liu and Nishimura (2006) explain the basic
algorithm and implementation details. The FMM has been
extended to other fields: in elastostatic, Liu (2008) develops the
algorithm for hipersingular 2D boundary integral equations in
multidomain problems; Djojodihardjo (2010) considers the use
of the FMM in FEM-BEM acoustic-structural interaction; in
3D time-harmonic elastodynamics, Chaillat and Bonnet (2013)
review the basic developments in FMM; in electromagnetism,
the book by Gumerov and Duraiswami (2005) shows a detailed
exposition of the FMM applied to the solution of the general
three-dimensional Helmholtz equation. The book by Liu (2009)
covers the basic FMM algorithms for potential, elastostatics,
Stokes flow and acoustic waves. Fortran codes are included.

When the FMM is implemented in a code based on the
sequential use of the Central Processing Unit (CPU) for a system
with N unknowns, the computing times is considerably reduced,

with times O
(

N1.5
)

, or even O
(

N log2 N
)

with a multilevel
approach (see López-Portugués et al., 2012).

The implementation of the FMM algorithm requires a strong
redesign of an existing code: a new hierarchical mesh of reference
points must be created, and the multipole expansion modifies the
way in which the system matrices are computed. The method is
also dependent on the kind of multipole expansion of the Green
function. The multipole expansion is not unique, and it is not
available for any Green function. As a consequence, the FMM is
not a general method. In the literature there have been developed
different strategies to accelerate a BEM code, independent on
the Green function. Such techniques can be classified into two
groups: the pFFT (pre-corrected Fast Fourier Transformation)
and the ACA (Adaptive Cross Approximation).

The pFFT method was proposed in 1997 by Phillips (1997);
Phillips and White (1997), in the context of potential problems,
with Laplace and Helmhotz equations as the governing equation.
It has been extended to other fields in the BEM: Stokes equation,
linear elasticity, coupled electrostatic and elasticity, Poisson,
dynamics and quasi-linear equations (described in Liu et al.,
2012). In the pFFT the algorithm does not depend on the Green
function, and its implementation is easy. The computing time in a
sequential CPU implementation are O(N)+O(Ng log2 Ng), with
Ng the number of nodes of an auxiliary mesh, which is required
by the method.

The ACA method (Lu et al., 2004; Benedetti et al., 2008) is
in the context of methods in which the improvement comes
from the acceleration of the solver, with the use of hierarchical
matrices, introduced by Hackbusch (1999) . The system matrix is
approximate by a low-rank expansion.

The Generalized Minimum Residual Method (GMRES) is an
iterative solver for the general use in the BEM. It was introduced
by Saad and Shultz (1986). It is based on Krylov subspaces
approximations. The main attraction of the GMRES comes
from its direct use with fully-populated matrices, typical in the
collocation BEM. Its use is widely extended, as a direct solver
or to accelerate other fast methods, as FMM or AKA. Leung
and Walker (1997) developed a combined GMRES with Dual
Compensation method in 3D elastostatics. In multipole BEM,
Margonari and Bonnet (2005) developed a combined BEM-FEM
method in 3D elastostatics; the GMRES is used to solve the linear
system of equations, and the FMM to accelerate thematrix-vector
multiplications. In AKA, Brancati et al. (2009) combine the use of
hierarchical matrices with GMRES in acoustics.

In comparison with the FMM, pFFT, or ACA, the main
advantage of the GMRES is its use as a direct solver; it does not
require modifications of an existing BEM code respect to the
collocation schema and generation of the system matrices. The
computational cost of the GMRES isO

(

N2
)

.
Recent advances in computing hardware have extended

the implementation of parallelization to improve the solver
performances. The parallelizaction can be carried out in multi-
core CPU (Central Processing Unit) systems. In addition,
the use of the Graphics Processing Unit (GPU) for massive
parallelization is extending nowadays. Its first use comes
from the Graphics processors developed by NVIDIA, and
the computing languaje CUDA (Computer Unified Device

Frontiers in Built Environment | www.frontiersin.org 2 November 2018 | Volume 4 | Article 69

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

Architecture) Sanders and Kandrot (2010). Thus, a new
computing paradigm has been developed for numerical analysis,
based on heterogeneous massive parallel computation (Kirk and
Hwu, 2012). This paradigm requires a new global vision of codes,
by splitting the global tasks in blocks which are best suited to
be executed in the CPU, and blocks which are best suited to be
executed in massive parallel GPU processors.

The use of the GPU to accelerate the BEM is a recent trend
since 2009. Hamada and Takahashi (2009) show the use of the
GPU in the collocation stage, in acoustic wave problems governed
by the Helmholtz equation. Wang et al. (2011), used the GPU
to accelerate both the collocation task and the solver stage,
in elastostatics problems, with the Dual-Compensation GMRES
solver.Wang et al. (2013) used the GPUwith the FMM to develop
an adaptive solver in 3D elasticity. In the context of the standard
collocation mehtod, the use of the GPU to perform the global
matrix assembly and the LU factorization is reported in the work
by D’Azevedo and Nintcheu Fata (2012).

In the context fluid dynamics and meshless methods, Kelly
et al. (2014) explore a GPU implementation of an incompressible
Navier-Stokes code based on a Radial-Basis Function Collocation
Meshless Method for two-fluid flows. For compressive flows, Ma
et al. (2014) show a GPU implementation.

The acceleration of the GMRES in GPU is explored by Li
and Saad (2013) for sparse matrices; in this paper, the BEM is
not considered. Geng and Jacob (2013) states the acceleration
of vector-matrix products in the GMRES. In the literature, the
development of acceleration techniques based on the GPU for
the GMRES are focused on real-variable (simple or double
precision).

This paper explores the acceleration of the BEM based on
the acceleration of the GMRES solver, in the GPU, for complex-
valued systems with a fully-populated matrix, that arises in linear
water wave problems. The interest of the topic covers fluid
and fluid-structure interaction analysis. The generation of the
system matrix is implemented in the CPU. The main idea of the
acceleration scheme is the use of direct BEM codes, in which the
CPU is used to assemble the system matrix, and the GPU is used
to solve the linear system of equations. At this point, the basic
GMRES algorithm is explored, in which a preconditioner has not
been implemented.

This paper is organized as follows: in section 2 the basic
wave problems are described; section 3 shows the parallelization
algorithm, describing the tasks to be run in the CPU and the
GPU; section 4 show the numerical benchmark; section 5 shows
the main conclusions of the work.

2. BASIC EQUATIONS

2.1. Mass and Damping Matrices of a
Floating Body
The first problem is centered in the computation of the mass
and damping matrices in a fluid-solid interaction problem. The
analysis of a moving solid floating in amoving fluid due to gravity
waves is considered. The solution can be obtained by splitting the
wave problem into a diffraction and a set of refraction problems,

in which the rigid-body modes of displacement are considered.
This decomposition can be found in classical references in water
waves, as described in Mei et al. book Mei et al. (2005). In the
diffraction problem, the solid is fixed in an incidental potential
field, giving the actions (forces and moments) which excites the
solid. In the radiation problems, the floating body is excited
by a time-harmonic force following the rigid-body degrees of
freedom; a potential problem is stated at the fluid, considering
the prescribed boundary condition at the velocity field in the
boundary with the body. The mass and damping matrices are
obtained by integration at the fluid-solid inter-phase.

With relation to Figure 1, and the reference system
R{0; x, y, z}, it is considered a 3D floating body in a fluid
domain � in which the interphase surface with the solid is SB.
Potential flow is considered at the fluid, with 8(x) the velocity
potential function, with x = (x, y, z) a vector representing
the coordinates of a point in the fluid domain, in an eulerian
framework. Considering the complex-valued variable, the
potential can be split into a spatial and temporal functions,

8(x, t) = φ(x) e−iω t (1)

with i =
√
−1 and ω the angular frequency. Function φ(x)

can be decomposed into a diffraction term and six radiation
components (rigid-body modes),

φ(x) = φD(x)+
6

∑

i=1

Viφi(x) (2)

with Vi the participation factors of the rigid-body motions.
Each potential φi(x) is governed by an independent Laplace

equation,

1φi(x) = 0 (3)

with 1 =
(

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)

the Laplace operator.

FIGURE 1 | Floating body.

Frontiers in Built Environment | www.frontiersin.org 3 November 2018 | Volume 4 | Article 69

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

The free-surface and non-permeable boundary conditions are
imposed at z = 0 and z = −h, respectively

∂φi

∂z
− ω2

g
φi = 0 in z = 0 (4)

∂φi

∂z
= 0 in z = −h (5)

with g the gravity acceleration constant. At the interphase, both
velocities at the solid and fluid are equal. Thus,

∂φi

∂n
= −iωVi (ai · n) in SB (6)

with n the unitary normal vector exterior to the fluid domain,
and ai the velocity vector due to a unitary-amplitude oscillation
given at the i degree-of-freedom. Last, the Sommerfeld radiation
boundary condition is given as,

lim
r→∞

(

∂φi

∂r
− i kφi

)

= 0 (7)

with r =
√

x2 + y2, and k the wavenumber, which verifies the
following dispersion equation,

ω2 = g k tanh
(

k h
)

(8)

The mass matrix components (µij) and added damping (λij) are
obtained by integration.

µij = ρ

∫

SB

Re
[

φi

(

aj · n
)]

dS (9)

λij = ρ ω

∫

SB

Im
[

φi

(

aj · n
)]

dS (10)

With ρ the fluid density.

2.2. Mild-Slope Equation
The second selected problem is centered in the propagation of
gravity waves in a three-dimensional fluid domain characterized
by a slow-varying depth profile. The governing equation is known
as the Mild-Slope equation, proposed by Berkhoff (1972, 1976),
in the context of harbor problems. This problem has been
solved by numerical methods by the Finite Element Method (e.g.,
Ortiz and Pastor, 1990; Ortiz and Sánchez, 2001; Ortiz, 2004)
for refraction-diffraction. In the BEM literature the domain
formulation is explored for particular cases. Isaacson and Qu
(1990) develop a method based on Green functions and BEM
techniques for predicting the wave field in a harbor containing
partially reflecting boundaries. Liu (2001) solves the numerical
prediction of combined difraction and refraction ocean waves by
use of a Dual Reciprocity BEM (DRBEM).

With reference to Figure 2, a velocity potential 8(x, t) is
considered. The free surface is characterized by the function
ς(x, y, t). Function h(x, y) represents the varying depth. In the
frequency domain, the complex potential φ(x) (1) is introduced.
Thus, function ς(x, y, t) can be written as:

ς(x, y, t) = η(x, y) e−iω t (11)

FIGURE 2 | Parameter definition in the Mild-slope problem.

The complex-valued function η(x, y) represents the wave height,
interpreted as a perturbation of the free surface respect to the rest
position.

Potential φ(x) verifies the Laplace equation, analogous to (3).
The impermeable boundary condition at the bottom depth can
be written as,

∂φ

∂z
+ ∇φ · ∇h = 0 in z = −h(x, y) (12)

with∇ the gradient operator in the spatial coordinates (x, y). The
free-surface condition can be written as,

∂φ

∂z
− ω2

g
φ = 0 in z = 0 (13)

For the particular case of constant-depth, it can be proved
Chamberlain and Porter (1995) that function η(x, y) verifies the
Helmholtz equation,

1η(x, y)+ k2η(x, y) = 0 (14)

with k the wave length, for which the dispersion Equation (8) is
verified.

2.3. Boundary Element Formulation
To approximate the solution by the BEM, the first step is the
statement of a Boundary Integral Equation (BIE). For an internal
point, (3), and considering the potential φ, the BIE is

φ(x)+
∫

S

∂G(x; y)
∂n

φ(y) dS(y) =
∫

S
G(x; y) ∂φ(y)

∂n
dS(y) (15)

with x ∈ �, y ∈ S, and G(x; y) is the Green function of the
problem; for the three-dimensional Laplace equation, the Green
function is,

G(x; y) = 1

4πr(x; y) (16)

with r(x; y) the euclidean distance from point x, or collocation
point to the observation point y.

Frontiers in Built Environment | www.frontiersin.org 4 November 2018 | Volume 4 | Article 69

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

The BIE for a smooth boundary point x ∈ S is obtained after
a limit-to-the-boundary process (Brebbia and Dominguez, 1996;
Bonnet, 1999)

φ(x)

2
+

∫

S

∂G(x; y)
∂n

φ(y) dS(y) =
∫

S
G(x; y) ∂φ(y)

∂n
dS(y) (17)

Both BIEs (15, 17) are valid for the Helmholtz Equation (14),
considering a bi-dimensional domain and replacing variable φ by
η, with the Green function,

G(x; y) = 1

2π
K0(i k r) (18)

with K0 the modified Bessel function order 0. In Isaacson and
Qu (1990) it is derived an alternative expression for this Green
function in the context of the Mild-slope equation. In case of
variable-depth, the Dual Reciprocity Method (Liu, 2001) leads to
a BEM formulation.

Equation (17) is used in a standard collocation method.
After the boundary discretization, and integral evaluation, it is
obtained the basic matrix formulation, as follows

HU = GQ (19)

with H and G two matrices, and U and Q vectors with degrees-

of-freedom in potential φ or flux ∂φ
∂n , respectively. After the

application of the prescribed boundary condition, the linear
system of equations is obtained,

AX = B (20)

The evaluation of the integrals depends on the type of
shape functions selected to interpolate the potential or flux
variables (Brebbia and Dominguez, 1996), with particularities
for singular or quasi-singular integration. In this paper
constant elements have been considered, due to its widely
use in the literature about acceleration techniques in
BEM.

3. A PARALLEL GMRES WITH CUDA

3.1. The Generalized Minimum Residual
Method
In this section the restarted GMRES (van der Vorst, 2003)
is described. With reference to system (20), the first step
in the GMRES solver is the definition of an initial solution
vector, X0. Thus, a first residual is defined as r0 = B −
A · X0. Algorithm 1 describes the steps of the restarted
GMRES, in which a new initial point X0 is set after m steps,
unless the convergence criteria is reached. This technique
allows important reductions in memory and computing times.
In the context of this paper, the GMRES schema has
been adapted to incorporate complex-valued matrices and
operations.

With reference to Algorithm 1, vector e1, length m, is a
unitary vector, in which the first position is 1 and 0 the other

Algorithm 1: Restarted GMRES

1: r = B− A · X0 for an initial approximation X0

2: for j = 1, 2, . . . do
3: β = |r|
4: v1 = r/β

5: B̂ = βe1
6: for i = 1, 2, . . . ,m do

7: w = A · vi
8: for k = 1, . . . , i do
9: hk,i = vk · w
10: w = w− hk,ivk
11: end for

12: hi+1,i = |w|
13: vi+1 = w/hi+1,i

14: u1,i = h1,i
15: for k = 2, . . . , i do
16: γ = ck−1uk−1,i + sk−1hk,i
17: uk,i = −sk−1uk−1,i + ck−1hk,i
18: uk−1,i = γ

19: end for

20: δ =
√

∣

∣ui,i
∣

∣

2 +
∣

∣hi+1,i

∣

∣

2

21: if
∣

∣ui,i
∣

∣ <
∣

∣hi+1,i

∣

∣ then

22: µ = ui,i/hi+1,i

23: τ = µ/ |µ|
24: else

25: µ = hi+1,i/ui,i
26: τ = µ/ |µ|
27: end if

28: ci =
∣

∣ui,i
∣

∣ /δ

29: si =
∣

∣hi+1,i

∣

∣ τ/δ

30: ui,i = ciui,i + sihi+1,i

31: b̂i+1 = −sib̂i
32: b̂i = cib̂i

33: ω =
∣

∣

∣
b̂i+1

∣

∣

∣

34: if ω/ |B| ≤ Tolerancia then
35: nr = i
36: ynr = b̂nr/unr ,nr
37: Ir a línea 41
38: end if

39: end for

40: nr = m
41: ynr = b̂nr/unr ,nr
42: for k = nr − 1, . . . , 1 do

43: yk =
(

b̂k −
∑nr

i=k+1
uk,iyi

)

/uk,k

44: end for

45: X = X0 +
∑nr

i=1 yivi
46: ω2 = |B− A · X|
47: if ω2/ |B| ≤ Tolerancia then
48: Solution obtained→ End
49: end if

50: r = B− A · X
51: end for

positions. The dot products with complex-valued components
are interpreted in the sense of the inner product in a Hilbert

Frontiers in Built Environment | www.frontiersin.org 5 November 2018 | Volume 4 | Article 69

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

space. Thus, if a and b are complex-valued vector, the dot product
is defined as follows,

a · b =
∑

ai · bi. (21)

with ai the complex-conjugate of term ai. The sum (21) is
extended to the dimension of the complex vector.

The norm |v| is defined in terms of the previously defined
product,

|v| =
√

∑

vivi (22)

The stopping criterion is an important aspect in solver iterative
algorithms. In the context of this work, a dimensionless norm has
been considered, reported in Frayssé et al. (1998).

|r|
α |x| + χ

≤ Tolerance (23)

with α and χ two parameters to be set up by the user. In this
paper, parameters α = 1 and χ = 0 have been considered.

3.2. GPU Parallelization With CUDA
In the GMRES, the most demanding operation is the calculation
of the matrix-vector products. The parallelization of these
products has been implemented in CUDAprogramming languaje
and run in the GPU. The GPU is a device with specific resources
that must be considered in the design of the algorithms.

Computing times are sensitive to particular aspects, such
as the use of the shared memory, registers per thread and
the block-threads structure of the computing grid Kirk and
Hwu (2012). These parameters determine the occupancy1 of
the GPU. CUDA allows the code to be optimized for each
particular GPU device, which cause portability and scalability
of the generated codes. To adapt the execution parameters to
each singular GPU, the CUDA Occupancy Calculator developed
by NVidia has been used. Given the shared memory and the
number of registers per thread, the highest value of number
of threads per block are optimized for any particular GPU
device.

Figure 3 shows the global schema for the proposed solver. The
operations are grouped into four steps: two of them are carried
out in the CPU, and two into the GPU device.

Algorithm 2 is implemented with CUDA to be run in the
GPU. This algorithm is focused on control of the matrix-vector
products. Given a matrix M and vector V, the grid structure
is determined depending on the matrix and vector dimensions,
for maximum GPU occupancy. In general, for systems with
large number of degrees of freedom it is required the use of
more than one block per row, in order to balance the number
of operations required to process each row. However, when
more than one block is required per row, results computed
at each block must to be reduced to a unique value per
row.

1Number of simultaneous threads computed by multiprocessor divided by the

maximum allowed.

After the definition of these setup parameters, the memory
transfer operations between GPU and CPU must be minimized.
In this sense, the system matrix in the BEM code is fully
populated; thus, no compression methods are available, and all
the components of the matrix must be transferred to the GPU.
This transference is carried out by splitting the matrix in sub-
matrices. Each sub-matrix block is transferred to the GPU, in
which the matrix-vector product is carried out.

Algorithm 3 describes the first set of operations run in the
GPU. Each thread is used to carry out the product of the matrix
elements by the vector. Results are stored in a local vector in the
shared memory at each block. The reading/writing access to the
shared memory are faster than global memory.

The next step is the addition of the vector elements in each
thread in the shared memory, obtaining a unique value per block.
This addition is stored in a vector R in the global memory of the
GPU.

Algorithm 2:Matrix-Vector product - Main (CPU)

1: InputM: Matrix
2: Input V: Vector
3: Input N: Matrix dimension
4: Set TB, number of Threads per Block
5: Set BR, number of Blocks per Row
6: Set memory and copy Vector V to the GPU
7: Set memory and define vector R, dimension N·BR
8: if Total memory < GPU memory then
9: Set memory and copy MatrixM to the GPU
10: i=0
11: Call Algorithm 3 with a block mesh BR×N
12: else

13: Set Number of Steps = NS
14: Set NR, Number of Rows to be activated in each

multiplication step
15: for i=0,1,. . .,NS-1 do
16: Allocate memory and copy NR rows of MatrixM to the

GPU
17: Call Algorithm 3 with a mesh of BR×NR blocks
18: Free memory from GPU occupied by the NR rows
19: end for

20: end if

21: if BR>1 then
22: Call Algorithm 4 with a mesh, with number of threads ≥

N
23: end if

24: Copy the computed vector from GPU to CPU
25: Free all the global memory in GPU

The second step to be carried out in the GPU is described by
Algorithm 4. The aim of this part is the addition of the individual
values obtained at each block, in order to give the resulting vector.
This part is only required in case of defining more than one block
per row of matrix M. The last step is copying the N first elements
in vector R to the RAMmemory in CPU.

Frontiers in Built Environment | www.frontiersin.org 6 November 2018 | Volume 4 | Article 69

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

FIGURE 3 | Solver: global schema.

4. NUMERICAL TESTS

The proposedGMRES has been implemented in C++ andCUDA,
in the context of two BEM codes. The main objective of the
tests is the direct comparison of the computing times required
by the parallel GPU solver, compared with a pure sequential CPU
implementation. Tests are designed to measure the performances
of the parallel solver in the GPU. Thus, the CPU operations have
not been parallelized. No additional compiler optimizations have
been used in CPU, which could cause wrong conclusions about
computing times associated with the tested algorithms.

The NVidia GeForce GTX 1080 graphic card has been used,
with a compute capability 6.1, 8GB in global memory, 48KB of
shared memory per block, and 20 multiprocessors type SPMD
(Single Program Multiple Data), with 128 CUDA cores per
multiprocessor. CUDA 10 version has been used. The GPU
allows a maximum of 1024 threads per block and 2048 threads
per multiprocessor. For Algorithm 3, the code allocates 22
registers per thread and the required shared memory is 16
bytes (size of a double precision complex number) per thread.
On the other hand, for Algorithm 4, the code computes 28
registers per thread and no shared memory is required. With
these values, the occupancy calculator selects 1,024 threads per
block with 100% occupancy. The CPU is an Intel i7-6800K
processor.

The Salome mesher (http://www.salome-platform.org/) has
been used to generate the three-dimensional meshes in the
floating body problem. The post-processing software Paraview
(http://www.paraview.org/) has been used to visualize the results.

4.1. Added Mass of a Floating Cylinder
This first example is in the context of fluid-solid interaction
analysis. In this problem, term µ11 in (9), corresponding to a
time-harmonic movement in direction x, is solved. The floating
body is a cylinder, shown in Figure 4, as a function of the
wavelength. This problem has an analytic solution in terms
of a normal modes expansion (Bhatta, 2003). The objective is
the observation of the dependence on the frequency on the
computing times at a fixed mesh.

The number of elements of the computing mesh is 7568,
shown in Figures 5 and 6. Constant three-node elements are
used. The minimum element size has been selected according to
a criterium dependent on the minimum wavelength, associated
with the higher frequency. Ten elements per minumum
wavelength have been considered.

The Laplace Equation (3), with the boundary conditions
given by Equations (4–6) have been considered. The radiation
condition (7) has been set in a simplified way Ortiz and Pastor
(1990), because the Green function considered does not fulfill the

Frontiers in Built Environment | www.frontiersin.org 7 November 2018 | Volume 4 | Article 69

http://www.salome-platform.org/
http://www.paraview.org/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

Algorithm 3:Matrix-Vector Product - GPU product

1: Store in the shared memory, given a vector of HB elements
(MC)

2: id1=threadIdx.x+blockIdx.x·blockDim.x
3: id2=threadIdx.x
4: while id1 < N do

5: MC[id2]+=M[blockIdx.y][id1]·V[id1]
6: id1+=blockDim.x·gridDim.x
7: end while

8: Thread synchronization
9: Set integer: j=blockDim.x/2
10: while j 6= 0 do
11: if id2 < j then
12: MC[id2]+=MC[id2+j]
13: end if

14: Thread synchronization
15: j=j/2
16: end while

17: if id2=0 then
18: R[i·NF+N·blockIdx.x+blockIdx.y]=MC[0]
19: end if

Algorithm 4:Matrix-Vector Product - Reduction in (GPU)

1: id=blockDim.x·blockIdx.x+threadIdx.x
2: if id < N then

3: for j=1,2,. . .,BF-1 do R[id]+=R[id+N·j]
4: end for

5: end if

FIGURE 4 | Floating cylinder.

radiation boundary condition. An external boundary has been
defined in r = 250 u.l. (units of length), for which relation (7)
is established. In this way, a complex-valued boundary condition
is given, which allows progressive waves in the solution. This
approximation avoids matching with an external solution based
on a normal-mode expansion, with a good approximation in the
frequency range tested.

Figure 7 shows the results for the added mass. Values
computed by integration (9) are compared, when potential
function is obtained by the BEM or by the analytic solution

FIGURE 5 | Floating body problem. 3D Mesh, seen from above.

FIGURE 6 | Floating body problem. 3D Mesh, perspective.

reported in Bhatta (2003). The dimensionless variable k r is
shown in abscissas, in which r is the cylinder radius and k the
wavenumber. The Y-axis represents the dimensionless values of
the added mass µ11. Small differences between the added mass
values are observed, less than 2%. Note that the comparison
is in integrated values of the computed potential, and not
in the potential itself. Both solutions includes representation
errors; the analytic solution is given in series form, in which
the singular behavior in corner is not included (Guzina et al.,
2006). In contrast, the BEM solution is obtained with constant
elements, and the radiation boundary condition is imposed in an
approximate form.

Table 1 shows the computing times required, as a function of
the wavelength. Column CPU shows the times required by the
GMRES in CPU (sequential). ColumnGPU shows the computing
times required by the GMRES in GPU. The last column shows

Frontiers in Built Environment | www.frontiersin.org 8 November 2018 | Volume 4 | Article 69

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

FIGURE 7 | Added mass µ11, as a function of k · r.

TABLE 1 | Computing times in the floating cylinder problem.

Wavenumber CPU (s) GPU (s) Speedup

0.025 73.12 7.14 10.24

0.050 138.48 14.04 9.86

0.075 236.68 26.31 9.00

0.100 392.63 50.04 7.85

0.125 598.39 89.36 6.70

0.150 932.56 165.50 5.63

0.175 1614.29 368.86 4.38

0.200 3302.82 1047.79 3.15

0.225 3946.75 1352.72 2.92

the speedup, computed as the rate between the CPU and GPU
times. It is observed a dependence in the computing times with
respect to the wavelength. The parallel GMRES is more effective
at low frequencies. This is due to the fixed mesh considered in
all the tests, with constant elements. The solution with constant
elements is poor for high frequency. The GMRES algorithm
shows poor convergence, and more iterations are required. At
low frequency, fast convergence is observed.

4.2. Internal Harbor Oscillations
In this section, the Mild-Slope equation is solved by the BEM,
to characterize the internal waves in a harbor. This problem has
been studied by Isaacson and Qu (1990); the same conditions
have been adopted in this paper.

Figure 8 shows the harbor geometry. The incidental wave ηI

is characterized by a period 2.0 u.t (units of time), amplitude 0.5

FIGURE 8 | Harbor configuration.

FIGURE 9 | Internal solution for η.

u.l. (units of legth) and a propagation direction perpendicular to
the harbor opening. Absorbing boundaries are considered at the
harbor. Constant depth, 20 u.l. is considered.

The Helmholtz Equation (14) is solved, for the wave elevation
η. The numerical results obtained for η inside the harbor domain
are shown in Figure 9. Note that this case corresponds with a
high frequency problem, with short wavelengths.

In this problem different meshes have been used, in order
to observe the efficiency of the GPU parallelization when the
number of degrees of freedom is increased. Table 2 shows the
computing times; column DOF reports the number of degrees of
freedom in the system; column Collocation shows the computing
time required by the BEM to generate the system matrix and
vector; columns CPU y GPU show the computing times required
by the GMRES solved in CPU or GPU, respectively. The last
column shows the speedup of the GPU solver.

Frontiers in Built Environment | www.frontiersin.org 9 November 2018 | Volume 4 | Article 69

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

TABLE 2 | Harbor oscillations.

DOF Collocation (s) CPU (s) GPU (s) Speedup

1,250 1.66 4.79 1.19 4.03

2,500 6.54 22.14 3.93 5.63

3,750 14.81 55.84 8.37 6.67

5,000 26.17 107.83 14.40 7.49

7,500 58.67 266.92 31.63 8.44

10,000 103.84 510.12 56.58 9.02

15,000 232.82 1276.89 131.66 9.70

20,000 415.31 2460.94 240.60 10.23

Computing times.

Numerical results shows that computing times required by
the collocation BEM (both in CPU) are one order less to the
computing times required to solve the linear system of equations.
It is also shown that the GPU solver is more efficient for large
number of degrees of freedom. For small number of degrees of
freedom, the bottleneck comes from time required to transfer
memory from CPU to the global memory in GPU. The speedup
increases for large number of degrees of freedom, even in
systems with 15,000 and 20,000 equations, in which the product
matrix-vector is carried out by blocks, with multiple memory
transferences from GPU to CPU.

5. CONCLUDING REMARKS

In this paper, a GPU implementation of the GMRES algorithm
is presented in the context of the BEM with fully-populated
matrices and with complex-valued arguments. It is explored
an interesting field related to the acceleration techniques for
the BEM in the frequency domain. With difference to other
acceleration techniques for the BEM (FMM, pFFT or ACA), the
proposed approach does not require modifications in the main
program, which computes the systemmatrix and the right vector.
This allows the use of standard BEM codes, with the solver task
transferred to the GPU.

The GMRES version described here does not include a pre-
conditioner. The use of preconditioners in the GMRES and
BEM is an important aspect for particular problems with poorly
conditionedmatrices. In the context of this paper, numerical tests

have been designed to show the performances of the proposed
solver. The development of a general preconditioned GMRES in
GPU for the BEM is out of the scope of this paper.

The acceleration is carried out by a main task controlled in
the CPU, which allows the massive parallelization of the matrix-
vector products in the GPU. The CUDA programming language
has been used to implement an adaptive solver, in the sense that
the generated code is optimized for the particular GPU device in
which it is compiled. The generated solver is portable and scalable
for future GPU devices. All the different GPU and CPU tasks are
described in algorithmic language.

Numerical tests show time reductions when compared with
a standard CPU solver. In the context of the BEM, the
inherent reduction in the number of degrees of freedom

(only at the boundary) causes that the standard collocation
method, with a direct assembly of the system matrix and right

vector, is extended among the different numerical codes for
a wide number of applications. For such codes, the proposed

solver represents an easy way to obtain time reductions in
computing times by transferring the solver task to the GPU.

Due to the fast development of the GPU systems, with
improvements in the number of cores, increasing the device
memories and improving the speed of the memory transferences,
the proposed GPU solver shows an interesting way of
acceleration, with future improvements depending on the device
developments.

AUTHOR CONTRIBUTIONS

AM-C conceived of the presented idea. JM-M, AM-C, and
PO developed the theoretical formalism and designed the
numerical tests. JM-M developed the presented algorithms and
implemented them on a computational framework. He also
performed the calculations and generated tables and figures.
JM-M, AM-C, and PO contributed to the final version of the
manuscript.

ACKNOWLEDGMENTS

We appreciate the partial financial support from the
MINECO/FEDER project BIA2015-64994-P.

REFERENCES

Benedetti, I., Aliabadi, M., and Daví, G. (2008). A fast 3D dual boundary element

method based on hierarchical matrices. Int. J. Solids. Struct. 45, 2355–2376.

doi: 10.1016/j.ijsolstr.2007.11.018

Berkhoff, J. C. W. (1972). “Computation of combined refraction-diffraction,”

in Proceedings of the 13th International Conference on Coastal Engineering

(Vancouver, BC), 471–490.

Berkhoff, J. C. W. (1976).Mathematical Models for Simple Harmonic Linear Water

Wave Models; Wave Refraction and Diffraction. Ph.D. thesis, Delf University of

Technology.

Bhatta, D. D. (2003). Surge Motion on a floating cylinder in water of finite depth.

Int. J. Math. Math. Sci. 2003, 3643–3656. doi: 10.1155/S0161171203209285

Bonnet, M. (1999). Boundary Integral Equation Methods for Solids and Fluids.

Chichester: Wiley.

Brancati, A., Aliabadi, M. H., and I., B. (2009). Hierarchical

adaptive cross approximation GMRES technique for solution

of acoustic problems using the boundary element method.

Comput. Model. Eng. Sci. 43, 149–172. doi: 10.3970/cmes.2009.

043.149

Brebbia, C. (1978). The Boundary Element Method for Engineers. New York, NY:

Pentech Press; Halstead Press.

Brebbia, C., and Dominguez, J. (1996). Boundary Elements: An Introductory

Course. Southampton: WIT Press.

Brebbia, C. A., and Partridge, P. W. (1992). Boundary Elements in Fluid Dynamics.

Southampton: Springer.

Frontiers in Built Environment | www.frontiersin.org 10 November 2018 | Volume 4 | Article 69

https://doi.org/10.1016/j.ijsolstr.2007.11.018
https://doi.org/10.1155/S0161171203209285
https://doi.org/10.3970/cmes.2009.043.149
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Molina-Moya et al. GPU GMRES Waves in BEM

Chaillat, S., and Bonnet, M. (2013). Recent advances on the fast multipole

accelerated boundary element method for 3D time-harmonic elastodynamics.

Wave Motion 50, 1090–1104. doi: 10.1016/j.wavemoti.2013.03.008

Chamberlain, P. G., and Porter, D. (1995). The modified mild-slope

equation. J. Fluid Mech. 291, 393–407. doi: 10.1017/S002211209

5002758

Cheng, A. D. H., and Cheng, D. T. (2005). Heritage and early history of

the boundary element method. Eng. Anal. Boundary Elem. 29, 268–302.

doi: 10.1016/j.enganabound.2004.12.001

D’Azevedo, E., and Nintcheu Fata, S. (2012). On the effective implementation

of a boundary element code on graphics processing units using an

out-of-core LU algorithm. Eng. Anal. Boundary Elem. 36, 1246–1255.

doi: 10.1016/j.enganabound.2012.02.014

Djojodihardjo, H. (2010). “Further development in the application of fast

multipole boundary element method for unified BEM-FEM acoustic-structural

coupling,” in 61st International Astronautical Congress 2010, IAC 2010, vol. 4,

Prague, 3417–3429.

Frayssé, V., Giraud, L., and Gratton, S. (1998). A Set of Flexible-GMRES Routines

for Real and Complex Arithmetics. Technical report, Centre Européen de

Recherche et de Formation Avancée en Calcul Scientifique TR/PA/98/20.

Geng, W., and Jacob, F. (2013). A GPU-accelerated direct-sum boundary

integral Poisson–Boltzmann solver. Comput. Phys. Commun. 184, 1490–1496.

doi: 10.1016/j.cpc.2013.01.017

Gumerov, N. A., and Duraiswami, R. (2005). Fast Multipole Methods for the

Helmholtz Equation in Three Dimensions. Amsterdam: Elsevier.

Guzina, B. B., Pak, R. Y. S., and Martínez-Castro, A. (2006). Singular boundary

elements for three-dimensional elasticity problems. Eng. Anal. Bound. Elem.

30, 623–639. doi: 10.1016/j.enganabound.2006.02.010

Hackbusch, W. (1999). A sparse matrix arithmetic based on hierarchical

matrices. Part I: introduction to hierarchical matrices. Computing 62, 89–108.

doi: 10.1007/s006070050015

Hamada, T. and Takahashi, T. (2009). GPU-accelerated boundary element method

for Helmholtz equation in three dimensions. Int. J. Numer. Meth. Eng. 80,

1295–1321. doi: 10.1002/nme.2661

Hess, J. L. (1990). Panel methods in computational fluid dynamics. Annu. Rev.

Fluid Mech. 22, 255–274. doi: 10.1146/annurev.fl.22.010190.001351

Isaacson, M., and Qu, S. (1990). Waves in a harbour with partially reflecting

boundaries. Coast. Eng. 14:193–214. doi: 10.1016/0378-3839(90)90024-Q

Jaswon,M. A., and Porter, A. R. (1963). An integral equation solution of the torsion

problem. Proc. R. Soc. 273, 237–246. doi: 10.1098/rspa.1963.0085

Kelly, J. M., Divo, E. A., and Kassab, A. J. (2014). Numerical solution

of the two-phase incompressible Navier–Stokes equations using a GPU-

accelerated meshless method. Eng. Anal. Boundary Elem. 40, 36–49.

doi: 10.1016/j.enganabound.2013.11.015

Kirk, D., and Hwu, W. (2012). Programming Massively Parallel Processors: A

Hands-on Approach. Cambridge, MA: Morgan Kaufmann.

Leung, C., and Walker, S. P. (1997). Iterative solution of large three-

dimensional BEM elastostatic analyses using the GMRES technique.

Int. J. Numer. Meth. Eng. 40, 2227–2236. doi: 10.1002/(SICI)1097-

0207(19970630)40:12<2227 :AID-NME154>3.0.CO;2-Z

Li, R., and Saad, Y. (2013). GPU-accelerated preconditioned iterative linear solvers.

J. Supercomput. 63, 443–466. doi: 10.1007/s11227-012-0825-3

Liu, H.-W. (2001). Numerical Modelling of the Propagation of Ocean Waves. Ph.D.

thesis, University of Wollongong.

Liu, Y. (2009). Fast Multipole Boundary Element Method. New York, NY:

Cambridge University Press.

Liu, Y., and Nishimura, N. (2006). The fast multipole boundary element method

for potential problems: a tutorial. Eng. Anal. Bound. Elem. 30, 371–381.

doi: 10.1016/j.enganabound.2005.11.006

Liu, Y. J. (2008). A fast multipole boundary element method for 2D multi-domain

elastostatic problems based on a dual BIE formulation. Comput. Mech. 42,

761–773. doi: 10.1007/s00466-008-0274-2

Liu, Y. J., Mukherjee, S., Nishimura, N., Schanz, M., Ye, W., Sutradhar,

A., et al. (2012). Recent advances and emerging applications of the

boundary element method. Appl. Mech. Rev. 64, 1–38. doi: 10.1115/1.

4005491

López-Portugués, M., López-Fernández, J., Menéndez-Canal, J., Rodríguez-

Campa, A., and Ranilla, J. (2012). Acoustic scattering solver based on single

level FMM for multi-GPU systems. J. Parallel Distr. Com. 72, 1057–1064.

doi: 10.1016/j.jpdc.2011.07.013

Lu, T., Wang, Z., and Yu, W. (2004). Hierarchical block boundary-

element method (HBBEM): a fast field solver for 3-D capacitance

extraction. IEEE T. Microw. Theory 52, 10–19. doi: 10.1109/TMTT.2003.

821228

Ma, Z., Wang, H., and Pu, S. (2014). GPU computing of compressible flow

problems by a meshless method with space-filling curves. J. Comput. Phys. 263,

113–135. doi: 10.1016/j.jcp.2014.01.023

Margonari, M. and Bonnet, M. (2005). Fast multipole method applied to

the coupling of elastostatic BEM with FEM. Comput. Struct. 83, 700–717.

doi: 10.1016/j.compstruc.2004.09.007

Mei, C. C., Stiassnie, M., and Yue, D. K. P. (2005).Theory and Applications of Ocean

Surface Waves. London: World Scientific Publishing Company.

Ortiz, P. (2004). Finite Elements using a plane-wave basis for scattering of

surface water waves. Philos. Trans. R. Soc. A. 362, 525–540. doi: 10.1098/rsta.

2003.1333

Ortiz, P., and Pastor, M. (1990). Un modelo numérico de refracción-difracción de

ondas en zonas costeras. Rev. Int. Metod. Numer. 6, 409–436.

Ortiz, P., and Sánchez, E. (2001). An improved partition of unity finite element

model for diffraction problems. Int. J. Numer. Meth. Eng. 50, 2727–2740.

doi: 10.1002/nme.161

Phillips, J. R. (1997). Rapid Solution of Potential Integral Equations in Complicated

3–Dimensional Geometries. Ph.D. thesis, MIT.

Phillips, J. R., and White, J. K. (1997). A Pre-Corrected-FFT Method for

Electrostatic Analysis of Complicated 3–D Structures. IEEE Trans. Comput.

Aided Des. 16, 1059–1072. doi: 10.1109/43.662670

Rokhlin, V. (1985). Rapid solution of integral equations of classical potential

theory. J. Comput. Phys. 60, 187–207. doi: 10.1016/0021-9991(85)

90002-6

Saad, Y., and Shultz, M. (1986). GMRES: a generaliced minimal residual algorithm

for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–

869. doi: 10.1137/0907058

Sanders, J., and Kandrot, E. (2010). CUDA by Example. Boston, MA: Addison-

Wesley.

van der Vorst, H. (2003). Iterative Krylov Methods for Large Linear System.

Cambridge, UK: Cambridge University Press.

Wang, G., Wang, Q. F., and Wang, Y. J. (2011). GPU based boundary

element analysis for 3D elastostatics with GMRES-DC algorithm

solving system equations. Adv. Mat. Res., 308–310, 2345–2348.

doi: 10.4028/www.scientific.net/AMR.308-310.2345

Wang, Y., Wang, Q., Wang, G., Huang, Y., andWang, S. (2013). An adaptive dual-

information FMBEM for 3D elasticity and its GPU implementation. Eng. Anal.

Boundary Elem. 37, 236–249. doi: 10.1016/j.enganabound.2012.09.012

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Molina-Moya, Martínez-Castro and Ortiz. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Built Environment | www.frontiersin.org 11 November 2018 | Volume 4 | Article 69

https://doi.org/10.1016/j.wavemoti.2013.03.008
https://doi.org/10.1017/S0022112095002758
https://doi.org/10.1016/j.enganabound.2004.12.001
https://doi.org/10.1016/j.enganabound.2012.02.014
https://doi.org/10.1016/j.cpc.2013.01.017
https://doi.org/10.1016/j.enganabound.2006.02.010
https://doi.org/10.1007/s006070050015
https://doi.org/10.1002/nme.2661
https://doi.org/10.1146/annurev.fl.22.010190.001351
https://doi.org/10.1016/0378-3839(90)90024-Q
https://doi.org/10.1098/rspa.1963.0085
https://doi.org/10.1016/j.enganabound.2013.11.015
https://doi.org/10.1002/(SICI)1097-0207(19970630)40:12<2227\protect \kern +.2222em\relax :AID-NME154>3.0.CO;2-Z
https://doi.org/10.1007/s11227-012-0825-3
https://doi.org/10.1016/j.enganabound.2005.11.006
https://doi.org/10.1007/s00466-008-0274-2
https://doi.org/10.1115/1.4005491
https://doi.org/10.1016/j.jpdc.2011.07.013
https://doi.org/10.1109/TMTT.2003.821228
https://doi.org/10.1016/j.jcp.2014.01.023
https://doi.org/10.1016/j.compstruc.2004.09.007
https://doi.org/10.1098/rsta.2003.1333
https://doi.org/10.1002/nme.161
https://doi.org/10.1109/43.662670
https://doi.org/10.1016/0021-9991(85)90002-6
https://doi.org/10.1137/0907058
https://doi.org/10.4028/www.scientific.net/AMR.308-310.2345
https://doi.org/10.1016/j.enganabound.2012.09.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	An Iterative Parallel Solver in GPU Applied to Frequency Domain Linear Water Wave Problems by the Boundary Element Method
	1. Introduction
	2. Basic Equations
	2.1. Mass and Damping Matrices of a Floating Body
	2.2. Mild-Slope Equation
	2.3. Boundary Element Formulation

	3. A Parallel GMRES With CUDA
	3.1. The Generalized Minimum Residual Method
	3.2. GPU Parallelization With CUDA

	4. Numerical Tests
	4.1. Added Mass of a Floating Cylinder
	4.2. Internal Harbor Oscillations

	5. Concluding Remarks
	Author Contributions
	Acknowledgments
	References

